
c
Copyright by

Jay Philip Hoe
inger

2000

INTERPROCEDURAL PARALLELIZATION USING MEMORY CLASSIFICATION ANALYSIS

BY

JAY PHILIP HOEFLINGER

B.S., University of Illinois, 1974
M.S., University of Illinois, 1977

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2000

Urbana, Illinois

ABSTRACT

This thesis outlines a way of addressing the goal of precise interprocedural analysis, based on

a combination of techniques: for representing memory accesses within interprocedural sections

of code, for summarizing dependence information in program contexts, and for testing that

dependence. The thesis presents a new technique for summarizing the memory access activity

in an arbitrary section of code, called Memory Classi�cation Analysis (MCA), using a precise

form for representing memory access patterns, called the Access Region Descriptor (ARD). A

new, simple dependence test, the Access Region Test (ART), is also described which uses the

summary sets of ARDs produced by MCA. This test is capable of parallelizing loops containing

non-aÆne subscript expressions, such as those found in FFT codes. A uni�ed parallelization

framework is described, which combines privatization, reduction and induction analysis. Array

references using subscripting arrays, such as are found in sparse codes are precisely repre-

sentable using ARDs, and can sometimes be parallelized using the parallelization framework.

Parallelization conditions are generated at critical points in the analysis when dependence can-

not be disproved. These can be used to drive on-demand deeper program analysis. Whatever

conditions remain unproven can then be generated as code to be used for runtime dependence

testing. Its precise memory access representation makes the ARD useful within algorithms for

generating data movement messages.

iii

To
my loving wife Donna and my wonderful teenagers, Chris and Dan, for all the sacri�ces you
have had to make, just because \I wanna be a doctor". Thanks for the love, for putting up
with me, and for dragging me away from my work into the real world at regular intervals.

And To
my parents, Aug and Rose Hoe
inger, whose love and support never wavered, and who taught
me that anything is possible through hard work.

I cherish all of you.

iv

ACKNOWLEDGMENTS

I would like to acknowledge the valuable advice and guidance given me by my advisor,

Professor David Padua. His sage words helped me steer around many obstacles, and when we

disagreed, he was usually right.

I would like to thank Yun Paek for our many conversations and his collaboration on several

papers. He always has challenged me with his search for precise thinking and for �nding the

truths underlying our work.

My thanks and admiration also goes out to the many past and present members of the

Polaris group at Illinois. I have the highest regard for the bright and talented people I have had

the pleasure of working with during my years here, especially Rudi Eigenmann, Paul Petersen,

Bill Blume, Lawrence Rauchwerger, Peng Tu, John Grout, Bill Pottenger, Jaejin Lee, Calin

Cascaval, Yuan Lin, Peng Wu and Gheorghe Almasi.

Thanks to Sheila Clark for her excellent support of the work in our oÆce, for being there

to share stressed-out stories, and for being a friend.

And a �nal thank you to my committee members, Professors Sanjay Kale, Michael Heath,

and Wen-mei Hwu for committing their time and energies to the consideration of my work.

v

TABLE OF CONTENTS

Chapter

1 INTRODUCTION : 1
1.1 Interprocedural Analysis . 1
1.2 Dependence Analysis . 2
1.3 Compiler Organization . 4
1.4 The Focus of this Thesis . 4

2 EXISTING COMPILER ANALYSIS TECHNIQUES : : : : : : : : : : : : : 6
2.1 Parallelization Studies at Illinois . 6
2.2 The Transformation Techniques . 7

2.2.1 Array Privatization . 7
2.2.2 Parallel Reductions . 9
2.2.3 Generalized Induction Variable Analysis 10

2.3 The Symbolic Analysis Techniques . 11
2.3.1 Intraprocedural Symbolic Analysis . 11
2.3.2 Interprocedural Symbolic Analysis . 11
2.3.3 Subroutine Inlining . 12
2.3.4 Improved Data Dependence Analysis . 13

2.4 Polaris Results . 15

3 ARRAY REGION REPRESENTATION TECHNIQUES : : : : : : : : : : : 16
3.1 Linear Constraint-based Techniques . 16
3.2 Reference List-based Techniques . 18
3.3 Triplet Notation-based Techniques . 19

4 THE ACCURACY OF TRIPLET NOTATION : : : : : : : : : : : : : : : : : 20
4.1 The Sources of Inaccuracy . 21

4.1.1 Subscripted-subscripts . 22
4.1.2 Non-aÆne Expressions . 22
4.1.3 Triangular Access . 22
4.1.4 Coupled Subscript Access . 23
4.1.5 Multi-index Subscripts . 23

4.2 Summary . 24

5 THE ACCESS REGION DESCRIPTOR : 25
5.1 Basic De�nitions . 25
5.2 Representing the Array Accesses in a Loop Nest 27

5.2.1 The Linear Memory Access Descriptor . 29
5.2.2 Validity of the LMAD Representation . 35
5.2.3 Normalizing LMADs . 36
5.2.4 De�nitions for LMADs . 37
5.2.5 The Dimensional Order for LMADs . 38

vi

5.3 Operations on LMADs . 40
5.3.1 Upper and Lower Bounds of an LMAD 40
5.3.2 The Overlap Test for LMADs . 41
5.3.3 Zero-Span Insertion . 42

5.4 LMAD Matching . 43
5.4.1 LMAD Similarity Types . 43
5.4.2 Dimension Matching Between LMADs . 45

5.5 The Accuracy of the LMAD Form . 47
5.5.1 Multiple-index AÆne . 47
5.5.2 Coupled Subscripts . 48
5.5.3 Triangular AÆne . 48
5.5.4 Non-aÆne . 49
5.5.5 Subscripted-subscript . 49

5.6 Translating LMADs Across Procedure Boundaries 51
5.7 Simpli�cation of LMADs . 51

5.7.1 Checking for Internal Overlap . 52
5.7.2 Contiguous Aggregation . 53
5.7.3 Coalescing . 55
5.7.4 Interleaving . 57

5.8 Components of the Access Region Descriptor . 58
5.8.1 The Flags . 58
5.8.2 The Execution Predicate . 59
5.8.3 The Correctness Predicate . 59
5.8.4 The Classi�cation Predicate . 60
5.8.5 Original Reference Sites . 60
5.8.6 The Size of a Data Element . 60
5.8.7 Reduction/Induction Information . 60

5.9 ARD Notation . 61

6 INTERPROCEDURAL PARALLELIZATION : : : : : : : : : : : : : : : : : 62
6.1 Memory Classi�cation Analysis . 62

6.1.1 Traditional Data Dependence . 62
6.1.2 Dependence Granularity . 63
6.1.3 Dependence Summarization for Dependence Grain Parallelization 63
6.1.4 Loop-based Dependence Analysis . 65
6.1.5 A More E�ective Classi�cation for General Dependence 66
6.1.6 Establishing an Order Among Accesses 66
6.1.7 Memory Classi�cation for Arrays . 68
6.1.8 Classi�cation Operations for the Elementary Contexts 71
6.1.9 General Dependence Testing with Summary Sets 74
6.1.10 Loop Dependence Testing with Summary Sets:

The Access Region Test . 75
6.1.11 Loop-carried Dependence Handled by the Access Region Test 77
6.1.12 Uncertainty in the Classi�cation Process 77
6.1.13 Using the Classi�cation Condition for Conditional Prefetching 80
6.1.14 DiÆculty with a \Simple" Situation . 80

vii

6.2 Transformations and Analysis for Loop Parallelization 81
6.2.1 Regularizing the Program . 86
6.2.2 Other Key Transformations . 86
6.2.3 Privatization . 87
6.2.4 Reduction Analysis . 87
6.2.5 Induction Analysis . 88
6.2.6 Run-time Dependence Analysis . 91

6.3 A Framework for Interprocedural Analysis . 92
6.3.1 Regularization Pass . 93
6.3.2 Classi�cation Pass . 93
6.3.3 Code-generation Pass . 94
6.3.4 Precision of the Analysis . 100
6.3.5 Conservative Operations . 100

6.4 A General Multi-Dimensional Intersection Algorithm 100
6.5 Comparing the Access Region Test with Other Dependence Tests 101

6.5.1 The ART as an Alternative to Equation-Solving Tests 104

7 IMPLEMENTATION ISSUES : 107
7.1 Representation of Summary Sets . 107
7.2 Optimizations . 107

7.2.1 Similarity Graphs . 108
7.2.2 Optimizations for Scalars . 111
7.2.3 Compiler E�ort . 111

8 EXPERIMENTS : 112
8.1 Representational Accuracy Experiment . 112
8.2 The E�ect of Simpli�cation on LMADs . 114
8.3 Comparing ART Parallelization with Range Test Parallelization 115

8.3.1 An Explanation of the Notes in the Tables 115
8.3.2 Overall Results . 122

8.4 Parallelizing TFFT2 . 123
8.4.1 Access Region Summaries of the Code . 123

9 THE CONTRIBUTIONS OF THIS THESIS
AND FUTURE WORK : 132
9.1 Future Work . 133

9.1.1 Code Generation Pass . 133
9.1.2 Symbolic Infrastructure . 134
9.1.3 Communication Generation . 134

BIBLIOGRAPHY : 135

VITA : 139

viii

LIST OF TABLES

6.1 Traditional data dependence de�nition. 63
6.2 One possible representative dependence de�nition. 64
6.3 Loop-based representative dependence table. 66
6.4 Summary sets illustrating conditional classi�cation. 79
6.5 Some potential components of the regularization pass in the proposed compiler

framework. 93

8.1 A comparison of Range Test and ART parallelization for the programs CLOUD3D
from NCSA, TFFT2 from a preliminary version of the SPEC FP95 benchmarks,
and TRFD from the Perfect benchmarks. 116

8.2 A comparison of Range Test and ART parallelization for the programs MDG,
FLO52 from the Perfect benchmarks, and HYDRO2D from the SPEC FP'95
benchmarks. 117

8.3 A comparison of Range Test and ART parallelization for the OCEAN program
from the Perfect benchmarks, part 1. \parallel*" means that the loop would
be parallelized by the ART with a modest improvement in symbolic expression
simpli�cation. 118

8.4 A comparison of Range Test and ART parallelization for the OCEAN program
from the Perfect benchmarks, part 2. \parallel*" means that the loop would
be parallelized by the ART with a modest improvement in symbolic expression
simpli�cation. 118

8.5 A comparison of Range Test and ART parallelization for the OCEAN program
from the Perfect benchmarks, part 3. \parallel*" means that the loop would
be parallelized by the ART with a modest improvement in symbolic expression
simpli�cation. 119

8.6 A comparison of Range Test and ART parallelization for the BDNA program
from the Perfect benchmarks. 119

8.7 A comparison of Range Test and ART parallelization for the ARC2D program
from the Perfect benchmarks and the programs TOMCATV and SWIM from the
SPEC FP95 benchmarks. 120

ix

LIST OF FIGURES

2.1 Speedups obtained from executing codes on a Silicon Graphics Challenge computer with

8 MIPS R4400 processors. The codes were compiled with Polaris and with PFA, a

commercial parallelizing compiler. The parallel execution time is compared with the

serial execution time for each code. The numbers on top of the bars represent parallel

eÆciency. 15

4.1 Programmer-built composite data structure in a one-dimensional array. 20

5.1 An m-dimensional array reference appearing in a d-loop nest. 27
5.2 The LMAD Form. 30
5.3 A memory access diagram for the array A in a nested loop and the Access Region

Descriptor which represents it. 31
5.4 An array reference inside a loop nest. 32
5.5 A function for constructing an LMAD for an array reference. 33
5.6 A function for expanding an LMAD by a loop index. 34
5.7 Access to array A through two references and their access patterns in memory. Solid lines

denote the access for A(�I1+2�I2+1) and dashed lines the access for A(I1+2�I2�3).

Arrows with white heads and black heads keep track of the access driven by indices I1
and I2, respectively. 37

5.8 Generating the subscripting o�set sequence from an LMAD. 38
5.9 Access patterns produced by reversing the order in which dimensions are written. 40
5.10 Equivalent and Semi-Equivalent LMADs. 44
5.11 Dimension Equivalent and Semi-Dimension Equivalent LMADs. 44
5.12 Stride Equivalent and Semi-Stride Equivalent LMADs. 45
5.13 Attempting to operate on an LMAD and a subLMAD is made easier by inserting a

zero-span dimension. 46
5.14 Translating LMADs across procedure boundaries. 52
5.15 An algorithm that detects coalesceable accesses from an LMAD, by comparing its stride/span

pairs. 56

6.1 Dependence between grains depends on whether the two grains are read-only. The situ-

ation on the right shows a case where A can be privatized in the later grain, eliminating

the output dependence. 65
6.2 A more e�ective way to classify dependence between two arbitrary dependence grains,

using the classi�cations Read-Only, Write-First and Read/Write. 67
6.3 Distributing an access to the summary sets. 69
6.4 The general form of summary set intersection. 70
6.5 Classi�cation of new summary sets ROnew, WFnew, and RWnew into the existing sum-

mary sets RO, WF, and RW. 70
6.6 Memory Classi�cation in a series of nested contexts. 72
6.7 The Access Region Test. 75
6.8 How the Access Region Test handles loop-carried dependence. 78
6.9 The classi�cation algorithm of the uni�ed parallelization framework. 82

x

6.10 Classify support routines. 83
6.11 Classify support routines 2. 84
6.12 Classify support routines 3. 85
6.13 Comparing liberal and conservative rules for reduction recognition. 88
6.14 The Summary Set Framework structure for a compiler based on Memory Classi�cation

Analysis, using the summary sets ReadOnly (RO), WriteFirst (WF), ReadWrite (RW),

and ReadNext (RN). 92
6.15 Simpli�ed code from MDG, illustrating the possibility of using on-demand deeper anal-

ysis to prove fKC � 0g) fRS[6 : 9] � CUT2g, thus allowing privatization of RL and

parallelization of the loop. 96
6.16 The Summary Set Framework algorithm. 98
6.17 The algorithm to compute last value copies for private variables. 99
6.18 The multi-dimensional recursive intersection algorithm, considering the whole extent

of the two access patterns (Part A), then recursing inside to consider the next inner

dimension (Part B). 102
6.19 The multi-dimensional recursive intersection algorithm, considering the inner-most di-

mension, �nding no intersection. 103
6.20 The recursive, multi-dimensional intersection algorithm for LMADs. See Section 5.3.1

for a de�nition of the function width. 105
6.21 Memory access diagrams for access patterns which the both the Range Test and the

Access Region Test can prove independent. 106
6.22 Memory access diagrams for access patterns which the Range Test cannot prove are

independent, while the Access Region Test can. 106

7.1 The Similarity Graph stores relationships between each pair of ARDs. In this situation,

we can use transitive closure to determine that ARD5 is equivalent to ARD2 without

needing to do the matching. 109
7.2 Calculating the dimension-matching between two ARDs through transitive closure. . . . 110

8.1 Percentage of non-triplet-representable access summaries versus total number of access

summaries. 113
8.2 Percentage of access summaries which are not provably-monotonic versus total number

of access summaries. 113
8.3 Percentage reduction in total number of LMAD dimensions by coalescing and contiguous

aggregation. 115
8.4 Call tree for the branch of TFFT2 described in this thesis. 124
8.5 Highest level routines - main program and RCFFTZ (simpli�ed). 124
8.6 Middle level routines CFFTZ and CFFTZWORK (simpli�ed). 125
8.7 Lowest level routines FFTZ2 and CMULTF (simpli�ed). 126
8.8 Combination of access descriptors for variable X in routine FFTZ2. 127
8.9 Combination of access descriptors for variable Y in routine FFTZ2. 128

xi

1 INTRODUCTION

1.1 Interprocedural Analysis

Precise interprocedural analysis is an increasingly important component of a modern com-

piler. Parallelizing compilers, especially, have a need for precise global information because

of the hardware advances made in the last decade. Modern processors can take advantage

of instruction-level parallelism, reducing the amount of parallelism available for use between

processors. Also, as processor speed increases relative to memory speed, more instructions are

needed between memory fetches to keep the processors busy. To accommodate these changes,

people have attempted to parallelize loops further out in loop nests and to batch expensive data

accesses together. The greater the compiler's ability to parallelize loops containing procedure

calls, and to represent data accesses precisely, the greater its chances for success in these tasks.

But, interprocedural analysis adds complexity to the analysis problems faced by a compiler

writer because each analysis technique must be either augmented to cross procedure boundaries,

or must be able to accept a summary of the subroutine's activity. In either case, the compiler

must model the parameter passing mechanism at call sites. This is especially diÆcult when a

parameter passing regime is used (as it is in Fortran) such that an actual array can be passed

to a formal array which is declared di�erently in the subroutine (this is referred to as the

array reshaping problem). This is a widely-exploited feature of Fortran, but can be quite

diÆcult for a compiler to handle. Complicated algorithms have been devised to accomplish this

modeling accurately in some cases, although in other cases they are forced to approximate.

Three keys to successful interprocedural analysis are

� a consistent access summarization technique, usable by the various compiler components,

� a precise memory access representation, and

� a solution to the array reshaping problem.

Procedure inlining is a partial solution to the interprocedural analysis problem. The goal

is to remove procedure boundaries entirely, by incorporating a procedure's code at each call

1

site, thus avoiding interprocedural analysis and its problems. Several problems result from this,

however. First, when an array is reshaped across procedure boundaries it is sometimes very

diÆcult to generate correct code for it at the call site. Second, because code is copied, the size

of the source code increases, sometimes becoming very large. For these reasons, inlining has

not been a practical option in general.

Recently, as computers became faster, main memory and disk larger, inlining was inves-

tigated again [19], but much the same conclusions were reached. Even for moderately-sized

programs, the memory and compile time requirements can grow too large. Yet even if we

could overcome the compile time and space limitations with future machines, the resulting

fully-inlined program can be very diÆcult for the compiler to optimize because complex ar-

ray subscripting expressions often result and the natural code locality produced by having the

program divided into separate routines is lost.

1.2 Dependence Analysis

A critical part of precise interprocedural analysis is the dependence test. Many dependence tests

have been developed over the years, and their power has increased suÆciently that modern

parallelizers are able to parallelize a large percentage of the loops which they encounter in

programs.

Dependence analysis was turned into an equation-solving activity by researchers such as

David Kuck, Yochi Muraoka, Ross Towle, and Utpal Banerjee [6] at Illinois in the early 1970s.

They proposed equating the subscript expressions of two array reference sites, solving the

Diophantine equations which result, and then applying the constraints derived from the loop

bounds to determine whether the solutions were feasible. Banerjee's Inequalities grew out of

this e�ort as a way to check whether the Diophantine equations have no solutions within the

iteration bounds of a particular loop. This method of dependence testing has proven to be very

successful, but it cannot be applied where the subscript expressions are not linear in form.

More recently, dependence testing has been generalized to �t into a framework built around

a linear-constraint solver. The Omega Solver was developed as an optimized form of the Fourier-

Motzkin linear constraint-solving technique. Linear constraints can be derived from a program

for many di�erent kinds of analysis. Interprocedural analysis can be done by combining the

2

constraints derived from a subroutine with the constraints which are active at a call site. A

solution to a given constraint system can be projected onto an arbitrary set of variables, making

it possible to use the technique to generate run-time tests involving unknown variables, and

produce symbolic dependence and distance vectors, plus many other types of information useful

to a compiler. However, linear constraint solvers, like the Banerjee Test, are generally not usable

in the presence of non-aÆne expressions.

Three important categories of array subscript expression components which still prevent

parallelization of the loops where they appear are

1. unknown terms (such as values read from an input �le),

2. terms in array subscript expressions about which too little is known, due to insuÆcient

or imperfect program analysis, and

3. loops which use non-aÆne subscripts, such as appear in programs implementing a Fast

Fourier Transform.

In many compilers, the appearance of any of these components in a loop causes the whole

loop to be serialized. Some people attack the �rst category by compiling a program in the

presence of its input �les. This makes the compiled program usable only with that set of input

�les. Others try to speculatively parallelize such loops, but at execution time must roll back any

changes made to memory if a dependence is discovered, then run the loop serially. The second

category can include any term which the compiler doesn't understand or cannot process, such as

MAX(1, N). The compiler writer can theoretically reduce the size of this category by improving

the compiler's analysis capabilities. The third category is related to the �rst two in that the

compiler cannot process non-aÆne subscript expressions, but it is placed in a third category

because it is the form of the expression, not any of its terms, which makes it unanalyzable.

Prior to this thesis, only Blume's Range Test [10] could handle non-aÆne subscript expressions.

Subscripted-subscript expressions are well-known as being diÆcult for a compiler to analyze.

They �t in the above classi�cation in category two, unless the subscripting array is read from

an input �le. This means that the program often contains suÆcient information for allowing

a compiler to understand the access pattern caused by the subscripted-subscript access, but

advanced analysis techniques are required to enable the parallelization of loops containing them.

3

Very few compilers can parallelize loops which contain array references whose subscript

expressions fall into any of these three categories.

1.3 Compiler Organization

Compilers have traditionally been developed using a pass-oriented approach. A pass was de�ned

as a traversal of the source program, or its machine representation. The �rst Fortran compiler [3]

was developed at IBM in this way in the mid-1950s. At that time it was largely unknown what

techniques would be necessary to develop the compiler, so they broke up the task to make it

manageable. Each of the six \sections" of that compiler was developed by an autonomous group

which developed its own input and output speci�cations.

Parallelizing compilers adopted this approach for similar reasons - it was not known what

analysis would become important, or in what order to do the various analyses. Over the years,

research and experience has led the �eld to a general consensus about the types of analysis

which are important, but has not clari�ed the question of how to order them. Should induction

be run before or after reduction analysis? Should we run dependence analysis �rst or last? How

can we have separate passes while avoiding having to re-do some basic analysis? These are

some typical questions which a compiler writer must face, and for which there have been no

authoritative answers.

While the pass structure is useful for software engineering reasons, it has drawbacks because

the various passes often need to do very similar analyses. This can lead to two di�erent routines

to do the same job, or duplicated code which is run repeatedly for each pass.

Some attempts have been made to take an \arti�cial intelligence" approach to combining

compiler analyses [18], allowing the form of the program to direct the application of the com-

piler's techniques. In the end, these e�orts have largely been abandoned because they have

grown to be too complex.

1.4 The Focus of this Thesis

This thesis addresses the issues mentioned here by integrating several analyses into a single

framework. Each technique has its natural place in the framework. This avoids the recompu-

tation of analysis information for each technique.

4

This thesis will propose a simple analysis technique, called Memory Classi�cation Analysis

(MCA), based on a precise memory access representation called the Access Region Descriptor

(ARD), which can support an interprocedural data dependence test called the Access Region

Test (ART). Simpli�cation operations are de�ned on the ARD. The precision of the ARD

representation and its simpli�cation operations, together make the ARD an ideal vehicle for

generating messages for data movement between processors. The ARD is not tied to the

declared dimensionality of an array and therefore the array reshaping problem is eliminated.

This enables precise translation of memory access summaries across procedure boundaries.

The ARD can also handle non-aÆne subscript expressions, such as those which occur in

FFT codes, enabling parallelization in situations that no other dependence test can handle.

The ART does interprocedural privatization, reduction and induction analysis as a part of its

normal operation. MCA is able to summarize the important information about the memory

accesses in an arbitrary section of code in its summary sets. The summary sets are then used

by the ART to parallelize the code.

When the techniques described in this thesis are unsure about their results, they are designed

to gather conditions which, if proven true, could enable parallelization. These conditions can

drive on-demand deeper analysis of the program, and whatever conditions can still not be

proven can be formed into a test to be executed at runtime to choose between the serial and

parallel versions of a loop. The conditions can also be used to assist in generating conditional

prefetch commands.

5

2 EXISTING COMPILER ANALYSIS TECHNIQUES

Much research has focused on the question of what techniques are important to implement in

a compiler. One of the �rst such studies [17] was done at Illinois as part of the Cedar project,

by a group of people of which the author was a member. Similar studies have been done

at Stanford [21]. Researchers at Stanford [22], and Minnesota [20], plus the PIPS group at

�Ecole des mines de Paris [13, 14] and the Parafrase-2 group at Illinois [31], have implemented

compilers including the same basic transformations found to be important in the Cedar Project.

The results have been similar enough to form a general consensus as to which analysis techniques

are important to provide in a parallelizing compiler. The Illinois results will be presented here

as representative of this consensus.

2.1 Parallelization Studies at Illinois

The Polaris parallelizing compiler grew out of the Cedar project at the Center for Supercom-

puting Research and Development (CSRD), located on the campus of the University of Illinois

at Urbana-Champaign. CSRD was formed in late 1984 for the purpose of building the Cedar

supercomputer.

Once the Cedar machine was up and running, the Cedar Fortran parallelizer was used to

compile the Perfect Benchmark codes. The codes were run on the Cedar machine and the

speedup for them was measured. When the speedup proved to be much less than hoped for,

an e�ort was launched to determine �rst, whether parallelism existed in the codes, and second,

what analysis techniques implemented inside a compiler could achieve a speedup on the Cedar

machine. The Perfect Benchmark codes were hand-parallelized in a mechanical manner, using

only information and techniques which might realistically be available to a compiler.

The results of this study, presented in [17], were that the transformation techniques with

the most overall impact across all codes were

� array privatization

� parallel reductions

6

� generalized induction variable (GIV) analysis, and

� transformations which map loops to the machine.

The most important analysis techniques were found to be

� interprocedural symbolic analysis

� improved data dependence analysis, and

� run-time analysis techniques.

It was decided to implement, in a new compiler, the most important techniques: array pri-

vatization, parallel reductions, and GIVs; along with an improved dependence test, a powerful

symbolic infrastructure, interprocedural value propagation, and subroutine inlining. This new

compiler was called Polaris.

After the Polaris compiler was built, studies of the performance resulting from its par-

allelization [17] con�rmed what the hand analysis had predicted { signi�cant speedups were

possible from automatic analysis alone.

2.2 The Transformation Techniques

The following subsections describe the transformation techniques, implemented in Polaris, which

are relevant to this thesis.

2.2.1 Array Privatization

The term privatization refers to the transformation of certain variables from being globally

accessible to being only locally accessible to each processor. This requires that separate memory

space be reserved for the variables in each processor's private memory. Privatization is possible

in a situation such as:

do I = 1, N

A = . . .

= . . . A . . .

end do

7

This use of A within the loop represents a data dependence since the same memory location

is used by all iterations. But privatizing A removes the dependence, potentially allowing the

parallelization to occur.

If the above loop is to be parallelized, since A is de�ned before it is used within each iteration,

it may be allocated private memory space within each processor's memory. If such a variable

is used outside the loop, then we have to make sure that what would have been the last value

of the variable in the serial loop gets copied out to the proper memory location for use outside

the loop. This copy is called a last value assignment.

The same idea may be applied to arrays [37], but the subscripting expressions, used to

assign array elements, complicate the analysis. It must be determined that some part (or all)

of the array is assigned within each iteration before being used.

Flow-sensitive array privatization adds further diÆculties. For instance, if an array is as-

signed under one condition and used under a di�erent one, it can still be privatized as long as

the compiler can prove that the condition guarding the use implies that the condition guarding

the assignment was true. For example,

do I = 1, N

if (P) then

do J = 1, M

A(J) = . . .

end do

endif

if (Q) then

do J = 1, M

. . . = . . . A(J) . . .

end do

endif

end do

In this case A[1:M] can be privatized if we can prove that Q) P. If so, then we know for sure

that the assignment always precedes the use.

8

2.2.2 Parallel Reductions

Reductions also appear to the compiler as a data dependence, since the same memory location

is used in multiple iterations. The pattern is as follows:

do I = 1, N

A = A + . . .

end do

A memory location is read, then some arbitrary expression is evaluated and combined with it

using a reduction operator (such as addition in the example), and the result is stored back in

the original location. Arrays can be used as a reduction location in the same way, as long as the

array element being read is the same as the one being written. Any number of these reduction

statements can be used within a loop nest. For example:

do I = 1, N

do J = 1, M

A(J) = A(J) + . . .

end do

do J = 1, M

A(J) = A(J) + . . .

end do

end do

Subscripted-subscripts can even be involved in this same general form:

do I = 1, N

do J = 1, M

A(B(J)) = A(B(J)) + . . .

end do

do J = 1, M

A(B(J)) = A(B(J)) + . . .

end do

end do

9

A reduction can be parallelized [32] in a number of ways, all of them potentially allowing

the original operations to be done in a di�erent order from that of the original loop. Because

of this, roundo� error can accumulate di�erently in the parallel loop than in the original serial

loop, and the results of the computation could be di�erent from those of the serial loop. For

this reason, the user must explicitly consent to the parallelization of reductions.

2.2.3 Generalized Induction Variable Analysis

Inductions are closely related to reductions. The pattern of use for the induction variable is

the same as that for reduction variables, but the expression being added or multiplied with

the induction variable is an integer constant instead of an arbitrary expression. Just as for

reductions, any number of induction assignments can appear in a loop. For example,

do I = 1, N

do K = I, N

J = J + 1

A(J) = . . .

J = J + 1

A(J) + . . .

end do

end do

The induction variable, like a privatizable variable and a reduction variable would appear to

be a data dependence. The dependence is removed by the compiler computing a closed form for

the variable, calculated in each iteration separately. The loops surrounding the induction as-

signments can be triangular1 as well as rectangular. Triangular loops cause a more complicated

closed form expression for the induction variable [32].

1an inner loop uses the loop index of an outer loop in one of its bounds expressions

10

2.3 The Symbolic Analysis Techniques

Symbolic analysis takes several forms inside Polaris. The interprocedural component is split into

interprocedural value propagation and subroutine inlining. This is complemented by intrapro-

cedural range propagation and powerful expression simpli�cation and comparison routines.

2.3.1 Intraprocedural Symbolic Analysis

The intraprocedural range propagation algorithm [9] uses a data-
ow based technique to dis-

cover lower and upper bounds on the values of program variables through the use of widening

and narrowing operators. The variable ranges are stored in range dictionaries, which relate the

value ranges to statements in the program. The range dictionaries then supply range informa-

tion to the various analysis passes.

Within the Polaris privatization pass, the program is converted to Gated Single Assignment

form [38], which is then used to do symbolic
ow-sensitive analysis. Some primitive condition-

proving is carried out using the def-use chain links inherent in the GSA form.

All Polaris expression manipulation is supported by powerful expression simpli�cation rou-

tines. These routines convert expressions to a standard sum-of-products form, using constant

folding and structural simpli�cation, which facilitates expression comparison. Sophisticated

comparison routines make use of the range dictionaries to determine whether one expression is

less than, equal to, or greater than another expression.

2.3.2 Interprocedural Symbolic Analysis

Interprocedural value propagation [8] is used within Polaris. It is a version of a standard

constant propagation algorithm in which the value being propagated is a symbolic expression.

At join nodes in the interprocedural
ow graph, if all expressions for the same variable entering

the node are structurally identical, we can assign that expression to the variable at the node.

The propagation algorithm clones (specializes) subroutines where di�erent sets of values

ow into its parameters at di�erent call sites. Whenever the values for formal parameters are

determined for a particular subroutine, assignment statements are inserted inside the routine,

at the subroutine entry point, assigning those values to the formal parameters.

11

2.3.3 Subroutine Inlining

Subroutine inlining [19] is the general technique of copying the body of a subroutine to its call

sites, translating references to formal parameters into references to its actual parameters. There

are several advantages to doing this:

� the subroutine boundary is eliminated, thereby allowing an intraprocedural analysis or

transformation technique to essentially work interprocedurally.

� the subroutine jump, parameter storing and loading, and register saving and restoring

overheads are eliminated at runtime.

� for small routines, register allocation can be made more eÆcient, because it can be done

within two routines at once.

� any array reshaping which exists is eliminated.

Unfortunately, there are also disadvantages involved with subroutine inlining:

� the source code size can grow exponentially.

� compile time increases, in proportion to the source code growth, and the extra compile

time is spent repeatedly compiling the same routines.

� complicated subscript expressions can result from array reshaping situations, sometimes

complicated enough to foil dependence analysis.

� the declared dimensionality of an array which is a formal parameter is lost.

An example of the latter disadvantage is the following situation:

12

real A(P,Q,R)

call X (A, N)

. . .

subroutine X (A, N)

real A(N,N)

do I = . . .

do J = . . .

A(I,J) . . .

end do

end do

end

The access to A in subroutine X is obviously parallel. But when X is inlined, the mis-matched

array declarations forces the inliner to linearize accesses to the array and the clear parallelism

of the original subroutine is obscured:

real A(P*Q*R)

do I = . . .

do J = . . .

A(I-1 + (J-1)*N) . . .

end do

end do

end

The information can be recovered by clever use of range information for the program vari-

ables, but the code is de�nitely not as easy to parallelize in its inlined form.

2.3.4 Improved Data Dependence Analysis

A data dependence test called the Range Test [8] was implemented in Polaris. It uses the

symbolic expression manipulation package and the symbolic range information heavily.

The Range Test tests a pair of array references within a loop nest to determine whether

they access the same memory locations. It uses two tests to determine this. In the �rst test,

13

the loop bounds are used to calculate the maximum and minimum array o�sets produced for

each array reference. If it can prove that the maximum o�set of one reference is less than the

minimum o�set of the other, then it can prove the independence of the two references.

If the �rst test does not succeed in proving independence, then the second is used. In

evaluating the independence due to a particular loop, the Range Test computes the maximum

and minimum o�sets for the two references symbolically, in terms of the loop index for the loop

being tested. Then, it symbolically adds the stride of that loop to the minimum expression of

the �rst reference and checks whether it is greater than the maximum of the second reference.

If that is true, then it reverses the roles of the two references and symbolically adds the stride

of the loop to the minimum expression for the second reference and checks whether that is

greater than the maximum of the �rst reference. If both those checks are true, then the Range

Test reports independence between the two references. If both checks are not true, the loops in

the loop nest are interchanged (virtually, not physically), and the test is retried, until no more

interchanges are left to be tried.

For sake of eÆciency, the data dependence test pass in Polaris consists of a sequence of

dependence �lters, which eliminate dependences prior to the Range Test:

VarSpaceFilter - eliminates potential dependences between di�erent variables (for example

between A and B) which are not equivalenced together,

InputDepFilter - eliminates input dependences,

LoopNestFilter - eliminates dependences between references which have no loops in common,

ReadOnlyCallArgFilter - eliminates dependences due to a subroutine call whose arguments

are read-only,

GcdFilter - the GCD Test,

SimpleSubscriptTestFilter - eliminates dependences due to identical subscript expressions,

RangeTestFilter - the Range Test,

SelfEqualFilter - eliminates self dependences with an = direction,

SelfOutputFilter - eliminates dependences with a backward (illegal) direction,

14

12
78

87
92

2
35

28
52

28
43

22
12

Speedups

mdg
swim

trfd
bdna

tomcatv

tfft2
1

80

12
67

28
98

82
82

62
57

8
48

25
35

P
F

A

P
olaris

cloud3d

cmhog

appsp

hydro2d

arc2d

wave5

flo52

|
|

|
|

|
|

|
|

|
|

|
|

| | | | | | | |

0 1 2 3 4 5 6 7 8

F
ig
u
re

2
.1
:
S
p
eed

u
p
s
ob
tain

ed
from

ex
ecu

tin
g
co
d
es
on

a
S
ilicon

G
rap

h
ics

C
h
allen

ge
com

p
u
ter

w
ith

8
M
IP
S
R
4
4
0
0
p
ro
cessors.

T
h
e
co
d
es
w
ere

com
p
iled

w
ith

P
olaris

an
d
w
ith

P
F
A
,
a
com

m
ercial

p
arallelizin

g
com

p
iler.

T
h
e
p
arallel

ex
ecu

tion
tim

e
is
com

p
ared

w
ith

th
e
serial

ex
ecu

tion
tim

e
for

each
co
d
e.

T
h
e

n
u
m
b
ers

on
top

of
th
e
b
ars

rep
resen

t
p
arallel

eÆ
cien

cy.

P
riv

a
te
F
ilte

r
-
elim

in
ates

d
ep
en
d
en
ces

d
u
e
to

p
rivatized

variab
les,

an
d

R
e
d
u
c
tio

n
F
ilte

r
-
elim

in
a
tes

d
ep
en
d
en
ces

d
u
e
to

red
u
ction

variab
les.

T
h
e
u
se

o
f
th
is
co
m
b
in
atio

n
of
�
lters

w
as

fou
n
d
b
y
B
lu
m
e
to

b
e
essen

tially
as

p
ow

erfu
l,
on

a

set
of
b
en
ch
m
a
rk

co
d
es,

a
s
w
as

th
e
sam

e
�
lters

w
ith

th
e
O
m
ega

T
est

su
b
stitu

ted
fo
r
th
e
R
a
n
ge

T
est.

2
.4

P
o
la
r
is
R
e
su
lts

T
h
e
resu

lts
(sh

ow
n
in

F
ig
u
re

2
.1
)
of

stu
d
ies

[7]
u
sin

g
th
e
P
olaris

com
p
iler

h
as

p
roven

th
at

th
e

co
m
b
in
ation

of
tran

sform
a
tion

a
n
d
a
n
aly

sis
tech

n
iq
u
es

im
p
lem

en
ted

in
it
are

su
Æ
cien

t
to

get

g
o
o
d
sp
eed

u
p
s
o
n
a
set

o
f
b
en
ch
m
ark

co
d
es.

T
h
is
is
u
sed

as
ev
id
en
ce

th
at

th
ose

tech
n
iq
u
es
form

a
go
o
d
b
asis

for
a
p
a
rallelizin

g
com

p
iler.

T
h
ese

tech
n
iq
u
es

w
ill

b
e
co
m
b
in
ed

in
th
e
com

p
iler

fra
m
ew

o
rk

p
rop

osed
in

C
h
ap
ter

6.

1
5

3 ARRAY REGION REPRESENTATION TECHNIQUES

A compiler issue which has drawn little attention in the past is how the form used for repre-

senting memory accesses within arrays a�ects the accuracy of compiler analysis. This thesis

takes the view that the accuracy of the representation is critically important to the accuracy of

the analysis. This chapter examines prior work which has addressed the issue of representing

array accesses.

The prior work which has been done on representing the regions within an array which are

accessed by a section of code has proceeded in three general directions: linear constraint-based

forms, reference-list forms, and triplet-notation based forms.

3.1 Linear Constraint-based Techniques

Using linear constraint-based techniques to represent array accesses was �rst proposed by Trio-

let, et al [35]. Their representation was called a region and the overall parallelization technique

was called direct parallelization. The array regions accessed in a subroutine were attached to a

call statement for the subroutine in the form of a set of linear constraints constructed from the

subscript expressions used to address array elements in the subroutine. This was done for the

purpose of dependence analysis. They also used a set of constraints to represent the possible

values of variables, and called this an execution context.

When a potential dependence between two array references was being tested, the linear

inequalities associated with the two references were combined to form a linear system and the

feasibility of the system was tested using Fourier-Motzkin elimination [16] techniques.

The other principle technique for doing interprocedural analysis at that time was inline-

expansion of subroutines (subroutine inlining) [25]. Direct parallelization was deemed superior

to subroutine inlining by Triolet because it made the resulting program more readable and

limited the size of the routine which must be compiled, but direct parallelization su�ered from

a number of drawbacks:

16

� non-aÆne expressions cannot be used within Fourier-Motzkin techniques1,

� Fourier-Motzkin reports real-number solutions, not just integer solutions,

� Fourier-Motzkin requires that the linear inequalities form a convex hull, forcing a loss of

accuracy when some regions must be widened to make them convex,

� non-trivial array reshaping at a procedure boundary prompted the assumption that the

whole array was accessed in the subroutine, and

� its theoretical complexity is exponential.

Work on constraint-based techniques since 1986 has attempted to address all of these draw-

backs and make the representation useful for analyses other than just dependence analysis.

The advent of Pugh's Omega Solver [33] made the use of Fourier-Motzkin techniques prac-

tical. The algorithms built-in to the Omega Solver optimized it so as to avoid exponential

running times for the constraints derived from most practical program situations. It also elim-

inates the requirement that the linear constraints form a convex hull, avoiding one source of

precision loss.

The PIPS project at �Ecole des mines de Paris [13, 14] has added an indicator of the accuracy

of the representation to the representation itself. When linear system manipulations must

approximate, sometimes it is appropriate to under-approximate (MUST analysis), while at

other times it is appropriate to over-approximate (MAY analysis). But by making both MUST

and MAY approximations at each step, it can be determined when a result is exact (when the

MUST and MAY regions are identical). The PIPS compiler also uses an algorithm to handle

some of the simpler array reshaping situations.

Work on the SUIF system at Stanford uses a very similar representation [2, 23, 28] to

that of PIPS, and has a more sophisticated algorithm to handle the general problem of array

reshaping. It employs
ow-sensitive interval analysis and selective procedure cloning when a

routine is called from two or more contexts, providing the bene�ts of full inline expansion

without the large code growth. When using Fourier-Motzkin elimination to �nd solutions for a

linear system, if such solutions are found, SUIF uses a branch-and-bound technique to determine

1When non-aÆne expressions occurred, constraints involving them were removed, causing the representation

to lose accuracy.

17

whether any of the solutions are integers. The SUIF system uses a set of optimized operations

for doing intersection, union, subtraction, etc, with systems of linear inequalities.

Both the PIPS and SUIF projects use the linear constraint-based representation as the basis

for doing operations such as array privatization and locality analysis, in addition to dependence

analysis.

Balasundaram and Kennedy [4] proposed a technique, involving Data Access Descriptors

(DADs), which uses a set of linear constraints applied to an array reference, but only allows

certain forms for the constraints. Constraints can be in one of two forms:

lower bound � variable � upper bound

lower bound � variable op variable � upper bound

where op represents one of the operators f+;�g.

For example, a DAD could be written:

8>>>>>>><
>>>>>>>:
A(x1; x2)

�������������

l1 � x1 � u1

l2 � x2 � u2

l3 � x1 + x2 � l3

l4 � x1 � x2 � l4

9>>>>>>>=
>>>>>>>;

DADs are limited in that they cannot express the whole range of constraints found in programs,

but they can represent many of the commonly occurring forms, such as a whole array, a single

row or column, a diagonal, or a triangular section. The typical set operations (intersection,

union, etc) are de�ned on DADs.

3.2 Reference List-based Techniques

Li and Yew proposed Atom Images [26] and Burke and Cytron proposed the conversion of all

arrays to a single declared dimension and all subscript expressions to a linearized form [11].

The reference-list techniques rely on making a list of each individual array reference in the

code section. These methods retain all the precision of the original program because they

keep all relevant information about each access, but they were not designed to summarize this

18

information. Linearization solves the array-reshaping problem since every array is represented

in one-dimensional form.

3.3 Triplet Notation-based Techniques

Triplet notation is a simple representation for a set of integer values for each dimension which

start at a lower bound and proceed to the upper bound via a stride. For example, the triplet

notation for a two-dimensional array X is denoted by

X(lowerbound1 : upperbound1 : stride1; lowerbound2 : upperbound2 : stride2)

Triplet notation represents array accesses exactly when the subscript expressions are simple,

with one loop index per array dimension. Triplet-based techniques have attempted to capitalize

on the observation that most array subscript expressions are simple. When one loop index

appears in the subscript expression of more than one array dimension of an array reference, the

subscripts are said to be coupled. According to the study of Shen et al [34], 80% of subscript

expressions are non-coupled. This observation implies that most references in a program are

simple, and for these references the representation is exact. When the representation is exact,

a compiler can use simple set operations (union, intersection, etc) without losing any precision.

Researchers at Rice University [12, 24] have devised several variants of regular section de-

scriptors (RSDs), with operations de�ned on a lattice. RSDs are of the form I+�, where I is a

loop index and � is a loop invariant. Restricted RSDs were devised to handle diagonal access,

and then Bounded RSDs were devised to express triplet notation with full symbolic expressions.

The Polaris project at the University of Illinois has used full symbolic triplet notation to repre-

sent array accesses within its array privatization analysis [36] and its dependence analysis [10].

Researchers at the University of Minnesota have used Guarded Array Regions [20] which are

equivalent to Bounded RSDs, with an additional predicate (guard). More information can be

added to the guard to sharpen the accuracy in a given situation.

19

4 THE ACCURACY OF TRIPLET NOTATION

Descriptors representing memory accesses are the raw material used by compiler algorithms.

Inaccuracies in these descriptors are bound to make the results of the compiler inaccurate. This

is especially true for primitive languages like Fortran77, which use only prede�ned data types.

Programmers must somehow map the data structures used in their algorithms onto the simple

Fortran data types. Fortran77 also lacks a dynamic memory allocation mechanism, forcing

programmers to do their own memory allocation. Programmers typically handle these de�cien-

cies in Fortran by carefully dividing large arrays into sections, requiring complex subscripting

functions to access the appropriate sections.

.

N elements (one column)N elements (one column)

data
element

N elements

. . .

Figure 4.1: Programmer-built composite data structure in a one-dimensional array.

For example, a two-dimensional NxN array of data elements which each consist of three

oating point values might be implemented inside a one-dimensional
oating point array, by

allocating the �rst 3N2 elements of the array. Refer to Figure 4.1 for a diagram of the layout

of such an array.

The code for accessing the whole NxN array might look like this:

real MEM(1000000)

do I = 1, N

do J = 1, N

R: MEM((I-1) + (J-1)*3*N + 1) = . . .

S: MEM((I-1) + (J-1)*3*N + 2) = . . .

T: MEM((I-1) + (J-1)*3*N + 3) = . . .

end do

end do

20

An inaccurate representation of the memory accessed by each reference site may force the

compiler to conservatively assume that the references overlap, when in fact they don't because

they actually refer to totally di�erent logical entities which happen to reside in the same array.

In the case of the example, the triplet notation for the access to MEM in statement R would

be [1 : 3N2]. The triplet notation for the access in statement S would be [2 : 3N2 + 1]. The

triplet notation for statement T would be [3 : 3N2 + 2]. These three ranges overlap, causing

any dependence test based on triplet summarizations to declare a data dependence.

In this chapter, the problem with the accuracy of triplet notation for representing array

accesses in Fortran77 will be discussed. Then, in Section 5.5, it will be shown how a new

descriptor solves some of these problems and enables interprocedural analysis. Finally, in

Sections 5.7 and 8.2, it will be shown how the simpli�cation of these new descriptors enables

more eÆcient analysis.

4.1 The Sources of Inaccuracy

As discussed in Chapter 3, the two major forms used for representing memory accesses are

constraint-based notation and triplet notation. Triplet notation is used for its simplicity and

constraint-based notation is used for its accuracy.

Both triplet notation and constraint-based notation use a form which has the same number

of dimensions as the number declared in the program. This can cause problems for triplet

notation in situations, as in the example above, where two loop indices are used in the same

dimension, because a single triplet cannot express the access patterns caused by two independent

indices. The other ways in which triplet notation loses accuracy are documented below.

Triplet notation loses accuracy when one of the following situations occurs for an array

reference:

� an array reference is used in a subscripting expression (subscripted-subscripts).

� non-aÆne subscript expressions are used.

� the array reference occurs inside a triangular loop.

� a loop index appears in more than one subscript position (coupled subscripts [27]).

� more than one loop index appears in a single subscript position (multi-index subscripts).

21

4.1.1 Subscripted-subscripts

do I = 1, N

. . . A(B(I)) . . .

end do

In most cases, it is unknown what values are in the array B, so the best way to make use of

triplet notation is to make the descriptor:

A[min(B): max(B)]

Of course, this is still inaccurate since the values in array B may not be consecutive. If the

values in B are not consecutive, this descriptor will include memory locations which are not

actually accessed by the original loop.

4.1.2 Non-aÆne Expressions

Non-aÆne expressions often arise when the closed form for an induction variable is computed.

If the induction takes place inside a triangular loop, there will be a term in the closed form

involving I**2. If that induction variable is used in an array subscript expression, the expression

will be non-aÆne.

Non-aÆne expressions can also arise in the subscript expressions of FFT codes. The use of

the term 2**I in array subscripts is typical for these codes.

When these forms happen, the \step" of the triplet notation would have to include the loop

index variable itself. This is not allowed in triplet notation.

4.1.3 Triangular Access

do I = 1, N

do J = I, N

. . . A(I, J) . . .

end do

end do

The triplet notation for the access to A above would be

22

A[1:N, 1:N]

This obviously includes more memory locations than are actually accessed in the loop.

4.1.4 Coupled Subscript Access

When an array reference carries a loop index in more than one subscript position, the result

is similar to triangular access, in that triplet notation must report the full range of that loop

index, even though not all combinations of those values occur. For example in the loop:

do I = 1, N

. . . A(I, I) . . .

end do

the triplet notation form reports N2 accesses:

A[1:N, 1:N]

although only N locations are actually accessed by the program.

4.1.5 Multi-index Subscripts

do I = 1, N

do J = 1, M

. . . A(I*N+J) . . .

end do

end do

The triplet notation for this loop will de�nitely lose some of the information which exists in

the original program. The access in the program moves in steps of one according to the J index,

and steps of N according to the I index. This is impossible to represent in triplet notation. The

best triplet notation can muster is

A[2:N*N+M]

If N is greater than M, there are memory locations inside this region which are not accessed.

If N is less than M, there are locations inside the region which are accessed multiple times. Both

situations are useful to know about and neither can be gleaned from the triplet form.

23

4.2 Summary

The program situations described above represent all the ways in which a Fortran77 program

can be written and not accurately represented with triplet notation. This can be easily seen

by checking the forms which are allowed after eliminating all of the above forms from subscript

expressions.

By eliminating all arrays from subscript expressions, we are left with only scalars. By

eliminating non-aÆne expressions, we are left with subscripts of the form:

k0 � I0 + k1 � I1 + � � �+ kn�1 � In�1 + kn;

where ki represents some constant expression and Ii represents a loop index. By eliminating

triangular loops, we force all loops in the loop nest surrounding the array reference to be

rectangular1. By eliminating multi-index subscripts, we are left with subscripts of the form:

ki � Ii + ci;

for each subscript position, where Ii is the loop index for some loop in the nest, and the two

expressions ki and ci are constant expressions. By eliminating coupled-subscripts, we insure

that each subscript expression contains a di�erent loop index.

Therefore, after eliminating all of the situations listed in this chapter as causing inaccuracy in

triplet notation, we are left with a rectangular loop nest surrounding array references containing

subscript expressions in which each subscript position uses a single loop index, which appears in

no other subscript position. Such array references are precisely representable in triplet notation.

1Rectangular loops have no loop indices in the loop bound expressions for that loop.

24

5 THE ACCESS REGION DESCRIPTOR

A hybrid form of memory access representation, combining a generalized triplet notation with

constraints, was �rst described in [29]. It was further re�ned in [30] and called a Linear

Memory Access Descriptor (LMAD). This thesis re�nes it yet again.

The Linear Memory Access Descriptor contains the basic information that is needed to

describe a memory access pattern. However, to use the LMAD for
ow-sensitive program

analysis, additional information must be attached to it. The LMAD with its attachments will

be referred to as an Access Region Descriptor (ARD), which contains an LMAD to describe

the memory access pattern.

This chapter will fully describe the LMAD and show how to construct it from a program.

It will describe the operations used to manipulate it and simplify it, some of its properties, and

how it can be used to represent various access patterns which cannot be represented in triplet

notation. Finally, the additions to the LMAD, needed to make it into an ARD, will also be

described.

5.1 Basic De�nitions

Amemory locationwithin a computer is a unit of memory with a hardware address, which can

be accessed (read or written) by a hardware instruction. The memory space of a computer

is the linear sequence of memory locations which make up all the memory usable by a program

running on the computer.

A program is given access to the memory space of the computer through the computer

language in which the program is written. The language allows the user to supply a variable

name for a set of one or more memory locations. The language also de�nes a set of basic

data types which refer to a set of rules about how to interpret the contents of the memory

locations which make up a variable. Some languages allow a user to de�ne new data types.

Most languages allow the user to de�ne collections of variables, called arrays.

Arrays are de�ned as having one or more declared dimensions. Each declared dimension

has a declared lower bound and upper bound. One particular member of the array is called an

25

array element and referenced within a program at an array reference site which uses the

array name and a list of subscripting expressions, one per declared dimension of the array.

In Fortran, it is written as:

A(expr, expr, � � �, expr),

while in C or C++, it is written as:

A[expr][expr] � � � [expr].

A program typically uses loops nested around array references. Each loop typically has a

basic induction variable [1] associated with it, which from now on will be called the loop index.

It is safe to assume a single loop index for each loop, because if there are multiple induction

variables being incremented within a loop, one can always be designated as the basic induction

variable, and then used to express the values of all other induction variables in the loop [1]. If

no induction variable exists within a loop in the original program, one can always be added by

assigning a value of zero to it immediately before the loop entry point and incrementing it by

1 immediately after the loop entry point (inside the loop).

Each array reference selects an element from the array by use of an array subscripting

function. The subscripting function is a function which maps a series of subscript expressions,

one per declared dimension of the array, into an array element o�set. This o�set allows us to

select any of the array elements within the array.

Let us assume that an array A is declared with m dimensions, using the lower and upper

bounds (lower : upper) of the following declaration form:

A(L1 : U1; L2 : U2; � � � ; Lm : Um) (5.1)

An array reference to the m-dimensional array A, which might look like:

A(x1; x2; � � �xm)

is assumed to invoke a subscripting function Fm, which is de�ned as follows:

Fm(x1; x2; � � � ; xm) = (x1(i)� L1)�1 + (x2(i)� L2)�2 + � � �+ (xm(i)� Lm)�m (5.2)

where i refers to the set of loop indices for the surrounding loops, i = (i1; i2; � � � ; im) and �k

refers to a set of constants determined by the rules of the language. If the language stores

arrays in column-major order, the �k is de�ned as:

26

LOOP
d

LOOP
d-1

LOOP
1

A (x , x , . . . , x)21 m

. . .

Figure 5.1: An m-dimensional array reference appearing in a d-loop nest.

�1 = 1

�k = �k�1 � (Uk�1 � Lk�1 + 1) for k 6= 1:

If the language stores arrays in row-major order, the �k is de�ned as:

�k = �k+1 � (Uk+1 � Lk+1 + 1) for k 6= m

�m = 1:

The Inbounds Assumption All array subscript expressions will be assumed to be within

the bounds of the associated declared dimension. If they are not, then the program is not a

standards-conforming program and a compiler cannot be expected to produce correct code.

So, in terms of declaration form 5.1, it is assumed that

Lk � xk � Uk:

5.2 Representing the Array Accesses in a Loop Nest

When anm-dimensional array reference appears in a d-loop nest, as in Figure 5.1, the succession

of values for each index produces a succession of values from the subscripting function, the

subscripting o�set sequence:

Fm(x1; x2; � � � ; xm)jid;id�1;���;i1 = S1; S2; � � � ; Sn

27

Even though the subscript expressions for the array reference may seem very complex, if

the a�ect of a single loop index is isolated, the sequence of values almost always forms a simple,

easily-describable sequence of integers.

For example, consider the following array reference:

real A(0:M, *)

do I = 1, N

A(I, 2*I)

end do

Even though this array reference has coupled subscripts, which was established in Sec-

tion 4.1.4 to not be representable in triplet notation, examining the output of the subscripting

function, the sequence of integers can be described quite simply:

F2(I; 2I)jI = M + 2; 3M + 5; 5M + 8; 7M + 11; � � �

The di�erence between two successive members of the sequence is constant: 2M + 3, there

are N members in the sequence, and they start at M + 2.

Consider another \complex" case:

real A(0:*)

do I = 1, N

A(2**I)

end do

The subscripting o�set sequence is:

F1(2
I)
���
I
= 2; 4; 8; 16; � � �

Again, the di�erence between two successive values can be easily expressed. To be clear,

the di�erence is de�ned to be the expression to be added to the Ith member of the sequence to

produce the I + 1th member of the sequence:

SI+1 � SI = 2I :

28

Again, there are N members of the subscripting o�set sequence and they start at 2.

The subscripting function, Fm, establishes a relationship between the subscript expressions

in an array reference and memory locations. This relationship is crucial to establishing the

validity of a representation of the memory access.

Theorem 1 A precise representation of the subscripting o�set sequence provides a precise rep-

resentation of the memory access.

PROOF: Let's assume a precise representation of the subscripting o�set sequence. This

means that we can compute the o�set in units of array elements of any element of the sub-

scripting o�set sequence. To determine the memory location of a particular subscripting o�set

sequence element, we merely must determine the size of an array element in memory units,

multiply by the element o�set, and add that to the memory address of the �rst element of the

array to get the address of the starting memory location for that array element. This provides

a one-to-one correspondence between subscripting o�set sequence elements and memory loca-

tions.

The term which will be used to refer to a set of memory locations accessed by a set of

memory references in a program will be the access region.

De�nition 1 Given an array A, and a program region P (such as an individual array reference,

a statement, a loop, or a subroutine), the access region of A due to P is the set of all memory

locations represented by elements of A accessed during execution of P. The order of the access

is unimportant.

5.2.1 The Linear Memory Access Descriptor

The Linear Memory Access Descriptor makes use of Theorem 1 by providing a way to accurately

describe the subscripting o�set sequence produced by an array reference within a section of code,

such as a loop. The di�erence between successive values of the subscripting o�set sequence is

called the stride, the number of elements in the subscripting o�set sequence for a particular

loop index is determined from the loop bounds of the index, and the di�erence between the

�rst and last values in the sequence is called the span. A stride/span pair is called an access

29

A

Æ1[i01�u1]
;Æ2[i02�u2]

;���;Æ
d[i0

d
�ud]

�1; �2; ���;�d + �

Figure 5.2: The LMAD Form.

dimension. One access dimension will be computed for each surrounding loop. The span is

meant to represent the full array element distance moved during the execution of the loop.

The e�ect of each surrounding loop can be calculated separately, giving a stride/span pair

(access dimension) for each. Together, the collection of dimensions for a memory access repre-

sents the pattern of the access due to the whole loop nest. For a particular memory access,

the pattern begins at a particular point in memory, which is called the base o�set, since it

represents an o�set from the �rst element of the array.

Together, the dimensions of an access and the base o�set make up what is called a Linear

Memory Access Descriptor, or LMAD. It is written as shown in Figure 5.2, with the name

of the program variable on the left, a comma-separated list of strides (Æi) as superscripts to the

variable name, a comma-separated list of spans (�i) as subscripts to the name, and the base

o�set (�) separated from the rest of the descriptor by a plus sign. The stride and span for a

particular dimension are at the same relative position in the two lists. A dimension-index

(explained below) and its upper bound is associated with each dimension, and is optionally

written as

[variable name � upper bound];

subscripting the stride of its dimension. The notation is shown in Figure 5.2.

Refer to Figure 5.3 for an example memory access, and the LMAD which may be constructed

for it. The memory access diagram in the �gure shows the elements of an array A which are

accessed by a loop. The nested loop causes three di�erent strides through memory { a stride

of three caused by the inner-most loop (the K loop), a stride of 14 caused by the J loop, and

30

A 3, 14, 26

9, 14, 26
+ 0

 . . . A(K+26*(I-1), J) . . .
 DO K=1, 10, 3

 END DO
 END DO
END DO

REAL A(14, *)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

 DO J=1, 2
DO I=1, 2

Figure 5.3: Amemory access diagram for the array A in a nested loop and the Access Region Descriptor
which represents it.

a stride of 26 caused by the I loop. Notice that constructing the LMAD does not require

knowledge of the size of the second declared dimension of A. Also notice that the loop structure

of the program causes a three-dimensional access to the array even though the array is declared

with two dimensions. This is a common programming practice, and it is very important that

an array access representation be able to represent such a pattern accurately.

The dimension-index associated with each dimension of an LMAD is a variable that takes

on a set of values, much as the loop index in a program does. The dimension-indices act as the

loop indices of a set of nested loops, generating the subscripting o�set sequence for the array

reference. The original dimension-indices represent a normalized form for the loop indices in

the program. Loop normalization [5] is a well-known technique used to produce a new loop

index which starts at 0 and proceeds to an upper bound in steps of 1.

For the original loop

do I = P, Q, R

. . . A(I) . . .

end do

a dimension-index I' is produced whose lower bound is 0, and whose upper bound is (Q�P)=R.

Every appearance of the original loop bound in the o�set expression of the LMAD is replaced by

the expression I0 � R+ P. This produces an LMAD which represents the same memory locations

as if the original loop were written in the normalized form:

do I' = 0, (Q-P)/R, 1

. . . A(I'*R + P) . . .

end do

31

The dimension-indices provide a means to determine how many elements of the subscripting

o�set sequence are produced by that dimension. Since the lower bound and stride are always

0 and 1, respectively, the only value which needs to be stored with the LMAD is the upper

bound. This is called the dimension-index bound, represented as ui for dimension i. The

number of elements of the subscripting o�set sequence due to dimension i is (ui + 1).

For instance, the dimension-index for the I loop in Figure 5.4 would have the bounds:

0 � I 0 � 99;

so the dimension-index bound would be 99, and the number of elements in the subscripting

o�set sequence would be 100.

The dimension-index for a dimension would be written in the LMAD notation as a sub-

script on the stride expression for that dimension, but it need not appear there when it is

\understood". It must appear when the dimension-index itself is used in some stride or span

expression on the LMAD.

5.2.1.1 Constructing an LMAD

real A(100, 100)
do I = 1, 100

do J = 1, M
T: A(I, J)

end do
end do

Figure 5.4: An array reference inside a loop nest.

The LMAD for an array reference within a loop nest is constructed from the inside of a loop-

nest toward the outside. Consider the array reference depicted in Figure 5.4. First, the LMAD

for the access within statement T is computed as a scalar access, following the Construct LMAD

algorithm of Figure 5.5. To do this, we ignore the surrounding loops and use the subscripting

function Fm to calculate the base o�set, while setting the stride and span to zero. Refer to

Figure 5.5 for the algorithm.

32

Then, the LMAD is expanded (as described in Section 5.2.1.2) by each loop index in turn,

from the inner-most to the outer-most, in order to represent the memory locations accessed by

all iterations of each loop.

For example, the statement T in the �gure produces the following LMAD for the scalar

access, ignoring the loop statements:

LMADT = A0
0+J

0 � 100 + I 0 (5.3)

where J 0 and I 0 are dimension-indices, and 0 � I 0 � 99 and 0 � J 0 �M � 1.

Function Construct LMAD

Input: List of subscript expressions (x1; x2; � � � ; xm)
array declaration H(L1 : U1; L2 : U2; � � � ; Lm : Um)

Output: scalar LMAD for the access

Function Construct LMAD:
Lmad:� Fm(x1; x2; � � � ; xm);
for (loop L = innermost-loop L1 to outermost-loop Ld) f

Lmad Expand(loop L, Lmad);
g

return Lmad;
end Function Construct LMAD

Figure 5.5: A function for constructing an LMAD for an array reference.

5.2.1.2 Expanding an LMAD by a Loop Index

The process of taking the LMAD representing the accesses for a single iteration of a loop and

forming a new access descriptor which represents the region accessed when the loop index moves

through the whole range of its values is referred to as expanding the access by the loop index.

Refer to Figure 5.6 for the full algorithm.

The dimensions of the original descriptor are copied intact to the new descriptor. A single

new dimension and a new base o�set expression are formed, using the original descriptor's base

o�set expression as input. The operation is detailed in Figure 5.6.

Given a descriptor with k � 1 (stride, span) pairs (Æ1; �1), (Æ2; �2), through (Æk�1; �k�1),

a loop index ik, and loop bounds (lower, upper, stride) (bk, ek, sk), a dimension-index i0k is

created with an upper bound uk of (ek � bk)=sk. The original loop index ik is replaced in the

base o�set expression with the new expression i0k � sk + bk. Then, a temporary stride value

33

Function Expand

Input: Original LMAD H
Æ1;���;Æk�1
�1;���;�k�1+� ,

loop index ik with loop lower bound bk, upper bound ek, and stride sk
Output: LMAD expanded by the loop index ik, and new dimension-index i0k

Note: Here f [j x] means to substitute x for j in function f

Function Expand:
Create dimension-index i0k with 0 � i0k � uk, uk = (ek � bk)=sk
� � [ik i0k � sk + bk]
Ætemp � [i0k i0k + 1]� � ;
if (Ætemp < 0) f

Æk �Ætemp;
if (uk � 1) f

�k 1 ;
g else f

�k � [i0k 0]� � [i0k uk];
g
�new � [i0k uk];

g else f
Æk Ætemp;
if (uk � 1) f

�k 1 ;
g else f

�k � [i0k uk]� � [i0k 0];
g
�new � [i0k 0];

g
Insert new dimension in LMAD, sorted according to Æk

return H
Æ1;���;Æk�1;Æk
�1;���;�k�1;�k + �new;

end Function Expand

Figure 5.6: A function for expanding an LMAD by a loop index.

(Ætemp) is computed by replacing i0k wherever it appears in the o�set expression, by i0k+1, then

subtracting the original base o�set expression.

If the temporary stride is positive, then it becomes the permanent stride. The span is

created by subtracting the base o�set with zero substituted for i0k from the base o�set with

uk substituted for i0k, and the new o�set expression is produced by replacing i0k in the o�set

expression by 0.

If the temporary stride is negative, then the descriptor is normalized to have a positive

stride. The temporary stride is negated and assigned to the permanent stride. The span is

created by subtracting the base o�set with uk substituted for i0k from the base o�set with zero

substituted for i0k. The new dimension is then inserted in \stride-sorted order" into the list of

34

dimensions on the LMAD. The new base o�set expression is produced by replacing i0k in the

o�set expression by uk.

For example, expanding LMADT for the J loop produces a new stride expression of

[(J 0 + 1) � 100 + I 0]� [J 0 � 100 + I 0] = 100

and a new span expression of

[(M � 1) � 100 + I 0]� [0 � 100 + I 0] = (M � 1) � 100:

The new o�set expression becomes

0 � 100 + I 0 = I 0

making the expanded descriptor

A100
(M�1)�100+I

0:

5.2.2 Validity of the LMAD Representation

The LMAD provides a valid representation for a sequence of memory references as long as

the base o�set, the stride expression, and the dimension-index bound are valid. These three

expressions provide

� the starting point,

� the di�erence between successive sequence members, and

� the number of members

which are needed to accurately represent the subscripting o�set sequence (as discussed in Sec-

tion 5.2).

Notice that for a span to represent the full array element distance moved due to a single

loop index, the values from the subscripting function must move in the same direction during

35

the entire range of values for the index. Another way of saying this is that the sequence of

values must be monotonic over the domain of a loop index for the span to be correct.

De�nition 2 Let A(xm(i)) be an array reference, where xm stands for the m subscript expres-

sions for the m-dimensional array A, which are functions of i, which stands for the list of the d

loop indices (i1; � � � ; ik; � � � ; id) for loops surrounding the array reference. The subscripting func-

tion Fm(i) is monotonic for index ik if Fm(i) is either always decreasing or always increasing

for the sequence of values taken on by ik, starting at 0 and proceeding to the dimension-index

bound in steps of 1.

If the subscripting o�set sequence is not monotonic over the full domain of the dimension-

index, then the span would not necessarily represent the full length of the subscripting o�set

sequence. The representation can still be valid even if the span is not correct, as long as the

base o�set, the stride, and the dimension-index bound are correct. Since the span is used

in many LMAD operations, however, the operations which can be done on an LMAD with

non-monotonic dimensions may be limited.

5.2.2.1 LMADs for while Loops

Sometimes the loop bounds are not available, such as for a while loop whose exit condition

causes a number of iterations which is unknowable at compile-time. Often the stride of the

accesses within a while loop is knowable at compile time, but the number of iterations is

not. If either bk or ek are not available, then we can use an 1 value for the span and the

dimension-index bound.

5.2.3 Normalizing LMADs

As mentioned in Section 5.2.1.2, expanded descriptors are normalized by making the strides

positive, wherever possible. Normalizing the access descriptors helps us compare array regions.

For example, consider the loop in Figure 5.7. The two references to array A proceed in di�erent

directions in memory with respect to loop index I2. Nevertheless, they access exactly the same

memory locations during the course of the execution of the outer loop.

36

If the two descriptors are not normalized, the two descriptors for the references are A�1;2
�2;12+4

and A1;2
2;12+2. By making the strides positive, the two descriptors both become A1;2

2;12+2. In this

form, it is trivial to determine that the descriptors both refer to the same memory locations.

for I2 = 0 to 6 with step 2 do
for I1 = 1 to 3 with step 1 do

A(�I1 + 2 � I2 + 5) = � � �
A(I1 + 2 � I2 + 1) = � � �

end
end

a(0) a(2) a(4)

Figure 5.7: Access to array A through two references and their access patterns in memory. Solid lines
denote the access for A(�I1 +2 � I2 +1) and dashed lines the access for A(I1 +2 � I2 � 3). Arrows with
white heads and black heads keep track of the access driven by indices I1 and I2, respectively.

5.2.4 De�nitions for LMADs

De�nition 3 On the assumption that two LMADs A and A0 represent the access regions R

and R0, respectively,

1. A [A0 represents the aggregated LMAD of the two access regions, that is, R[R0.

2. If R0 is a subregion of R (that is, R0�R), then it is written A0�A.

3. Let A = AÆ1;���;Æk;���;Æd
�1;���;�k;���;�d + � . Suppose A0 is built by eliminating the kth dimension (Æk,�k)

from A, that is, A
Æ1;���;Æk�1;Æk+1���;Æd
�1;���;�k�1;�k+1;���;�d + � . A0 is the k-subLMAD of A. If one or more

dimensions of A0 is missing from A, then A0 is simply called a subLMAD of A.

Notice that when A0 (with access region R0) is a subLMAD of A (with access region R),

then R0�R.

De�nition 4 Two LMADs A and A0 are said to be equivalent, denoted by A � A0, if they

represent the same access region.

De�nition 5 If A and A0 are two LMADs with the same stride/span pairs in the same or-

der (but possibly di�erent base o�sets), then A and A0 are isomorphic, denoted by A==A0,

meaning the LMADs represent the same access pattern.

37

5.2.5 The Dimensional Order for LMADs

The order in which dimensions are written on the LMAD denotes a nesting order for a set

of loops which produce the subscripting o�set sequence representing the memory access. Di-

mensions written to the left may be thought of as nested inside dimensions written to the

right.

In some cases, such as for array references inside of triangular loops, the stride or span

of one dimension may refer to the loop index associated with a di�erent dimension. When

this situation occurs, the inner dimension is said to be dependent on the outer dimension. No

manipulation of the two dimensions may be done which would cause the original dependent

inner dimension to be written to the right of the outer dimension.

Generate Subscripting O�set Sequence

Input: the LMAD HÆ1;���;Æd
�1;���;�d+� ,

with dimension-indices i01; i
0
2; � � � ; i

0
d and

dimension-index bounds u1; u2; � � � ; ud,
Output: The Subscripting O�set Sequence S1; S2; S3; � � �

Note: Here f [j x] means to substitute x for j in function f

Function Generate SOS(LMAD) returns Sequence:
k 0;
T1 0;
do q1 = 0; u1; 1;

T2 0;
do q2 = 0; u2; 1;

� � �
Td 0;
do qd = 0; ud; 1;

k k + 1;

Sk � +
Pd

i=1 Ti;
Td Td + Æd[i

0
d qd];

end do
� � �

T2 T2 + Æ2[i
0
2 q2];

end do
T1 T1 + Æ1[i

0
1 q1];

end do
return Sequence S;

end Function Generate SOS ;

Figure 5.8: Generating the subscripting o�set sequence from an LMAD.

38

The subscripting o�set sequence can be generated from an LMAD as shown in the algorithm

of Figure 5.8. The sequence elements are produced by the nested loops controlled by the

dimension-indices. The very �rst value in the sequence is the LMAD base o�set, � , since that

is the only element for which all dimension-indices have the value 0, causing the T1 � T2 �

� � � � Td � 0. Thereafter, the values are determined by the values of the dimension-indices.

Theorem 2 Let A and A0 be LMADs. If A0 has the same o�set as A and the same stride/span

pairs as A, none of which are dependent on any other, but written in a di�erent order, then

A�A0.

PROOF: We can use Generate SOS to prove that the two LMADs are equivalent. Equiv-

alent LMADs produce the same subscripting o�set sequence elements, but possibly in a di�er-

ent order. Since the two LMADs have the same o�set, the �rst element of the subscript-

ing o�set sequence generated by both will be the same value, since
Pd

i=1 Ti = 0 in both

cases. Each unique vector of values for the dimension-indices, j = (j01; j
0
2; � � � ; j

0
d), where

0 � j01 � u1; 0 � j02 � u2; � � � ; 0 � j0d � ud, generates one of the sequence elements. By

nesting the dimension-indices di�erently, we don't change the number of values each produces,

so it is easy to see that a di�erent nesting does not change the number of sequence elements.

Regardless of its position in the loop nest, the Tk variable's value is dependent solely on the

current value of the qk variable. So, a di�erent nesting of dimension-indices, will simply change

the order in which the Ti variables take on their values, not the values themselves. Since the

sequence results from the
P
Ti, the same values will result even when the Ti take on values in

a di�erent order. This guarantees that the Sk associated with each unique vector j will be the

same for both the original and the permuted loop nest. We know that each unique vector j will

occur in both the original sequence and the permuted sequence. This means that all the values

Sk in the original sequence will have a counterpart somewhere in the permuted sequence.

The a�ect of changing the LMAD dimensional order on the order of memory access is shown

in Figure 5.9.

39

A

A 12, 3
+ 0

1, 6

3, 12
+ 0

6, 1

Figure 5.9: Access patterns produced by reversing the order in which dimensions are written.

5.3 Operations on LMADs

5.3.1 Upper and Lower Bounds of an LMAD

Let D = H
Æi1 ;Æi2 ;���;Æid
�i1 ;�i2 ;���;�id

+ �:

De�nition 6 The lower bound of an LMAD is the smallest o�set represented by the LMAD

(the o�set of the array element closest to the �rst element of the array). This is simply the

base o�set.

lowest(D) = � (5.4)

De�nition 7 The LMAD k-dimensional width is the sum of the spans of the �rst k di-

mensions. The LMAD width is the overall width of the LMAD. For an n-dimensional LMAD

it is the n-dimensional width.

widthk(D) =
kX

j=1

�ij (5.5)

De�nition 8 The upper bound of an LMAD is the largest o�set represented by the LMAD

(the o�set of the array element furthest away from the �rst element of the array).

highest(D) = � + widthd(D) (5.6)

40

5.3.2 The Overlap Test for LMADs

Whenever an LMAD is constructed, it is necessary to test whether any two values in the

subscripting o�set sequence for a given LMAD are the same. It is possible to make a conservative

test to determine that.

Consider the following loop:

real A(0:100)

do I=0,N,2

do J=0,5

A(3*I+J) = . . .

end do

end do

The LMAD representing the access would be:

A
1;6
5;3N+0

Assuming for simplicity that N is odd, the access region speci�cation above produces the

integer sequence:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... , 3*N-1, 3*N.

If the loop had been written slightly di�erently:

real A(0:100)

do I=0,N,2

do J=0,5

A(2*I+J) = . . .

end do

end do

41

the access region form would look slightly di�erently:

A
1;4
5;2N+0

and the sequence produced would contain some duplicated integers:

0, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, ... , 2*N-1, 2*N

When does this duplication occur? A simple test can check for it.

When it is possible to sort the dimensions by their strides, Æ1 being the smallest stride and

Æd being the largest stride, then if

k�1X
i=1

�i < Æk [No overlap test � dimension k]

holds, then no duplication due to index k can exist in the sequence.

The reason for this is easy to see in terms of the nature of nested loops, and the strides and

spans due to each loop. The nature of a nested loop is that during one iteration of a given loop,

all the inner nested loops must iterate to completion. For the overall sequence of integers to

be unique, the values due to any given loop must \stride over" all the values produced by all

loops nested inside it, and the length to be strided over is represented by the sum of the inner

spans.

5.3.3 Zero-Span Insertion

If one LMAD is a subLMAD of a second, it is always possible to construct a new dimension

in the subLMAD for each missing dimension by using the stride from the second LMAD, a

dimension-index bound of 0, and a span of zero. This is useful in the cases where an algorithm

is only de�ned for LMADs with the same number of dimensions.

Theorem 3 an LMAD AÆ1;���;Æd
�1;���;�d + � can be expanded to form other equivalent descriptors by

adding a dimension (Æ�; 0) in any position, such as AÆ1;���;Æ�;���;Æd
�1;���;0;���;�d

+� , where Æ� can be any integer.

42

PROOF: A dimension describes the movement from a lower bound to an upper bound with a

stride. The span is de�ned as the di�erence between the upper bound and the lower bound. If

the span is zero, the upper bound and lower bound are the same, thus describing no movement

at all. A dimension involving no movement can have any stride, and still neither adds nor

subtracts elements to/from a given access region.

5.4 LMAD Matching

When two or more LMADs are involved in some kind of operation, their dimensions must be

matched to determine how similar the LMADs are. Similarity between LMADs is based on

whether the strides, spans and base o�sets match.

5.4.1 LMAD Similarity Types

Two expressions are said to match one another when structural transformation according to

the rules of arithmetic can transform one into the other. Two dimensions are said to match

when both the stride expressions and the span expressions match.

To match LMADs, a correspondence must be established between the dimensions of one

and the dimensions of the other. A correspondence can be set up between two dimensions when

at least the strides of the two dimensions match.

The similarity between two LMADs can be one of several Similarity Types, as follows:

equivalent { All dimensions and the base o�sets match.

dimension-equivalent { All dimensions match.

stride-equivalent { The LMADs have the same number of dimensions and a dimension-

matching can be found where each of the strides of one LMAD matches a stride of the

other.

semi-equivalent { A correspondence can be found such that each dimension of one LMAD

matches some dimension of the other LMAD, but at least one dimension of the latter

remains unmatched, plus the base o�sets match.

43

semi-dimension-equivalent { The base o�sets of the two LMADs match, one LMAD has

fewer dimensions than the other, and the LMAD with fewer dimensions is a subLMAD

of the other.

semi-stride-equivalent { A correspondence can be found such that each dimension of one

LMAD has a stride matching that of some dimension of the other LMAD, but at least

one dimension of the latter remains unmatched.

The di�erent forms are illustrated in Figures 5.10, 5.11, and 5.12.

correspondence

expression matched

+ offset

LMAD 1 LMAD 2

+ offset

stride span stride span

di
m

en
sio

ns

di
m

en
sio

ns

+ offset

LMAD 1 LMAD 2

+ offset

stride span stride span

di
m

en
sio

ns

di
m

en
sio

ns

Figure 5.10: Equivalent and Semi-Equivalent LMADs.

correspondence

expression matched

+ offset

LMAD 1 LMAD 2

+ offset

stride span stride span

di
m

en
sio

ns

di
m

en
sio

ns

+ offset

LMAD 1 LMAD 2

+ offset

stride span stride span

di
m

en
sio

ns

di
m

en
sio

ns

Figure 5.11: Dimension Equivalent and Semi-Dimension Equivalent LMADs.

If at least one dimension from each LMAD remains without a correspondence, then the two

LMADs are not similar.

44

correspondence

expression matched

+ offset

LMAD 1 LMAD 2

+ offset

stride span stride span

di
m

en
sio

ns

di
m

en
sio

ns

+ offset

LMAD 1 LMAD 2

+ offset

stride span stride span

di
m

en
sio

ns

di
m

en
sio

ns

Figure 5.12: Stride Equivalent and Semi-Stride Equivalent LMADs.

5.4.2 Dimension Matching Between LMADs

Many LMAD operations involve comparing two LMADs. Most operations cannot be done

unless it can be determined that the LMADs being operated on are similar. Yet there is

no guarantee that this is the case. An important advantage of the representational forms

which are tied to the declared dimensionality of the variables, unlike the LMAD, is that the

descriptors for a particular array will all have the same number and size of dimensions within

the same subroutine. Therefore, they all match by default. The array reshaping problem is a

manifestation of this dimensionality mismatch-match for those forms.

By eliminating the dependence on the declared dimensionality of the variables, the array

reshaping problem for LMADs is eliminated at subroutine boundaries, as will be discussed in

Section 5.6, yet the consequence is that a simpler form of it is faced at every operation between

LMADs.

One result of this work is that, for the programs tested, the similarity of access patterns for

the same variable within a program makes the LMADs comparable in most cases even without

a dependence on the declared dimensionality of variables.

In the cases where one of the two LMADs involved in an operation is a subLMAD of the

other, the subLMAD may be converted to a stride-equivalent LMAD (according to Theorem 3)

by inserting zero-span dimensions with strides matching those of the missing dimensions, as

shown in Figure 5.13.

45

A 20, 100(20), 1000(200)

1, 100, 1000
+ 0 ? A 100(20)

100
+ 0

A 0, 100(20), 0

1, 100, 1000

zero-span insertion

+ 0

compare

Figure 5.13: Attempting to operate on an LMAD and a subLMAD is made easier by inserting a
zero-span dimension.

5.4.2.1 Sorting the LMAD Dimensions

By keeping the dimensions in sorted order when constructing the LMAD, the job of comparing

two LMADs is made faster. The value ranges computed by range propagation are used to help

with the sorting. Whenever a new dimension is added to a given descriptor, an attempt is

made to insert it in the list of dimensions in its proper sorted position, using an insertion sort.

Consider the following two loops:

real A(100,100)

do I=1,N

do J=1,M

S1: A(J,I)

end do

end do

do L=1,M

do K=1,N

S2: A(L,K)

end do

end do

46

The LMAD for statement S1 is constructed as

A1;100
M�1;100(N�1)+0

By constructing the LMAD for statement S2 from the inner loop to the outer, according to

the algorithm in Figure 5.5, the �rst dimension computed would be the stride-100 dimension.

The second dimension computed would have a stride of 1, but it is placed to the left of the

stride-100 dimension in the list of dimensions, giving an LMAD which is identical to the one

for statement S1.

Without this sorting of the dimensions, attempting to match the dimensions between two

LMADs would be an n2 process since each dimension of one would potentially have to be

compared against all dimensions of the other. When the sorting is precise, the matching needs

only linear time, since the scan of one LMAD for the match of a particular dimension of the

other LMAD can stop when it can be determined that the scan has gone past the stride's proper

sorted position, and the scan for the next dimension can start where the last one left o�.

5.5 The Accuracy of the LMAD Form

The number of access dimensions which triplet notation can represent accurately is �xed by

the declared dimensions of the array. If the array is declared with one dimension, then the

maximum number of access dimensions which are accurately representable is one. Since the

LMAD form is not related to the declared dimensionality of the array, it has the potential to

be perfectly accurate in all �ve categories of accesses.

In this section, it is shown how the LMAD represents each of the �ve categories of references

where triplet notation is not accurate.

5.5.1 Multiple-index AÆne

In the multiple-index aÆne case, there are more access dimensions than there are declared

dimensions of the array. Referring to the code included below, the LMAD itself for this type of

access looks no di�erent than it would for an array declared with two dimensions, the left-most

dimension having 10 elements.

47

do I = 1, N

do J = 1, 5

A(10*I + J) =

end do

end do

A1;10
4;10(N�1) + 10

5.5.2 Coupled Subscripts

In the coupled-subscripts case, there are sometimes fewer access dimensions than there are

declared dimensions of the array. The code included below is one such case.

real A(N,N), B(N)

do I = 1, N

A(I,I) =

end do

AN+1
(N+1)(N�1) + 0

5.5.3 Triangular AÆne

The clear indicator that there is a triangular loop involved with an access is that a dimension-

index occurs in the span of some other dimension. In the code included below, the span of

N(N � I) in the J-dimension correctly re
ects the fact that the span of accesses decreases as

I increases.

real A(N,N)

do I = 1, N

do J = i, N

A(I,J) = . . .

end do

end do

A
N[J0�N�(I0+1)];N+1[I0�N�1]

N(N�(I 0+1));(N�1)(N+1) + 0

48

5.5.4 Non-aÆne

The clear indicator for a non-aÆne subscript expression is the appearance of a dimension-index

in the stride of its own dimension. For the code included below, this correctly re
ects the

reality that each step through memory gets longer as I steps through its values. The correct

interpretation of the stride expression is that the stride expression indicates how far to stride

from the current location to the next location. So, referring to the code below, when I = 3,

the current memory location is A(9) and the distance to travel to get to the next location is

determined by the stride (2I 0+1) with 3 substituted for I 0, giving 7, which correctly determines

that the next location is A(9+7) or A(16).

do I = 0, N

A(I**2) = . . .

end do

A
2I 0+1[I0�N]

N2 + 0

5.5.5 Subscripted-subscript

When a subscripted-subscript is involved, the stride, span, and base o�set all will contain

references to the subscripting array, and the loop index. In the loop shown below, it can be

seen that the correct distance from the current location to the next location (the stride) is

simply C(I + 1)� C(I). This is true regardless of the monotonicity of the values in the array

C. The total extent of the movement (the span), however, is C(N) � C(0) only if the array C

contains monotonically increasing or decreasing values. This information may or may not be

derivable from the program text.

real C(0:N), B(M)

do I = 0, N

B(C(I)) = . . .

end do

B
C(I 0+1)�C(I 0)[I0�N]

C(N)�C(0) + C(0) f span correct if C is monotonic g

49

Despite the lack of knowledge about the contents of the array C, the LMAD representation

is precise by virtue of the stride expression combined with the dimension-index.

Some common subscripted-subscript situations yield to analysis with the LMAD form. In

the following, an array B contains the compressed form of a two-dimensional array. The array

P is loaded with the starting points of successive rows.

do I=1,N

do J=P(I),P(I+1)-1

B(J) = . . .

end do

end do

The LMAD form of this access is

B
1[J0�P (I0+2)�P (I0+1)�1];P (I

0+2)�P (I 0+1)[I0�N�1]

P (I 0+2)�1�P (I 0+1);P (N)�P (1) +P (1)� 1

which is simpli�able, as will be shown in Section 5.7.3. But the array P must hold monotonically

increasing or decreasing values for the resulting LMAD to be valid. Another commonly used

pattern, in which a starting point array (START) holds the start of a row and a length array

(LEN) holds the length of a row, is as follows:

do I=1,N

do J=0, LEN(I)-1

B(START(J) + I) =

end do

end do

The LMAD representation for this is as follows:

B
1[J0�LEN(I0+1)�1];START (I

0+2)�START (I 0+1)[I0�N�1]

LEN(I 0+1)�1;START (N)�START (1) +START (1)� 1

This leads to a natural test for dependence, which is derivable from the de�nitions of stride and

span: LEN(I) � START(I+ 1)� START(I).

50

5.6 Translating LMADs Across Procedure Boundaries

One of the principle bene�ts of using LMADs to represent memory accesses is that it is simple

to translate them across procedure boundaries, even in the presence of array reshaping.

The array reshaping problem occurs when an array is used as a formal parameter for a

subroutine, an array reference is used as an actual parameter, and the declarations for the

formal and actual arrays di�er in number of dimensions or number of elements of a single

dimension.

This causes problems for many compilers when they attempt to translate information about

the array across the procedure boundary, because there is sometimes no way to express infor-

mation that is derived based on one declaration in a form based on the other.

LMADs solve this problem because they are not constrained in any way by the declaration

of the array. An access pattern summary for a formal parameter to a subroutine, represented

as an LMAD, can be translated to the context of a calling routine by the following steps:

� translate the names of the symbols used in the subroutine into their names used in the

calling routine. When no corresponding symbol exists in the calling routine, create a

name which does not con
ict with any name in the calling routine.

� copy the value range information for each symbol from the subroutine to the calling

routine.

� add the base o�set of the LMAD for the actual parameter to the base o�set of the

translated LMAD of the formal parameter.

For example, consider the code fragment in Figure 5.14. The LMAD for the access to the

formal parameter A in the subroutine is AD1;D2;D3 + s (where Di stands for a stride/span pair,

or dimension). Translating the parameter name and adding the o�set produces the LMAD

XD1;D2;D3 + s + 1000(I � 1), which is a perfectly accurate description of the access in the

subroutine.

5.7 Simpli�cation of LMADs

Two or more LMADs may be combined into a single LMAD and two dimensions of a single

LMAD may be combined into a single dimension, through simpli�cation operations. This

51

dimension X(1000,1000)

call SUB(X(1,I))

subroutine SUB (A)

dimension A(10,10,10)

do I

do J

do K

. . . A(...) . . .

�

AD1;D2;D3 + s

� XD1;D2;D3 + s+ 1000(I � 1)

Figure 5.14: Translating LMADs across procedure boundaries.

simpli�cation can translate into increased LMAD processing eÆciency. Since some LMAD

operations involve processing all possible pairs of LMADs (an n2 process), reducing the number

of LMADs can cause a major reduction in the execution time of those operations. Likewise,

reducing the number of dimensions can reduce the execution time for the operations which

involve all possible pairs of dimensions.

Simpler descriptors can also be operated on with simpler processing algorithms, which are

more likely to avoid a loss of precision. Simpler processing in general means faster processing,

as well. So, simpli�cation can have many bene�ts.

The simpli�cation operations which will be discussed here are contiguous aggregation, coa-

lescing, and interleaving.

5.7.1 Checking for Internal Overlap

Whenever a new access descriptor is created, whether from expanding a descriptor to an outer

loop, aggregating two accesses, or coalescing a single access, a \no-overlap test" must be used to

determine whether an internal overlap occurs due to that operation. Whether earlier operations

caused overlap or not is immaterial. For instance, consider the loop nest:

52

real A(N,L)

do I=1,N

do J=1,M

do K=1,10

A(I,K) =

end do

end do

end do

The access descriptor for array A due to the K loop is AN
9�N+I

0. The access descriptor for A

expanded for the J loop is also AN
9�N+I

0. There is de�nitely an overlap due to the J loop, since

the same parts of A are accessed on each iteration of the J loop. However, when summarizing

that descriptor to the outer I loop, it gets the no-overlap characteristic since di�erent values

of I cause no duplication in the access sequence. The resulting access descriptor would be

A1;N
N�1;9N+0.

5.7.2 Contiguous Aggregation

An operation which combines two LMADs into one is contiguous aggregation. Contiguous

aggregation is an operation which may be performed on two access descriptors which have a

nearly identical pattern, but whose o�sets make it possible to combine a dimension from each

descriptor into a single contiguous dimension. Two such descriptors are conjunctive.

A formal de�nition of contiguous LMADs is as follows:

De�nition 9 [Contiguous LMADs] Two LMADs A and A0 are contiguous, denoted by

A ./ A0, if A = AÆ1;Æ2;���;Æd
�1;�2;���;�d + � and A0 = A

Æ0
1
;Æ0
2
;���;Æ0d

�0
1
;�0
2
;���;�0d

+ � 0 (with � � � 0), and for selected di-

mensions p from A and q from A0, there exist stride/span pairs (�p; Æp) and (�
0
q; Æ

0
q), satisfying

the conditions

1. A
���;Æp�1;�p+1;���;Æd
���;�p�1;�p+1;���;�d+� == A

���;Æ0q�1;�
0

q+1;���;Æ
0

d

���;�0q�1;�
0

q+1;���;�
0

d
+� 0,

2. Æp = Æ0q,

3. Æp divides � � � 0, and

4. � � � 0 � �0q + Æ0q

The aggregation operation is de�ned as follows:

53

De�nition 10 [Contiguous Aggregation Operation] Let A and A0 be the contiguous

descriptors de�ned in De�nition 9, and let t = � � � 0. Then,

A [A0 =

8><
>:
A
���;Æp;���;Æd
���;�p+t;���;�d

+ � 0 for �p + t > �0q

A0 otherwise

As an example of the aggregation operation, consider the following loop nest:

real A(100)

do I=1,N,2

do J=1,3

A(3*I+J) = . . .

end do

do J=4,6

A(3*I+J) = . . .

end do

end do

The two writes to the array A have access descriptors

A1;6
2;6(N�1)+4 and A1;6

2;6(N�1)+7

These access descriptors can be shown to be conjunctive, according to De�nition 9 (all

strides and spans match; Æip = Æ0iq = 1; 1 divides 7 � 4; and 3 � 2 + 1) , and the aggregation

operation produces the following access region descriptor:

A1;6
2;6(N�1)+4 [A1;6

2;6(N�1)+7) A1;6
5;6(N�1)+4

De�nition 11 [Contiguous Aggregation Overlap Condition] When two regions are

determined to be conjunctive, as described in De�nition 9, then the resulting descriptor can

be marked with the no-overlap characteristic whenever

54

� � � 0 = �0iq + Æ0iq [No overlap test � aggregation]

5.7.3 Coalescing

An array access is called coalesceable when it moves with a small stride due to one index and

with a larger stride over the accesses of the �rst stride to the very next element in the sequence.

A formal de�nition of coalesceable dimensions follows:

De�nition 12 [Coalesceable Dimensions] Given the access descriptor:

A���;Æj ;���;Æk;������;�j ;���;�k;���
+ � ;

if the following conditions hold:

1. Æj divides Æk

2. �j + Æj � Æk

then the two dimensions j and k are coalesceable, and the two dimensions can be combined

into one by eliminating both dimensions and replacing them with a single dimension with a

stride of Æj and a span formed by evaluating the span due to j at the ending value for the index

k, then adding that to the span due to k. The result is the following access descriptor:

A
���;Æj ;���
���;�j [k Uk]+�k;���

+ �:

This condition holds in the above example, where

55

Algorithm Coalesce

Input 1: index set I = fi1; i2 � � � ; idg
with constraints Lk � ik � Uk 8k = 1; 2; � � � ; d

Input 2: LMAD A
Æi1 ;Æi2 ;���;Æid
�i1 ;�i2 ;���;�id

+ �
Algorithm:
For all possible combinations of index pairs (ij ; ik)

selected from I do
Select two stride/span pairs (Æij ; �ij) and (Æik ; �ik)

from the descriptor A;
If Æij divides Æik and Æik � �ij + Æij then

�ij �ij + �ik ;
If �ij is an expression containing ik then

Replace ik in �ij with its upper bound Uk;
end
Eliminate (Æik ; �ik) from the descriptor A;
I I � fikg;

end
end

Figure 5.15: An algorithm that detects coalesceable accesses from an LMAD, by comparing its
stride/span pairs.

A1;6
5;6(N�1)+4 can be transformed to : A1

6(N�1)+5 +4

An algorithm for performing coalescing is shown in Figure 5.15.

De�nition 13 [Coalescing Overlap Condition] When a region can be coalesced, according

to De�nition 12 above, then it may be further determined that it has the no-overlap characteristic

when, for the two dimensions j and k being coalesced,

�j + Æj = Æk [No overlap test � coalescing]:

56

5.7.4 Interleaving

When a set of LMADs has the same pattern and base o�sets that di�er by a consistent value,

the LMADs form an interleaved access pattern. The entire set of LMADs may be combined

into a single LMAD. The inverse operation is also possible - a single LMAD may always be

broken into a set of interleaved LMADs. The formal de�nition of interleaving descriptors may

be found in De�nition 14.

De�nition 14 [Interleaving Descriptors] Given a set of n dimension-equivalent LMADs:

AÆ1;Æ2;���;Æd
�1;�2;���;�d + �1, A

Æ1;Æ2;���;Æd
�1;�2;���;�d + �2, � � �, A

Æ1;Æ2;���;Æd
�1;�2;���;�d + �n, if a consistent distance exists between

consecutive pairs of LMADs:

�i � �i+1 = D j 1 � i � n� 1

then the n LMADs may be combined into a single equivalent LMAD:

AÆ1;Æ2;���;Æd;D
�1;�2;���;�d;nD

+ �1:

De�nition 15 [n-Interleaved Descriptors] Let A = AÆ1;Æ2;���;Æd
�1;�2;���;�d + � . For a stride/span

pair (Æk,�k), 1 � k � d in A, where Æk is invariant, and a chosen n, 1 � n � (�k=Æk)+1, there

always exists a set of n descriptors

fAj j1 � j � ng =

�
A
Æ1;���;Æ0k;���;Æd
�1;���;�0k;���;�d

+ � + (j � 1)Æk

�

where Æ0k = nÆk and �0k =

�
�k � (j � 1)Æk

Æ0k

�
Æ0k, such that A =

S
1�j�n

Aj . The n descriptors are

the n-interleaved descriptors of A.

There is no way for overlap to occur when constructing the new LMADs described in either

de�nition.

57

5.8 Components of the Access Region Descriptor

The additional information needed for parallelization with LMADs is

�
ags: imprecise-sorting
ag, overlap
ag, monotonicity
ag

� an execution predicate

� a correctness predicate

� a classi�cation predicate

� pointers to the original locations of the array references summarized in a given descriptor

� size in bytes of one data element

� possible reduction
ag, possible induction
ag, reduction operator

5.8.1 The Flags

5.8.1.1 Imprecise-sorting Flag

As each LMAD dimension is computed, it is inserted into the list of dimensions. An attempt

is made to place the new dimension in a list position where all the dimensions with lesser

strides precede it and all the dimensions with greater strides follow it. If this is possible,

operations which match the dimensions between two LMADs can run more quickly, as discussed

in Section 5.4.2.1.

In many cases, this insertion sort can be done precisely, such as when the strides are all

integers, or when variable range information can be used to prove a clear relationship between

each pair of strides. However, other times the LMAD has strides which are either too complex

to compare precisely, or use variables about which too little is known to make a meaningful

comparison. When this happens, the imprecise-sorting
ag is set. Since perfectly sorted

dimensions are necessary for an internal overlap check, when the imprecise-sorting
ag is set, it

may be necessary to perform a run-time sort of the dimensions and a run-time overlap check.

5.8.1.2 Overlap Flag

When an LMAD is expanded for a dimension-index, created by the aggregation of other descrip-

tors, or two dimensions are coalesced into one, the internal overlap check is made, as discussed

58

in Section 5.7. The overlap
ag is set according to the outcome of that test. The values of

the overlap
ag can be no overlap, overlap, and overlap unknown. The overlap unknown value

may cause the overlap condition to be tested at run-time.

5.8.1.3 Monotonicity Flag

The monotonicity
ag may be set to indicate the monotonicity of the subscript expression.

The subscript expressions must be monotonic with respect to all access dimensions for the

descriptor to be considered monotonic. The monotonicity
ag can have three possible values:

proven monotonic, proven non-monotonic, and unknown monotonic. A descriptor whose mono-

tonicity is unknown monotonic may cause a run-time monotonicity test to be carried out before

optimizations based on it could be used.

5.8.2 The Execution Predicate

The ARD uses an execution predicate to represent the condition under which the access in-

dicated by the LMAD occurs. This condition is extracted from the program text, as will be

described in Section 6.1.8.2. It takes the form of a logical expression. If no execution predicate

is attached to a descriptor, that is the same as if a .TRUE. expression were attached. It means

that the memory access pattern described always happens in the given context.

5.8.3 The Correctness Predicate

The ARD needs a correctness predicate when there is some question as to the validity of the

descriptor. The predicate expression gives the condition under which the descriptor is valid.

There are several reasons for using such a predicate. One would be the following case, in

which the compiler cannot decide whether or not there is an overlap in the subscripting o�set

sequence.

do I=1,N

do J=1,N

A(I*M+J) = . . .

end do

end do

59

It can be asserted that the descriptor

A1;M
N�1;M(N�1)+M + 1

has no overlap, provided M > N � 1. The expression M > N � 1 could be used as the

correctness predicate for the descriptor.

5.8.4 The Classi�cation Predicate

As will be discussed in Section 6.1.7, the Memory Classi�cation process sometimes must apply

a predicate to an LMAD. When that happens, the predicate gets attached as the classi�cation

predicate. This expression can be used to disprove dependences and can be tested at run-time

in some cases.

5.8.5 Original Reference Sites

The set of pointers to the original reference sites in the program, which produce the accesses

described by the LMAD, are kept in the LMAD. These can be useful for the code generation

pass of the compiler. For instance, if it is decided to privatize the access region of a descriptor,

then the code generator could visit the original reference sites and generate code there to refer

to the private version of the variable.

5.8.6 The Size of a Data Element

An ARD describes the access pattern in terms of which \data elements" are referred to, starting

at a certain o�set from an origin. These data elements must be of a constant size, given in this

�eld of the descriptor. When operations are done between LMADs of two di�erent sizes, the

LMAD with the larger size must be converted to represent accesses to a data element with the

smaller size.

5.8.7 Reduction/Induction Information

This data is used to assist the recognition of reductions and inductions, which will be described

in Section 6.2.4. When the initial reduction pattern is found, the reduction operator �eld is

60

assigned with the operator which was found (addition, subtraction, or multiplication). When

the operator is assigned, it is said that the reduction or induction has passed the level 1 check.

The possible reduction
ag or the possible induction
ag can be set when the reduction

or induction has passed the level 2 check.

5.9 ARD Notation

The format for writing an ARD uses the LMAD format, with extra notation attached. The three

predicates: execution, correctness, and classi�cation will be represented, plus the no-overlap

characteristic and whether the descriptor represents a read-only, write-�rst, or read/write region

in addition to the normal LMAD form. The form is as follows:

[fpredicategexec]

[fpredicategcorr]

[fpredicategclass]

[r;w or rw]
[k] AÆ1;���;Æd

�1;���;�d
+�

All parts of the notation outside the realm of the LMAD are optionally written. The left-

most parts are the three predicates, written in brackets (fg). The overlap
ag position is at

the lower left of the variable name. If two vertical bars (k) are written there, it indicates that

there is no internal overlap for the descriptor. At the upper left of the variable name, if an

\r" is written there, it indicates that the descriptor is read-only. A \w" written there means

write-�rst, and \rw" means read/write.

61

6 INTERPROCEDURAL PARALLELIZATION

An accurate memory access representation such as the ARD is of little use to compilers without

a method to use it for optimizing programs. This chapter will describe a parallelization method

whose accuracy depends on the accuracy of the intersection operation between memory access

descriptors. The use of ARDs makes possible a very accurate intersection algorithm, so the

parallelization is correspondingly accurate.

The approach is to summarize the memory activity of an arbitrary program section in

such a way as to enable dependence analysis using only the summaries. If the summaries are

translatable across subroutine boundaries, interprocedural parallelization is possible. Again,

ARDs are crucial to this important capability, this time because they are easy to translate

across procedure boundaries.

This chapter will describe a new method, calledMemory Classi�cation Analysis (MCA),

for summarizing the memory activity in a section of code by classifying every memory location

as to the type and order of accesses made to it by the code. First, the general method will

be described, which can detect dependence between any two sections of code, based on the

summaries. Then, a simpli�cation of the general method will be shown to work for loop

parallelization. Next, techniques to eliminate some of the dependences found will be discussed.

Finally, a framework for using MCA to do interprocedural analysis will be described.

6.1 Memory Classi�cation Analysis

The traditional notion of data dependence is based on classifying a memory location according to

the type and order of accesses to it. This section extends this classi�cation idea for the purpose

of describing data dependence between arbitrary code sections, including loop iterations.

6.1.1 Traditional Data Dependence

Traditionally, the four types of data dependence are described by classifying two accesses to a

single memory location, as in Table 6.1.

62

Earlier access Read Write Read Write

Later access Read Read Write Write

Dependence Type: Input Flow Anti Output

Table 6.1: Traditional data dependence de�nition.

Input dependences can safely be ignored when doing parallelization. Anti and output de-

pendences (also called memory-related dependences) can be removed by using more memory,

usually by privatizing the memory location involved. Flow dependences (also called true depen-

dences) can be removed by transforming the original code through techniques such as induction

variable analysis and reduction analysis.

6.1.2 Dependence Granularity

Data dependence is usually described as being between individual memory reference points

in a program, but if the desire is to determine dependence between two larger sections of

code, each of which contains several accesses to the memory location, the notion of dependence

can be coarsened. Dependence between two reference sites within one of the code sections

can be ignored, since a single processor will be executing it, automatically enforcing whatever

dependence exists within the code section.

De�nition 16 A section of code within which the compiler can ignore dependences (since it

will always be executed by a single processor) will be called a dependence grain.

This de�nition of dependence grain corresponds to the terms coarse- and �ne-grained anal-

ysis, which refer to using large and small dependence grains, respectively.

6.1.3 Dependence Summarization for Dependence Grain Parallelization

For medium- and coarse-grain parallelization, there can be many accesses to a single memory

location in each grain. Instead of keeping track of the dependences between all possible pairs of

references which have a reference site in each dependence grain, it is desired to represent them

all with a single representative dependence.

63

Read-Only (earlier grain)? Yes No Yes No

Read-Only (later grain)? Yes Yes No No

Dependence Type: Input Flow Anti Output

Table 6.2: One possible representative dependence de�nition.

De�nition 17 A representative dependence is a single dependence between two dependence

grains which represents all the dependences between the two grains due to individual reference

sites, for a single memory location.

It is possible to de�ne a representative dependence such that it carries all of the dependence

information needed for the potential parallelization of the two grains. When no dependence

exists between any pair of dependences which have reference sites in each dependence grain,

neither should a representative dependence exist. When one or more dependences exist between

reference sites in the two grains, we must simply de�ne ways to group them together such that

an appropriate transformation may be used to deal with them as a group. For instance, if

some combinations of dependences could all be removed by privatization, we can make a single

memory-related representative dependence to represent them all.

Consider two grains which execute in the serial form of a program, one before the other.

One consistent way to summarize dependence (for a single memory location) between the two

grains is to determine whether the accesses are read-only in each grain, and to classify them as

to dependence, according to Table 6.2.

When an input dependence exists between dependence grains, it can be ignored. When

an anti dependence exists between dependence grains, it means that only reads happen in one

grain, followed by at least one write in the other. An output dependence means that at least

one write occurs in both grains. Anti- and output dependences cause the grains to be serialized

unless the �rst access in the later grain is a write. If it is, the dependence can be ignored as long

as we privatize the variable involved. So, some anti and output dependences can be removed

by privatization, while others cannot.

When a
ow, or true dependence exists between grains, in general the grains must be

serialized. However, the compiler can still parallelize in some cases. Certain patterns of memory

accesses which result in
ow dependences can be removed by a parallelizing compiler as long as

64

 = A . . .

Earlier Grain Later Grain

A = . . .

 = A . . .

Flow Dependence

Input Dependence

Earlier Grain Later Grain

A = . . .

 = A . . .

Flow Dependence

 = A . . .

A = . . .
Input Dependence

Output dependence

Anti dependence

Output Dependence Between GrainsFlow Dependence Between Grains

Figure 6.1: Dependence between grains depends on whether the two grains are read-only. The
situation on the right shows a case where A can be privatized in the later grain, eliminating the output
dependence.

it transforms the code in certain ways. Reductions and inductions, described in Chapter 2 and

described in terms of the proposed compiler framework, in Sections 6.2.4 and 6.2.5, fall into

this category.

Figure 6.1 illustrates dependence summarization.

6.1.4 Loop-based Dependence Analysis

When the dependence grains are loop iterations, there exists a special case of the more general

problem in that the same section of code represents all dependence grains. This fact can be

used to simplify the dependence analysis task.

There are no longer four cases, just two. The iteration is either read-only or it is not.

However, the case where it is not read-only can also be divided into two cases: one where a

write is the �rst access to the location and one where a read is the �rst access. This gives three

overall classes.

When an iteration only reads the location, dependence can be characterized as an input

dependence (and ignored). When the iteration reads the location, then writes it, the variable

cannot be privatized. This results in a dependence which cannot be ignored and cannot be

removed by privatization, so it will be called a
ow dependence. When an iteration writes the

location �rst, any value in the location when the iteration starts is immediately over-written,

so the variable can be privatized. Since these dependences can be removed by privatization,

they will be classi�ed as memory-related dependences.

Since privatization can be done in the memory-related dependence case, and that case is

signaled when a write is the �rst access, all we need to do to identify these cases is to keep

65

Access Type Read-Only Read-�rst/Write Write-First

Dependence Type: Input Flow Memory-related

Table 6.3: Loop-based representative dependence table.

track of the case when a location is written �rst. The input and
ow dependence cases are

characterized by a read happening �rst, and di�erentiated by whether a write occurs later or

not. This naturally leads to the loop-based dependence de�nition of Table 6.3, which contains

fewer classes than the more general one of Section 6.1.3.

The name \Read-�rst/Write" will be simpli�ed to Read/Write. Notice that Read/Write

is the only case which prevents parallelization, and even in that case, reduction and induction

patterns may still allow parallelization.

6.1.5 A More E�ective Classi�cation for General Dependence

The simplicity of the loop-based method described in the last section points to a classi�cation

scheme which is more e�ective than the one presented in Section 6.1.3 for representative depen-

dences for the general dependence grain problem. Since the classi�cation in Section 6.1.3 has

the problem that only some memory-related dependences are removable by privatization (those

which are written �rst in the later grain), it makes sense to use that fact in the classi�cation.

If we use the classi�cations Read-Only, Write-First, and Read/Write, any locations which

are Read-Only in both grains would correspond to an input dependence, those which are Write-

First in the later grain would correspond to memory related dependence (since it is written �rst

in the later grain, the later grain need not wait for any value from the earlier grain), and all

others would correspond to a
ow dependence. This is illustrated in Figure 6.2.

6.1.6 Establishing an Order Among Accesses

The crucial information needed for this kind of dependence analysis is the type of access done

�rst to a memory location, and whether a write comes later. This information can be gathered

by establishing an ordering of the accesses within the program. If a program contained only

straight-line code without variables, establishing an ordering between accesses would be trivial.

One could simply sweep through the program in \execution-order", keeping track of when the

66

Read-Only Write-First Read/Write
later later later

Read-Only Input Memory- Flow
earlier related

Write-First Flow Memory- Flow
earlier related

Read/Write Flow Memory- Flow
earlier related

Figure 6.2: A more e�ective way to classify dependence between two arbitrary dependence grains,
using the classi�cations Read-Only, Write-First and Read/Write.

accesses happen. But branching statements and unknown variables make it more diÆcult to

show that one particular access happens before another.

Take the following loop, for example:

for I=1 to N do {

if (P) {

A(I) = ...

}

if (Q) {

... = A(I) + ...

}

}

Does the write happen before the read? It does if both P and Q are true. But if Q is true

and P is false, the read happens without the write having happened �rst. If P and Q have values

which are unrelated, then the compiler has no way of knowing the ordering of the accesses to

A in this loop. On the other hand, if the compiler can show that P and Q are related and that

in fact Q being true implies that P must have also been true, the compiler can know that the

write happened �rst. So, for code involving conditional branches, the major tool the compiler

has in determining the ordering of the accesses is logical implication.

67

6.1.7 Memory Classi�cation for Arrays

The techniques described above could be made to work for scalar variables by simply keeping

track of the accesses to each location separately. However, the use of arrays in programs makes

the problem more diÆcult. The use of symbolic expressions to index the arrays sometimes

makes it impossible to know which array elements are being referred to, and a single array

reference may refer to di�erent elements at di�erent times.

In order to make the correspondence between a memory location and a classi�cation, in the

presence of arrays, the focus of the analysis must simply be shifted. Instead of marking a class

on a memory location, a memory location can be added to a class. So, instead of using a data

structure for each memory location, a data structure may be used for each class. A symbolic

description of the sequence of memory locations which are accessed in a particular way can

be added to the appropriate class. Fortunately, the ARD provides an excellent mechanism for

representing a sequence of memory locations.

So, one summary set is needed for each classi�cation. According to Table 6.3, three summary

sets are needed: Read-only (RO), Read/Write (RW), and Write-�rst (WF). In each summary

set, a symbolic representation of the memory locations which are accessed in that way, derived

from the program text, is kept.

A symbolic representation of the read and write accesses in a given statement can usually

be easily determined. For instance, in the following Fortran assignment statement S0, for a

single iteration of the surrounding loop, the variable I and the locations B(I) and C(I) are

read-only, and the location A(I+2) is write-�rst.

do I = 1, N

S0: A(I+2) = B(I) * C(I)

end do

The array references could be expanded by the loop index I to determine a symbolic rep-

resentation of the locations being accessed in each way during the execution of the loop. For

instance, during the execution of all iterations of the loop, the locations B[1:N] and C[1:N]

are accessed in a read-only way, while the locations A[3:N+2] are accessed in a write-�rst way.

Expansion by the loop index would be suÆcient for classifying memory accesses if there were

no chance of cross-iteration dependences between reference sites. But since in most languages

there is such a chance, memory classi�cation within a loop must include a way to discover the

68

Write-first Read-write

A[N+1:N+100]

Summary Sets before including statement S1.

Read-writeWrite-firstRead-only

A[1:N-51] A[N+1:N+100] A[N-50:N]

Summary Sets after including statement S1.

S1: A[N-50:N+50] = . . .

Read-only

A[1:N]

Figure 6.3: Distributing an access to the summary sets.

memory locations accessed in common by separate reference sites. This is done by intersecting

the sets of locations accessed by the separate sites.

A symbolic intersection operation may be performed precisely between such sets in many

cases, since quite often arrays are indexed with related variables.

For example, consider the situation shown in Figure 6.3. Let us assume that the sum-

mary sets have already recorded a Read-Only region of A[1:N] and a Write-First region of

A[N+1:N+100]. The access to be classi�ed is the write region A[N-50:N+50], which will be

called the \new write region". The region in common between the Read-Only set and the new

write region must be placed in the Read/Write set, since those locations have a read followed by

a write. The new write region must be reduced by the section which has been newly-classi�ed

as Read/Write, then what remains of the new write region must be intersected with the Write-

First summary set. The region A[N+1:N+50] falls totally within the existing Write-First region,

so no change is necessary for that set.

In general, the intersection algorithm must be capable of removing the intersecting region

from the summary sets and the access to be classi�ed, separating out the intersected region for

moving it to a third summary set. An example of this is shown in Figure 6.4.

69

����
����
����

����
����
����

����
����
����

����
����
����

ReadOnly
ReadOnly

to ReadWrite

new_writefirst

new_writefirst

Figure 6.4: The general form of summary set intersection.

ROnew = ROnew � RO
ROnew = ROnew �WF
ROnew = ROnew � RW
RO = RO [ROnew

WFnew = WFnew �WF RWnew = RWnew �WF
WFnew = WFnew �RW RWnew = RWnew � RW
RW = RW [(WFnew \ RO) RW = RW [(RWnew \ RO)
RO = RO� (WFnew \RO) RO = RO� (RWnew \RO)
WFnew = WFnew � (WFnew \ RO) RWnew = RWnew � (RWnew \RO)
WF = WF [WFnew RW = RW [RWnew

Figure 6.5: Classi�cation of new summary sets ROnew, WFnew, and RWnew into the existing summary
sets RO, WF, and RW.

In general, a read access to be classi�ed must be reduced by its intersection with RO,

WF, and RW, then the remaining locations added to RO. A write access to be classi�ed must

be reduced by its intersection with WF and RW, but the region which intersects with RO is

removed from both RO and the write access, and moved to RW. The locations remaining in

the write access must be added to WF. A read/write access to be classi�ed is handled exactly

like a write region to be classi�ed, except that whatever remains in the read/write access after

intersecting with RO, WF, and RW is moved to RW.

This process of distributing new locations into the summary sets is called classi�cation.

Classi�cation takes as input the three existing summary sets: RO, WF, and RW, the three

summary sets to be distributed: ROnew, WFnew, and RWnew and produces new versions of the

three summary sets RO, WF, and RW. The steps of classi�cation, as described above, can be

expressed in set notation as shown in Figure 6.5.

70

6.1.8 Classi�cation Operations for the Elementary Contexts

To make whole-program classi�cation possible in a systematic way, a program is assumed to

be a series of nested contexts, as shown in Figure 6.6. If the language does not force this

through its structure, then a program will have to be transformed into that form through a

regularization process before classi�cation takes place.

The elementary contexts, whose nesting will make up a whole program, are simple state-

ments, if statements, loops, call statements, and procedures. The memory accesses for each

of these contexts can be classi�ed into the three summary sets. This section will describe the

classi�cation process in each of the elementary contexts.

6.1.8.1 Classi�cation for Simple Statements

Simple statements are those whose read and write accesses can be determined by examining

the text of a single statement. An assignment statement without function calls is an example

of this type of statement. The read accesses form the ROnew set. The write accesses form the

WFnew set. If any accesses are read �rst then written, they form the RWnew set.

6.1.8.2 Classi�cation for if Statements

An if statement is a compound statement containing a conditional expression and two alter-

native blocks of statements. The if chooses one of the two successor blocks of statements to

execute next, based on the evaluation of the conditional expression. If the conditional expres-

sion evaluates to true, the then block executes, and if it evaluates to false, the else block

executes. After execution of either block, execution continues at the statement following the

compound statement. The point at which execution proceeds after the if statement is a join

point in the control
ow graph.

To summarize an if statement, an execution predicate is applied to the access descriptors

produced by both blocks, and the union of the descriptors for both successor blocks is computed.

The if condition is applied to the representation of the accesses for the then block and the

negation of the if condition is applied to the representation of the accesses for the else block.

71

RO WF RW

Execution order scan for

Already
distributed

new RO, WF, RW

distributing to Summary Sets

Figure 6.6: Memory Classi�cation in a series of nested contexts.

72

It is possible to simplify the access representations after they are computed for an if state-

ment by intersecting the descriptors and applying the or of the execution predicates to whatever

is in the intersection. An example of this simpli�cation is the following:

if (P) {

A[1:N] = . . .

B[1:N] = . . .

} else {

A[1:N] = . . .

}

The summary for this statement would include a WF set containing fPgA[1:N] and

fPgB[1:N], (where P is the execution predicate), and f.not.PgA[1:N]. Intersecting these de-

scriptors (and oring the predicates) produces the fP or .not.PgA[1:N] and fPgB[1:N] in

WF, which becomes simply A[1:N] and fPgB[1:N]. The removal of the execution predicate for

A[1:N] re
ects the fact that regardless of the value of the conditional expression, A[1:N] is

written.

6.1.8.3 Classi�cation for Loops

Classifying the memory accesses in a loop is a two-step process. First, the summary sets for

a single iteration of the loop must be collected by a scan through the loop body in execution

order, producing the three summary sets RO, WF, and RW. These summary sets represent

the memory accesses for a single loop iteration, and are theoretically disjoint. They contain

the symbolic form of the accesses, possibly parameterized by the index of the loop. Next, the

summary sets must be expanded according to the loop index (as described in Section 5.2.1.2)

so that the sets represent the locations accessed during the entire execution of the loop.

6.1.8.4 Classi�cation for Procedures

Classi�cation for a whole procedure is simply a classi�cation sweep of the statements in the

procedure in execution order. The resulting summary sets (RO, WF, and RW) are stored as a

representation of the memory activity of the whole procedure.

73

6.1.8.5 Classi�cation for call Statements

Classi�cation for a call statement involves �rst the calculation of the access representation for

the text of the call statement itself, then the retrieval of the summary sets for the procedure

being called, matching formal parameters with actual parameters, and translating the summary

sets involved from the called context to the calling context. If the symbols have further infor-

mation which was derived during analysis of the subroutine (such as value range information),

it must also be translated to the calling context. Section 5.6 describes how to translate ARDs

across subroutine boundaries.

6.1.9 General Dependence Testing with Summary Sets

Given the symbolic summary sets RO1, WF1, and RW1, representing the memory accesses for

an earlier dependence grain, and the sets RO2, WF2, and RW2 for a later grain, it can be

discovered whether any locations are accessed in both grains by �nding the intersection of the

earlier and later sets, and by consulting Table 6.2.

The intersections which must be done for each variable are:

RO1 \WF2

WF1 \WF2

RW1 \WF2

RO1 \ RW2

WF1 \ RO2

WF1 \RW2

RW1 \RO2

RW1 \ RW2

If all of these intersections are empty for all variables, then no cross-iteration dependences exist

between the two dependence grains. If any of the �rst three intersections are non-empty, then

the locations involved could be privatized to eliminate the memory-related dependence. If any

of the last �ve intersections are non-empty, then a
ow dependence exists between the grains.

For instance, a location written at least once in the earlier grain, and only read in the

later grain would end up in one of the intersections RWearlier \ ROlater or the intersection

WFearlier \ ROlater, indicating a
ow dependence between the grains.

74

RWWF

RO

Internal Intersections:
WF and RW

WF and RW
Internal Overlap:

Loop-based Summary Set Dependence Testing -

The Access Region Test

Loop Iteration

WF/RW

WF/RW

Figure 6.7: The Access Region Test.

6.1.10 Loop Dependence Testing with Summary Sets:

The Access Region Test

As stated before, dependence testing between loop iterations is a special case of general de-

pendence testing, described in the last section. Traditional loop parallelization considers each

iteration to be one dependence grain, meaning all dependence grains have the same summary

sets.

In this case, dependence between the grains (cross-iteration dependence) can occur in three

ways: within one of the expanded descriptors, between two of the summary sets, or between

two descriptors within one summary set. These three dependence checks make up the Access

Region Test (ART), shown in Figure 6.7.

6.1.10.1 Overlap Within One Access Descriptor

The process of expanding a memory access descriptor by a loop index can cause an overlap

within the descriptor to occur, as described in Section 5.3.2. This is a cross-iteration dependence

because it appears as a result of the expansion operation, which models the access pattern caused

by running all iterations of the loop.

75

6.1.10.2 Intersection of Two Summary Sets

There are only three summary sets to consider in loop dependence testing, instead of six, so

there are only three intersections to try, instead of the eight required in general dependence

testing. Since the disjoint summary sets before expansion represent the memory activity of one

iteration, a non-empty intersection between two of the summary sets would indicate a cross-

iteration dependence. Such a dependence involves at least one write operation, so none is an

input dependence. The following intersections must be done:

RO \WF

RO \ RW

WF \RW

6.1.10.3 Intersection of Descriptors Within One Summary Set

If two descriptors being put in the same summary set do not intersect initially, that doesn't

mean that they will not intersect after they are expanded according to the loop index. Such an

intersection would represent a cross-iteration dependence.

Intersection within the RO set would be a cross-iteration input dependence, which can be

ignored, so there is no need to do the internal intersections within RO. Internal intersections

for both WF and RW must be done, however.

An example is the following code:

do I = 1, 4

A(I) = . . .

A(5-I) = . . .

end do

When the two writes to array A are �rst assigned to a summary set, they do not overlap.

The two write-�rst descriptors are A0
0+I�1 and A0

0+4�I. Since the base o�sets are di�erent,

the intersection is assumed to not overlap (the conservative assumption). This causes them to

both be assigned to the WF set. After expansion for I, (and creation of the dimension index

I 0), the normalized descriptors both become A1
3+0, which do intersect. This intersection would

be found by attempting to intersect the descriptors within WF.

76

6.1.11 Loop-carried Dependence Handled by the Access Region Test

Any dependence within an inner loop is essentially ignored with respect to an outer loop because

of the fact that after expansion by a loop index, any intersecting portions of two LMADs

are represented as a single LMAD and moved to the ReadWrite summary set. If there are

intersecting portions, they are counted as cross-iteration dependences for that loop, but because

they are reduced to a single LMAD, no longer will be found to intersect. Intersections due to

outer loops will be solely due to expansions for outer loop indices. This process is illustrated

in Figure 6.8.

6.1.12 Uncertainty in the Classi�cation Process

Sometimes it is not possible to unconditionally classify memory accesses. This happens when

variables are used about which we have too little information, making it impossible to know

how to classify a given access. An example is as follows:

do I = 1, N

A(Z,I) = A(2,I) . . .

A(1,I) = A(Q,I) . . .

end do

In this case, the A(2,I) reference gets classi�ed as RO. Then the A(Z,I) reference must be

classi�ed. If nothing is known about the value of Z, it is likewise unknown whether it is equal

to 2. If it were equal to 2, then the A(2,I) reference would be moved to the RW set and the

A(Z,I) reference could be eliminated since it is represented by A(2,I). However, if Z is not 2,

then A(2,I) remains in RO and A(Z,I) would be classi�ed WF.

This shows the need to do conditional classi�cation. This involves determining all the

possible classi�cations which could result from the attempt to classify a given reference, and

attaching the condition under which each was valid. This condition is called the classi�cation

condition.

For instance, in the example above, the classi�cation of A(Z,I) would result in A(2,I)

being placed in the RW set with a classi�cation condition of Z � 2, and the assignment of

the classi�cation condition of Z 6= 2 to the reference A(2,I) in the RO set and to the A(Z,I)

77

A + I - 1

0

100
RO:

WF: A 0

100
+ I - 1 + 100

RW: A 100(50-3)

100
+ I - 1 + 100

REAL A(100,100)

DO I = 1, 50
 DO J = 2, 50

 A (I, J) =

 = A (I, J-1)

 END DO
END DO

WF

RO

J loop : intersection indicates dependence

RO WFRW

A + I - 1

100(50-2)

100

A 100(50-2)

100
+ I - 1 + 100

expand I

expand I

expand I

A + 0

50-1

1

A + 100(50-1)

50-1

1

A + 100

50-1, 100(50-3)

1, 100

I loop : no intersection indicates independence
RO RW WF

Figure 6.8: How the Access Region Test handles loop-carried dependence.

78

ReadOnly: fZ 6= 2gA(2,I) fQ 6= Z ^Q 6= 2 ^Q 6= 1gA(Q,I)
WriteFirst: fZ 6= 2gA(Z,I) fZ 6= 1 ^Q 6= 1gA(1,I)

ReadWrite: fZ � 2gA(2,I) fQ 6= Z ^Q 6= 2 ^Q � 1gA(Q,I)

Table 6.4: Summary sets illustrating conditional classi�cation.

reference in the WF set. The summary sets which result from the classi�cation of the above

code can be seen in Table 6.4.

The intersection operation must take the classi�cation conditions into consideration. One

way is to form the and of the classi�cation conditions of two ARDs when doing intersections. For

instance, if the ReadOnly and the ReadWrite sets from Table 6.4 were intersected, even though

the memory access part of fZ 6= 2gA(2,I) and fZ � 2gA(2,I) intersects, the intersection

should be reported as ; since fZ 6= 2g ^ fZ � 2g is false. This corresponds to the fact that

the two memory accesses can never be classi�ed in those two sets at the same time.

Another way of taking the classi�cation conditions into consideration is to use them to

disprove a possible intersection. An example of this is the intersection of fZ 6= 2gA(2,I)

with fZ 6= 2gA(Z,I). In this case the intersection algorithm would be able to detect that an

intersection would be non-empty only if Z � 2, but since the and of the conditions results in

Z 6= 2, that possibility is disproved, so the intersection should be returned as the empty set.

Using these classi�cation conditions, it can be proved that no intersection occurs between

the references in the above code. This is a case where a more traditional dependence test could

easily determine a lack of dependence, by just noticing that the loop index I occurs by itself in

one dimension of the array in every case, while MCA requires more extensive symbolic analysis.

When it is not possible to determine how to classify a given descriptor, and also not possible

to determine a condition under which various possible classi�cations would be done, then the

conservative action is to put all descriptors involved into the ReadWrite summary set. This will

almost guarantee that the intersections within ReadWrite will be found non-empty, indicating

a dependence.

79

6.1.13 Using the Classi�cation Condition for Conditional Prefetching

One way to overlap computation with communication in a multiprocessor is to use an asyn-

chronous prefetch command. This is typically used prior to a parallel loop, to fetch remote data

which will be needed by a processor for executing its iterations of the loop. The algorithms that

determine the data to prefetch su�er from the same imprecision as does the Classify algorithm.

As discussed in Section 6.1.12, when unknown variables are used to index arrays, it sometimes

cannot be determined whether or not the array reference accesses data previously accessed. If

unnecessary prefetches are generated, machine time and resources are wasted.

The classi�cation condition can be employed, in this situation, to generate conditional

prefetches. For example, referring to the example in Section 6.1.12, it might be important to

prefetch the array reference A(Q,I). Through the classi�cation conditions shown in Table 6.4,

it can be seen that only under the condition fQ 6= Z ^ Q 6= 2 ^ Q 6= 1g is A(Q,I) classi�ed

ReadOnly, and only under the condition fQ 6= Z ^Q 6= 2 ^Q � 1g is it classi�ed ReadWrite.

Together, these lead to the prefetch condition:

fQ 6= Z ^Q 6= 2g:

This is the condition under which it should be prefetched. In the other cases, it has either

already been read (when Q � 2), or already been written (Q � Z).

6.1.14 DiÆculty with a \Simple" Situation

Despite its success in \diÆcult" and complex situations, the Access Region Test can have

trouble with \simple" situations without a little help. Take the following code for example:

real A(100,100)

do I = 1, Q

do J = 2, 50

A(I,J) =

= A(I,J-1)

end do

end do

80

There is obviously no dependence carried by the do I loop, since the loop index I appears by

itself and in the same expression in both references to array A in the loop. Since the construction

of the LMAD does not preserve the original form of the subscript expressions within the array

references, this information can be lost. The diÆculty arises when nothing is known about

the values which the variable Q can take on. The Access Region Test would try to determine

whether the variable Q is less than or equal to 100. The Inbounds Assumption would guarantee

that it is, but by losing the subscripting information, we may not be able to determine it. This

would prevent parallelization of the loop.

This problem can be solved by saving the information that the loop index I is a singleton

index at the time of LMAD creation. A singleton index is an index which never appears with

other loop indices whenever it appears in a subscripting expression. This fact would guarantee

that there can never be an overlap with respect to that index, allowing the intersection algorithm

to prove there is no intersection due to the index.

6.2 Transformations and Analysis for Loop Parallelization

The classi�cation operation has been designed to be closed in the sense that the outputs are of

the same form as the inputs. This, combined with the de�ned dependence analysis procedure,

makes it possible to produce a valid summary of the activity in an arbitrary-sized section of

code which retains exactly the information needed for doing parallelization.

The basic idea is that a compiler would use a classi�cation routine to classify the memory

accesses in the main program. Whenever the classi�cation routine encounters one of the contexts

which are of interest, it recursively calls itself to classify that new context. The loop, the if

statement, and the call statement are the contexts of interest, since MCA will be used to

parallelize loops, do
ow-sensitive analysis, and interprocedural analysis.

As part of the classi�cation process, parallelization can be done. A classi�cation context

must correspond to the dependence grain which is to be parallelized, simply because the sum-

mary sets for those dependence grains are intersected in the parallelization method described

in this thesis. The Classify algorithm, which is used as the basis for the interprocedural loop

parallelization framework, is shown in Figure 6.9.

81

Algorithm Classify

Input: A regularized program
Output: A loop-parallelized program

Function classify(�rst stmt, last stmt, global predicate, local predicate):
for (stmt=�rst stmt.next() to last stmt) do

switch(stmt.type())
case: ELSEIF:

local neg not local predicate and local neg;
local predicate elseif condition;
continue;

case: ELSE:
local neg not local predicate and local neg;
local predicate NULL;
continue;

endswitch;
compute access rep (stmt); // Compute memory accesses for text of stmt

if (stmt.type() == IF) f
classify(stmt, endif-stmt,

global predicate and local predicate and local neg,
if condition);

g
update memory sets(new readonly, new write�rst, new readwrite,

ReadOnly, ReadWrite, WriteFirst);
endfor

simplify memsets(); // employ ARD simpli�cation ops

if (stmt.type() == LOOP) f
expand by loop (); // expand by loop index
check parallelization loop ();

elseif (stmt.type() == IF) f
summarize IF stmt ();

else

summarize to procedure ();
g

end Function classify

Figure 6.9: The classi�cation algorithm of the uni�ed parallelization framework.

82

Algorithm Classify support routines

update memory sets (new readonly, new write�rst, new readwrite,
ReadOnly, WriteFirst, ReadWrite)
distribute read(new readonly, ReadOnly, ReadWrite, WriteFirst)
distribute write(new write�rst, ReadOnly, ReadWrite, WriteFirst)
distribute readwrite(new readwrite, ReadOnly, ReadWrite, WriteFirst)

end update memory sets

distribute read (new readonly, ReadOnly, WriteFirst, ReadWrite)
forall ARD pairs (new readonly, WriteFirst) do

if (new readonly.exec pred() implies WriteFirst.exec pred()) then
discard intersect(new readonly,WriteFirst) from new readonly

else

move intersecting parts of new readonly and WriteFirst to ReadWrite
endif

endforall

forall ARD pairs (new readonly, ReadWrite) do
if (new readonly � ReadWrite) then

discard new readonly
if (ReadWrite.possible reduction()) then

ReadWrite.possible reduction false
endif

endif

if (intersect(new readonly, ReadWrite)) then

discard intersect(new readonly, ReadWrite) from new readonly
if (either LMAD is reduction) then

make sure both are, otherwise cancel reductions
endif

endif

endforall

ReadOnly ReadOnly [new readonly
end distribute read

Figure 6.10: Classify support routines.

83

Algorithm Classify support routines 2

distribute write (new write�rst, ReadOnly, WriteFirst, ReadWrite)
forall ARD pairs (new write�rst, WriteFirst) do

discard intersect(new write�rst,WriteFirst) from new write�rst
endforall

forall ARD pairs (new write�rst, ReadWrite) do
if (new write�rst.exec pred() implies ReadWrite.exec pred()) then

if (new write�rst � ReadWrite) then

discard new write�rst
if (ReadWrite.possible reduction()) then

ReadWrite.possible reduction false
endif

endif

if (intersect(new write�rst, ReadWrite)) then

discard intersect(new write�rst, ReadWrite) from new write�rst
endif

endif

endforall

forall ARD pairs (new write�rst, ReadOnly) do
if (new write�rst.exec pred() implies ReadOnly.exec pred()) then

discard intersect(new write�rst,ReadOnly) from ReadOnly
move intersect(new write�rst,ReadOnly) to ReadWrite
discard intersect(new write�rst,ReadOnly) from new write�rst

endforall

WriteFirst WriteFirst [new write�rst
end distribute write

Figure 6.11: Classify support routines 2.

84

Algorithm Classify support routines 3

distribute readwrite (new readwrite, ReadOnly, WriteFirst, ReadWrite)
forall ARD pairs (new readwrite, WriteFirst) do

if (new readwrite.exec pred() implies WriteFirst.exec pred()) then
if (new readwrite.possible reduction()) then

new readwrite.possible reduction false
endif

discard intersect(new readwrite,WriteFirst) from new readwrite
endif

endforall

forall ARD pairs (new readwrite, ReadWrite) do
if (new readwrite.exec pred() implies ReadWrite.exec pred()) then

if (new readwrite � ReadWrite) then

discard new readwrite
if (not ReadWrite.possible reduction() or

not new readwrite.possible reduction()) then

ReadWrite.possible reduction false
new readwrite.possible reduction false

endif

endif

if (intersect(new readwrite, ReadWrite)) then

discard intersect(new readwrite, ReadWrite) from new readwrite
endif

endif

endforall

forall ARD pairs (new readwrite, ReadOnly) do
if (new readwrite.exec pred() implies ReadOnly.exec pred()) then

if (new readwrite.possible reduction()) then

new readwrite.possible reduction false
endif

discard intersect(new readwrite,ReadOnly) from ReadOnly
move intersect(new readwrite,ReadOnly) to ReadWrite
discard intersect(new readwrite,ReadOnly) from new readwrite

endforall

ReadWrite ReadWrite [new readwrite
end distribute write

Figure 6.12: Classify support routines 3.

85

6.2.1 Regularizing the Program

The program must be preconditioned-conditioned or regularized by identifying loops and making

all loops and procedures single-entry/single-exit, prior to using the Classify algorithm.

Identifying loops in the program may be done with interval analysis [1]. Many languages

have explicit looping constructs, such as the do loop in Fortran, which makes identifying those

loops easy. However, the existence of an if statement and a goto statement in a language makes

it possible to program arbitrarily complex looping patterns, so these loops must be identi�ed

by interval analysis.

Interval analysis identi�es the set of nested loops which represent the program structure.

Interval analysis also identi�es program patterns which cannot be represented as a nested

structure { these programs have what is known as an irreducible
ow graph. When this is the

case, it is always possible to transform such a program into a program with a nested structure

by a technique known as node-splitting [1]. Programs with an irreducible
ow graph are believed

to be very rare [1], so this is not expected to be a problem.

After interval analysis, the program is a collection of nested loops and if statements. All

such loops and procedures must be made single-entry/single-exit, so that both forward and

backward analysis will �nd a single point at which to look for summary sets representing

accesses within those contexts.

6.2.2 Other Key Transformations

In addition to the regularization transformation, it can be useful to perform some other anal-

ysis/transformation passes prior to the classi�cation process. The elimination of dead code is

always useful in that it cuts down the amount of processing which must be done. Interprocedural

value propagation [8] propagates expressions from de�nition points to use points interprocedu-

rally. A conversion to Static Single Assignment (SSA) form [15] embeds the def-use chains for

scalar variables in the names of the variables, which supports the symbolic analysis process by

making clear whether two uses of the same variable hold the same value or may not. Range

propagation [8] stores value ranges for scalar variables, to aid in symbolic analysis.

86

6.2.3 Privatization

As described in Section 2.2.1, privatization is the transformation by which dependences involv-

ing certain variables are removed, by making one copy of the variable per processor.

The conditions for recognizing privatizable memory locations are that the locations are

written before being read in a single iteration of the loop, and that the location be accessed in

more than one iteration of the loop (leading to an apparent cross-iteration dependence). These

two conditions are discovered by MCA through the WriteFirst classi�cation and the detection

of a dependence through the Access Region Test.

The program situations requiring proof of logical implication, which Tu [38] proposed specif-

ically for array privatization, are now handled as a natural part of MCA, to the bene�t of all

analysis.

The analysis necessary to determine whether last value assignment needs to be done is

essentially liveness analysis [1]. It must be determined whether a privatized variable is live

immediately after the loop.

6.2.4 Reduction Analysis

The general idea of reduction recognition is discussed in Section 2.2.2. Reduction recognition

is easily incorporated into a structure involving MCA and the ART because each reference

to a memory location involved in a reduction operation is classi�ed ReadWrite, only appears

in a loop in statements which have the \reduction pattern" (all must use the same reduction

operator), and a dependence is detected for that memory location. The MCA handles the

classi�cation, and the ART handles the dependence detection. The only additional processing

necessary consists of two additional checks:

Level 1 The reduction pattern must be recognized when the original LMAD is constructed

from an assignment statement, and the reduction operator is stored.

Level 2 During the distribution of LMADs to the proper memory access classes (in MCA),

each LMAD for a given symbol is intersected with each other for that symbol. At each

intersection operation, a check can be made to ensure that no other reference to that

symbol within the loop is of a non-reduction type, and all use the same reduction operator.

87

do I=1,N
 do J=1,N
 T = A(J) + B(I,J)
 A(J) = A(J) + B(I,J)*C(I,J)
 A(J) = A(J) + T + B(I,J)*D(I,J)
 enddo
enddo

do I=1,N
 do J=1,N
 A(J) = A(J) + B(I,J)
 A(J) = A(J) + B(I,J)*C(I,J)
 A(J) = A(J) + B(I,J)*D(I,J)
 enddo
enddo

Reduction under liberal rules Reduction under simplified rules

do I=1,N
 do J=1,N
 T = A(J) + B(I,J)
 A(J) = A(J) + B(I,J)*C(I,J)

 enddo
enddo

 X(J) = T + B(I,J)*D(I,J)

Not a reduction since T "leaks" into X

Figure 6.13: Comparing liberal and conservative rules for reduction recognition.

These conditions for recognizing a reduction are slightly more conservative than necessary,

although many compilers use this approach. See Figure 6.13 for a comparison of these reduction

situations.

There is no reason why the more liberal rules could not be used within the ART, at the

expense of a more complex algorithm and data structure.

6.2.5 Induction Analysis

Induction analysis was described in Section 2.2.3. The induction form is very similar to the

reduction form, but with three important di�erences:

1. The induction variable must be of type integer.

2. The expression being added to the induction variable must be an integer constant.

3. The induction variable has no restrictions about being used elsewhere in the loop in a

non-induction way.

88

Like the reduction location, the induction location would be classi�ed by MCA in the

ReadWrite summary set, and have a dependence found by the ART.

One problem faced by people who implement a separate induction recognition pass is not

knowing which loop will eventually be made parallel. This is a problem because the closed

form of an induction variable is more computationally expensive to evaluate than is the original

form. Take, for example, the following loop:

do I=1,N

do K=I,100

do J=1,K

L = L + 1

S1: B(L) = . . .

S2: . . .

end do

end do

L = L + 1

S3: B(L) = . . .

S4: . . .

end do

The Polaris induction pass transforms statements S1 and S3 into the following:

S1: B((-5051)+j+l0+(i+((-2)*i+(-1)*i**3)/3+k**2+(-1)*k)/2+5051*i) = . . .

S3: B(l0+(i+((-2)*i+(-1)*i**3)/3)/2+5051*i) = . . .

This eliminates the dependence, but is very computationally intensive. The triangular

inner loop nest causes most of the complexity. Assuming that only one loop in a nest can be

parallelized, if it is decided to parallelize the do I loop (serializing the inner loops), the closed

form could become much simpler. However, if the induction pass is run prior to dependence

analysis, it cannot know which loop will be parallelized. Some compilers (including Polaris)

solve this by generating the full closed form everywhere.

Compare the following two loops:

89

$parallel do (I)

L0 = L

do I=1,N

do K=I,100

do J=1,K

S1: B((-5051)+J+L0+(I+((-2)*I+(-1)*I**3)/3+K**2+(-1)*K)/2+5051*I) = . . .

S2: . . .

end do

end do

S3: B(L0+(I+((-2)*I+(-1)*I**3)/3)/2+5051*I) = . . .

S4: . . .

end do

$parallel do (I)

do I=1,N

do K=I,100

do J=1,K

L = L + 1

S1: B(L) = . . .

S2: . . .

end do

end do

S3: B(L0+(I+((-2)*I+(-1)*I**3)/3)/2+5051*I) = . . .

S4: . . .

end do

The second is obviously more eÆcient. This code is possible if the closed-form for the

induction is generated only within the parallel loop.

The recognition of a possible induction can be incorporated into a structure involving MCA

and the ART in much the same way as is reduction recognition. After an induction is recognized,

if the loop is chosen for parallelization, the generation of the closed-form for the induction can

be done.

90

6.2.6 Run-time Dependence Analysis

Dependence analyzers typically return three results:

1. a dependence exists

2. no dependence exists

3. unknown

If the result is \unknown", then sometimes a condition can be extracted which, when

evaluated at run-time, can test the dependences which are in question, then the loop can

be conditionally parallelized by using the condition in an if statement which chooses between

a serial and a parallel version of the original loop.

The correctness predicate, the classi�cation condition, the imprecise-sorting
ag, and the

monotonicity
ag within the ARD, plus the conditions derived from proving that one condition

implies another, can all trigger the generation of a run-time dependence check.

These conditions can be collected from a set of ARDs which remain on the loop after

parallelization. The conditions can be combined, simpli�ed, and included in an if statement

which chooses between the parallel and serial forms of a loop. The imprecise-sorting
ag could

generate a run-time sort of the access dimensions and a run-time overlap check, probably

in the form of a library call whose return value is tested in the if condition. Similarly, if

the monotonicity
ag is marked \unknown monotonic", then a monotonicity check could be

generated at run-time.

An example of a loop which could use such a run-time check would be the following:

do 960 I=1,NNN

SX(NS(I))=AX(I)*RF

SY(NS(I))=AY(I)*RF

SZ(NS(I))=AZ(I)*RF

960 continue

The three arrays SX, SY, and SZ are dependence-free if it can be proved that NS contains no

two values which are the same. The ART presently generates a monotonicity test for NS as a

condition for parallelization, which is correct, but in the future it may be possible to relax that

test into one which simply checks that the arrays have no two values the same.

91

1. Regularize Program

Interval Analysis
Single Entry/ Single Exit
SSA

WFRO RW

Summarize Memory Accesses (ARD)

Parallelize Loops (ART)

 (RO,WF, RW)
Classify Memory Accesses (MCA)

2. Parallelization

Privatization, Reduction, Induction

RN

Induction Closed Forms
On-Demand Analysis
Runtime Tests

Last Value

Classify Memory

3. Code Generation

Accesses (MCA)
(RN)

Figure 6.14: The Summary Set Framework structure for a compiler based on Memory Classi�cation
Analysis, using the summary sets ReadOnly (RO), WriteFirst (WF), ReadWrite (RW), and ReadNext
(RN).

6.3 A Framework for Interprocedural Analysis

Now, the task is to de�ne the framework which combines parallelization, privatization, reduction

and induction recognition, and demand-driven analysis. This framework will be referred to as

the Summary Set Framework. A pictorial representation of this compiler framework is

shown in Figure 6.14. The Summary Set Framework algorithm is given in Figure 6.16.

The framework involves three passes. The �rst is a regularization pass, which prepares the

program for parallelization, the second is a classi�cation pass, which proceeds top-down and

forward through the code, and the third is a top-down and backward code-generation pass.

92

Component Necessary or Whole Prog or Usefulness
Optional Single Prog Unit

Interval Analysis Necessary Single Prog Unit Find loops-form nested structure

Control Flow Norm. Necessary Whole Prog guarantees single-exit point

SSA form Necessary Single Prog Unit Demand-driven deeper analysis
- correct symbolic analysis
- generate induction closed forms

Interprocedural Optional Whole Prog Increased symbolic accuracy
Value Propagation

Range Propagation Optional Single Prog Unit Increased symbolic accuracy

Deadcoding Optional Single Prog Unit Increased processing speed

Subroutine cloning Optional Whole Prog Increased symbolic accuracy

Topological Sort Optional Single Prog Unit Reduced traversal complexity

Table 6.5: Some potential components of the regularization pass in the proposed compiler
framework.

6.3.1 Regularization Pass

The regularization pass prepares the source code for the parallelization and code generation

passes. Interval analysis is required in this part, as is the transformation of all loops and

procedures into single-entry/single-exit form. Conversion to SSA form is required for correct

symbolic analysis, generating induction closed-forms and demand-driven deeper analysis. A

number of other analyses and transformations are useful, but optional. Table 6.5 shows a set

of components which would be useful to employ in the regularization pass.

6.3.2 Classi�cation Pass

The classi�cation pass employs the MCA algorithm, starting from the main entry point in the

code and proceeding forward in execution order. If the code was topologically sorted during

the regularization pass, then the classi�cation algorithm may be run as a single sweep of the

program, traversing the statements in lexical order. If the code was not topologically sorted,

then in order to make sure the classi�cation follows execution order, a traversal of the control

ow graph must be done, via depth-�rst or breadth-�rst search.

When the header statement for a program context (do statement, if statement, call state-

ment) is encountered, the classi�cation algorithm calls itself recursively to produce the summary

sets for that context.

93

As detailed in the classi�cation algorithm of Figure 6.9, parallelization (in our case, loop

parallelization in the form of the ART) takes place along with classi�cation. Loops are marked

either serial or parallel, and if they are parallel, variables are marked \private", and reductions

and inductions are marked. Any conditions which need to be tested at run-time are also noted.

Because a call statement causes a recursive call to the classi�cation routine, which either

computes the summary sets of the subroutine or gathers those which were calculated by a

previous call, this produces essentially a bottom-up calculation of summary sets on the program

call-tree. Every loop in which no dependence can be found is marked \parallel".

6.3.3 Code-generation Pass

The �nal pass starts at the common exit point of the main program and proceeds backwards,

following the reverse of the execution path of the program. If the program was topologically

sorted, this pass can proceed along the reverse lexical order of the code. If it was not topologi-

cally sorted, then a reverse depth-�rst or breadth-�rst traversal will be necessary.

This pass has three purposes:

1. to calculate the ReadNext summary set (for generating last-value assignments),

2. to do on-demand deeper analysis of the program, and

3. to decide which loops will be made parallel and generate the appropriate code.

6.3.3.1 The ReadNext calculation

The ReadNext summary set is the set, calculated at every point in the program, of all the

memory locations which are read next along some execution path following that point. This is

essentially the same as the traditional liveness [1] calculation. The purpose of the ReadNext

summary set is to determine which private locations need to have a last value copy inserted for

them.

The calculation of ReadNext is a simple one:

ReadNext (ReadNext � WriteFirst) [(ReadOnly [ReadWrite)

94

The conservative thing to do in this calculation is to subtract less write locations and add

more read locations. In other words, if the subtraction or union cannot be done precisely,

the calculation must err on the side of removing too few locations during the subtraction of

WriteFirst, and err on the side of adding too many locations during the union with ReadOnly

and ReadWrite.

The form above is conservatively correct since in the ReadOnly and WriteFirst summary

sets, the order of reading and writing is known, and with the ReadWrite set, which is used

to hold both legitimate read-�rst-then-write locations and also locations for which the order is

unknown, it is properly assumed that a read happens �rst, so that the error is on the side of

enlarging the ReadNext set.

The ReadNext calculation can be done using summary sets for either individual statements

or larger code sections. This allows the calculation to, for instance, use the summary sets for a

whole subroutine at a call statement.

6.3.3.2 On-Demand Deeper Analysis

Conditions which are gathered during the normal operation of the classi�cation pass can be

either tested during the code generation pass by sophisticated analysis algorithms, or generated

as run-time dependence tests. The code generation pass can decide which approach is better

by taking into account a number of factors, such as the perceived \importance" of the loop, the

e�ort which the user wants the compiler to use, etc. If the avoidance of a run-time test seems

important, the compiler can launch more intensive \deeper analysis" in an attempt to prove

the condition at compile-time.

An example of a situation where on-demand analysis would be useful can be found in the

Perfect Benchmarks code MDG, loop INTERF do1000, a simpli�ed version of which is shown

in Figure 6.15.

The only diÆculty which the ART has in parallelizing this code is for the variable RL.

There is a write-�rst region fRS[6 : 9] � CUT2gRL[6 : 9] for statement S1, and a read-only region

fKC � 0gRL[6 : 9] for statement S2. Since it is advantageous for us to classify something

WriteFirst and the ReadOnly region for S2 is a subregion of the WriteFirst region from S1, the

classi�cation pass would register the need to prove that fKC � 0g implies fRS[6 : 9] � CUT2g.

95

S4: KC=0

do 1110 K=1,9

RS(K)=XL(K)*XL(K)+YL(K)*YL(K)+ZL(K)*ZL(K)

S5: 1110 if(RS(K).gt.CUT2) KC=KC+1

S3: . . .

do 1130 K=2,5

if(RS(K).ge.CUT2) go to 11

FF(K)=-QQ2/(RS(K)*SQRT(RS(K)))-REF2

VIR=VIR+FF(K)*RS(K)

11 if(RS(K+4).gt.CUT2) GO TO 1130

S1: RL(K+4)=SQRT(RS(K+4))

FF(K+4)=QQ/(RS(K+4)*RL(K+4))+REF1

VIR=VIR+FF(K+4)*RS(K+4)

1130 continue

if(KC.NE.0) go to 1140

. . .

do 1140 K=11,14

S2: FTEMP=AB2*EXP(-B2*RL(K-5))/RL(K-5)

. . .

RL(K)=SQRT(RS(K))

FF(K)=(AB3*EXP(-B3*RL(K))-AB4*EXP(-B4*RL(K)))/RL(K)

VIR=VIR+FF(K)*RS(K)

1140 continue

Figure 6.15: Simpli�ed code fromMDG, illustrating the possibility of using on-demand deeper analysis
to prove fKC � 0g) fRS[6 : 9] � CUT2g, thus allowing privatization of RL and parallelization of the
loop.

96

By using the SSA def-use links, the compiler can �nd the join point in the control
ow

graph at statement S3, where the version of KC de�ned in statement S4 joins with the version

of KC de�ned in statement S5. The S5 version of KC would have been marked as a possible in-

duction variable, with increment 1 and execution predicate fRS[1 : 9] > CUT2g. It is conceivable

that a general implication prover could use this information to infer that KC equals 0 only if

RS[1 : 9] � CUT2, which includes the condition it is trying to prove: RS[6 : 9] � CUT2, thereby

allowing the classi�cation of RL[6:9] to be unconditionally WriteFirst, and therefore allowing

the privatization of that section, removing the dependence on that section, and allowing the

parallelization of INTERF do1000.

This kind of primitive theorem-proving is potentially intensive analysis, and therefore should

only be performed on-demand, when it appears to be bene�cial, not as part of the classi�cation

algorithm itself. In this case it would be bene�cial, because INTERF do1000 is a very large

loop (in terms of program text), and from running the program it may be seen that it is the

most time-consuming loop in the program.

6.3.3.3 Deciding Which Loops Should Be Parallelized

Since the code-generation pass takes place top-down, it sees the outer-most loops of a given

loop nest �rst. This gives it the chance to parallelize outer-most loops �rst, and if a loop is

not parallelized, to avoid generating any parallelization code, such as the closed form of an

induction variable.

When the code-generation pass decides that a loop should be parallelized, it calculates the

last-value assignments needed by intersecting the set of memory locations being privatized with

the ReadNext set immediately after the loop:

LastValue Private \ ReadNextafter

In addition, any locations which were marked for reduction get the proper code generated for

them. Any memory locations which were marked for induction must get the proper closed form

generated for them.

97

Algorithm Summary Set Framework

Input: A program
Output: A parallelized program
Algorithm:

SSF()
regularization(main prog)
classi�cation(main prog)
generate code(main prog)

end SSF

regularization()
interval analysis()
control
ow normalization()
convert to SSA form()
others()

end regularization

others()
choose from:

interprocedural value propagation()
intraprocedural range propagation()
subroutine cloning()
dead coding()

end others

control
ow normalization()
topologically sort basic blocks()
produce single exit routines()

end control
ow normalization
generate code()

compute last value()
on demand analysis()
run time code()
induction code()
reduction code()

end generate code()

Figure 6.16: The Summary Set Framework algorithm.

98

Algorithm Compute Last Value

Input: A program with ARDs representing private memory locations
Output: A program with last-value copies
Algorithm:

compute last value(last stmt, �rst stmt, global predicate, local predicate)
for (stmt=last stmt.next() to �rst stmt do

switch(stmt.type())
case: ELSEIF:

determine predicate(stmt, global predicate, local predicate, local neg)
continue

case: ELSE:
determine predicate(stmt, global predicate, local predicate, local neg)
continue

endswitch

compute access rep (stmt) // Compute memory accesses for text of stmt

if stmt.type() == ENDIF then

determine predicate(stmt, global predicate, local predicate, local neg)
reverse classify(stmt, endif-stmt,

global predicate and local predicate and local neg,
if condition)

endif

compute readnext(new readonly, new write�rst, new readwrite,
ReadOnly, ReadWrite, WriteFirst, ReadNext)

endfor

simplify memsets() // employ ARD simpli�cation ops

if stmt.type() == ENDLOOP then

expand by loop () // expand by loop index
if (decide parallel ()) then // demand-driven propagation, generate runtime tests

determine last value () // Private \ ReadNext
endif

elseif stmt.type() == ENDIF then

summarize IF stmt ()
else

summarize to procedure ()
endif

end compute last value

Figure 6.17: The algorithm to compute last value copies for private variables.

99

6.3.4 Precision of the Analysis

Notice that all classi�cation and dependence analysis in the Summary Set Framework is based

on the summary set intersection operation. Therefore, the accuracy of the intersection oper-

ation directly determines the accuracy of both classi�cation and dependence analysis in this

framework. This is a good thing in that it o�ers a single point where concentration of e�ort

can improve the accuracy of the overall analysis.

6.3.5 Conservative Operations

Inevitably, some of the symbolic set operations will be imprecise. This can be due to a short-

coming of the symbolic manipulation routines within the compiler or simply due to unknown

or unrelated variables being used to represent the accesses of the program. For instance, how

do you intersect A[1:N] with A[R:S]? All operations within the compiler must accept a conser-

vative direction parameter, which indicate what to do when the answer is just \I don't know!".

For intersection, sometimes the conservative thing to do is report that the accesses do

not overlap at all. This is the correct choice when the intersection is being done to simplify

the representation (for example, at a join point in the program
ow graph, as was discussed

in Section 6.1.8.2. At other times the conservative thing to do is to report that the accesses

intersect. This is the correct choice when an empty intersection allows us to eliminate a possible

dependence (for example, during dependence analysis).

It is crucial to this process that all operations be aware of the proper conservative direction

for the result.

6.4 A General Multi-Dimensional Intersection Algorithm

Intersecting two arbitrary LMADs is quite diÆcult. But if two LMADs are stride-equivalent

or semi-stride-equivalent, then they are similar enough to make the intersection algorithm

tractable.

The algorithm accepts two stride-equivalent LMADs. If the two LMADs are semi-stride-

equivalent, then 0-span dimension(s) can be safely inserted into the LMAD with fewer dimen-

sions (according to Theorem 3) to make them stride-equivalent.

100

Let us assume two input LMADs which have all dimensions precisely sorted, LMADleft =

AÆ1;Æ2;���;Æd
�1;�2;���;�d + � and LMADright = A

Æ1;Æ2;���;Æd
�0
1
;�0
2
;���;�0d

+ � 0. The intersection routine is called with the

two LMADs as parameters, such that LMADleft has a base o�set which is less than that of

LMADright, and the number of the dimension, d, to work on (initially the dimension d is the

dimension with the largest stride):

Intersect(LMAD1;LMAD2; d)

The routine treats the LMADs as if they were stride-1 over their whole extent through the

given dimension. By comparing the two extents, it can be determined whether they overlap in

any way, as shown in Figure 6.18, part A. If not, it can safely report that the intersection is

empty. If they do overlap, then the routine eliminates the given dimension from each, possibly

adjusts the o�set of the left-most LMAD, and calls itself recursively to work on the next-inner

dimension, as shown in Figure 6.18, part B. Finally, when the dimension to work on is the

inner-most, as in Figure 6.19, it can make the �nal determination as to whether there is an

intersection between the two. If there is, it can determine what the intersection is, since this is a

simple one-dimensional case (such as can be easily implemented for traditional triplet notation).

The result LMAD for the intersection is returned. As each recursion returns, a dimension is

added to the result descriptor.

For simplicity, in this description, it is assumed that the two descriptors have dimensions

which are fully sorted, so that dimension i of one descriptor corresponds to dimension i of the

other, and that Æd > Æd�1 > � � � > Æ1.

Refer to Figure 6.20 for the full algorithm.

6.5 Comparing the Access Region Test with Other Dependence Tests

This section will give an informal argument that the Access Region Test is more powerful than

the combination of the Range Test and the GCD test.

The Range Test compares two subscript expressions (call them f and g) to determine

whether they could take on the same values at any point within the range of any of the sur-

rounding loops. The Range Test uses two tests to determine whether f and g overlap, as

discussed in Section 2.3.4.

101

Intersection

Intersection

A

B

D

D

Figure 6.18: The multi-dimensional recursive intersection algorithm, considering the whole extent of
the two access patterns (Part A), then recursing inside to consider the next inner dimension (Part B).

102

D

No Intersection

Figure 6.19: The multi-dimensional recursive intersection algorithm, considering the inner-most di-
mension, �nding no intersection.

If the minimum of one of the functions is greater than the maximum of the other, then the

Range Test reports that there is no overlap. This case is illustrated in Figure 6.21, part A. If

any interleaving of the values of the functions happens, as in Figure 6.21, part B, then it uses

the other test to check for overlap. The other test expresses the minimum and maximum of

f and g in terms of the loop index of the loop being tested for independence. It checks the

maximum of one function against the minimum expression of the other function with the loop

index in question incremented by its stride value. On the �gure, it checks that point 9 is greater

than point 4 and that point 10 is greater than point 2. In the case of part B of Figure 6.21,

these conditions are both true.

However, this is not the case in part A or part B of Figure 6.22. These are cases which

the Range Test cannot prove independent, although it is obvious from the �gure that they are.

Part B of Figure 6.22 might be provably independent by the GCD Test as long as the GCD of

the two strides is greater than 1. If it is, then it can be proven that the GCD of the strides

does not divide the di�erence between the starting points, since the di�erence is less than the

smallest stride. But, if the GCD of the strides is 1, as is often the case in programs, the GCD

could not determine the independence of Part B either.

103

All four of these cases can be determined to be independent by the Access Region Test. The

multi-dimensional intersection algorithm would �nd the intersection empty in each case, since

at the inner-most access dimension they can be found not to overlap.

This shows that the Range Test's method of logical loop interchanging is not as
exible as

the Access Region Test. Loop interchanging cannot help in part A of Figure 6.22, since the two

loops produce di�erent strides in the two expressions.

It is interesting to note that the MAX and MIN functions of the Range Test need to know the

monotonicity of the subscript function with respect to a given loop index to determine whether

to substitute the upper or lower loop bound for the loop index in the subscript expression.

They must also �nd the stride due to a loop index. Blume states in his thesis that a naive

implementation of this test can be ineÆcient, because it would have to continually compute

these values. Instead, he computes the values only once and saves them for subsequent uses.

The use of the LMAD serves this function of computing monotonicity, stride, and span only

once (when the LMAD is constructed) and then has them always available for doing the testing.

The loop permutation done by the Range Test is avoided by sorting the access dimensions

according to the stride. This causes the overlap test to check the dimensions in the correct

order without needing the permutations.

6.5.1 The ART as an Alternative to Equation-Solving Tests

Notice that the Access Region Test does no equation-solving to determine dependence. This

is in stark contrast to most other dependence tests. Taking the place of equation-solving

is the multi-dimensional intersection algorithm, which attempts to solve the problem directly,

instead of through an equation-solving regimen. This directness allows the ART to work without

imposing the constraints which equation-solving requires, such as using only aÆne expressions.

104

Algorithm Intersect

Input: Two LMADs, with properly nested, sorted dimensions :

LMADleft = A
Æ1;Æ2;���;Æd
�1;�2;���;�d + � , LMADright = A

Æ1;Æ2;���;Æd
�0
1
;�0
2
;���;�0

d
+ � 0 (� � � 0 and Æi � Æi+1),

the number of the dimension to work on: k(0 � k � d)
Output: Intersection LMAD list
Algorithm:

intersect(LMADleft, LMADright, k) returns LMAD List
D � 0 � �
if (k == 0) then // scalar intersection

if (D == 0) then

LMADrlist1 LMAD scalar(�)
add to list(LMAD List;LMADrlist1)

endif

return LMAD List
endif

if (D � �k) then

R mod(D; Æk)
m bD

Æk
c

// periodic intersection on the left
LMADrlist1 intersect(remove dim(LMADleft; k; � +mÆk);

remove dim(LMADright; k; �
0); k � 1)

LMADrlist1 add dim(LMADrlist1;dim(Æk;min(�k �mÆk; �
0
k)); �

0)
add to list(LMAD List;LMADrlist1)
if ((k > 1) and (R+ �0k�1 � Æk)) then

// periodic intersection on the right
LMADrlist2 intersect(remove dim(LMADright; k; �

0);
remove dim(LMADleft; k; � + (m+ 1)Æk); k � 1)

LMADrlist2 add dim(LMADrlist2;dim(Æk;min(�k � (m+ 1)Æk; �
0
k)); � + (m+ 1)Æk)

add to list(LMAD List;LMADrlist2)
endif

else

// intersection at the end
LMADrlist1 intersect(remove dim(LMADleft; k; � + �k;

remove dim(LMADright; k; �
0); k � 1)

add to list(LMAD List;LMADrlist1)
endif

return LMAD List
end intersect

Figure 6.20: The recursive, multi-dimensional intersection algorithm for LMADs. See Section 5.3.1
for a de�nition of the function width.

105

I

J

I

J

I

I

J

J1 2

3 4

5
6

87

9

10

A

B

Figure 6.21: Memory access diagrams for access patterns which the both the Range Test and the
Access Region Test can prove independent.

J

I

I

J

1 2

3 4

5
6

7 8
9

10

I

I

J

J

A

B

Figure 6.22: Memory access diagrams for access patterns which the Range Test cannot prove are
independent, while the Access Region Test can.

106

7 IMPLEMENTATION ISSUES

7.1 Representation of Summary Sets

The summary sets are simply lists of ARDs. When a new descriptor is added to the set, it

should be compared against each existing descriptor in the list with the subregion operation,

to determine whether the memory locations are already represented in the set. If so, the new

descriptor can be simply discarded.

The read-only, write-�rst, and read-write list for a given program variable are stored to-

gether in a SymbolAccess object. Each statement in the program has a keyed structure called

a SymbolAccessMap which stores a SymbolAccess object for every symbol referenced in the

statement.

7.2 Optimizations

Optimizing the operations on the summary sets is crucial to the success of the Summary Set

Framework. If the summary sets grow large, doing any operation which requires O(n2) com-

parisons between ARDs will dominate the compile time of the program. For this reason, the

simpli�cation operations must be used aggressively to reduce the number of dimensions per

descriptor and the number of descriptors. Any linear time e�ort which reduces the number of

descriptors or dimensions is well worth the time spent, since it reduces n in the O(n2) processing

step.

Therefore, the emphasis must be placed on approximate, linear algorithms for doing ARD

simpli�cation. The insertion-sorting of dimensions during construction of ARDs enables such

algorithms. One is a linear algorithm for discovering whether one LMAD is a subregion of

another. If we assume that an ARD which is equivalent or semi-equivalent to another has the

same sorting order for its dimensions, then a linear comparison of dimensions between the two

is all that is necessary to check for the subregion relationship. When an ARD is being inserted

into a list of ARDs, we can make a quick linear scan of the existing ARDs to determine whether

the new one is a subregion of an existing one. If so, it need not be inserted.

107

Another way to reduce processing time is to use
ags within the ARD to record infor-

mation which could otherwise only be discovered through lengthy processing. An example is

to mark a descriptor when it is constructed as containing expressions involving subscripted-

subscripts. Since very little can be done at present with dimensions involving subscripted-

subscripts, checking for this
ag before attempting to simplify or intersect such a descriptor

can allow the algorithm to give up. The processing of subscripted-subscript references could still

be done in the code-generation pass, when we might decide to attempt to generate a run-time

test, or do deeper analysis for the values in the subscripting array.

7.2.1 Similarity Graphs

A Similarity Graph is a mechanism for keeping track of the relationships between ARDs. Some-

times an algorithm calls for the computation of relationships among all possible pairs of ARDs

in a single list, and other times for the relationships between pairs of ARDs from two lists. A

SimGraph object is used for the former type, while a SimBiGraph object is used for the latter

type.

The mechanism for constructing these graphs does a full dimension matching between each

pair of ARDs and stores the Similarity Type for each pair, as well as the dimension correspon-

dence, from the point of view of each ARD. As the Similarity Graph is being constructed, it

uses a transitive closure mechanism to reduce the amount of redundant work it must do. The

observation which enables this is the fact that if we already know A is equivalent to B, and B is

equivalent to C, then we need no comparison between A and C to know that A is equivalent to

C, as shown in Figure 7.1. We can even construct the correspondence between the dimensions

of A and C by using the other correspondences between the dimensions, as shown in Figure 7.2.

Both the SimGraph and SimBiGraph objects are iterated through by using an iterator object

as a convenient way to iterate through all the possible pairs of ARDs. The iterator keeps track

of which pairs have already been visited, and can react to changes in the Similarity Graph

caused by changes which happen to the ARDs (by skipping ARD pairs in which one or both

ARDs have been eliminated { by simpli�cation operations, for instance). The Similarity Graph

can even trigger the full recalculation of a relationship between two ARDs if they are visited

and have changed enough to invalidate the stored relationship.

108

ARD 1 ARD 2

ARD 4

ARD 5

ARD 3

EQUIV

EQUIV
?

Figure 7.1: The Similarity Graph stores relationships between each pair of ARDs. In this situation,
we can use transitive closure to determine that ARD5 is equivalent to ARD2 without needing to do the
matching.

109

+ offset

ARD 3

stride span

correspondence computed through transitive closure

correspondence

expression matched

ARD 5

+ offset

stride span

+ offset

ARD 2

stride span

Figure 7.2: Calculating the dimension-matching between two ARDs through transitive closure.

110

7.2.2 Optimizations for Scalars

Scalars are treated similarly to arrays in the Summary Set Framework, in that they are repre-

sented by an LMAD. The base o�set is zero and there are no access dimensions. This makes

the framework more general in that it can handle aliasing between array elements and scalars,

but it potentially adds a lot of extra descriptors to be processed. This could cause a lot of

extra work for the framework. A check should always be made as to whether a scalar is be-

ing processed, since it needs much less complex processing. One example of this is the use of

complicated mechanisms like the Similarity Graph (see Section 7.2.1) to compare two scalar

ARDs. The expense of constructing a Similarity Graph is certainly not warranted to compare

two zero-dimension, zero-o�set descriptors. A simple check for the fact that a scalar is involved

can avoid the expense.

7.2.3 Compiler E�ort

It seems to be a good idea to place a limit on the size of summary sets for which simpli�cation

and intersection will be attempted. For example, if a summary set has grown to include a

large number of ARDs, say 1000, nearly any O(n2) process, whether it be simpli�cation or

intersection, will take an enormous amount of time. Chances are good that, since those 1000

have survived despite aggressive simpli�cation, the ARDs will not be similar enough to get

an accurate result (even if there are no dependences involved!). Therefore, the user should be

given some kind of parameter which can be called a \compiler e�ort" value. In the current

implementation of Polaris, this takes the form of a value between 1 and 10. An e�ort of 1

places the smallest limit on the size of an ARD list for which simpli�cation and intersection

will be attempted. The limit gets larger for each successive value until 10, which indicates no

limit.

When the ARD list size exceeds the compiler e�ort limit, the operation to be done is simply

abandoned, and the most conservative result is generated.

111

8 EXPERIMENTS

Many of the algorithms described in this thesis were implemented inside the existing Polaris

compiler. Many codes have been compiled with the new compiler. The parallelization results

have been mostly very good. On the other hand, the compilation time necessary for various

codes has varied wildly. For some codes it has been very short, while for others it has been very

long. For instance, compiling the SPEC cfp95 code TURB3D, required 20 hours for the \old"

Polaris to compile (due to subroutine inlining, the source code grew from 2100 lines to 20,000

lines), but required only 5 minutes to compile using MCA with the ART, while compiling the

Perfect Benchmark code ARC2D required 2 hours.

The ART version of Polaris was used to perform a series of experiments for four purposes:

1. to understand the extent of the representational accuracy problem for triplet notation,

2. to determine how much LMAD simpli�cation was possible by using the coalescing and

aggregation operations,

3. to see how the parallelization with the Access Region Test of a set of benchmark codes

compares to that of the older version of Polaris (using the Range Test), and

4. to determine, in detail, how well the ART is able to parallelize a particular code, a two-

dimensional FFT program called TFFT2, from the preliminary version of the SPEC cfp95

benchmarks.

8.1 Representational Accuracy Experiment

Fourteen Fortran77 programs were chosen in an attempt to study the magnitude of each of

the sources of inaccuracy for triplet notation. These included codes from the SPEC cfp95 and

Perfect benchmarks, and one from a set of production codes obtained from the National Cen-

ter for Supercomputing Applications (NCSA) to study. After applying interprocedural value

propagation, induction variable substitution, and forward substitution within these codes, the

LMAD representation was used for memory accesses at each memory reference site. Each de-

112

scrip
tor

w
as

th
en

ex
p
a
n
d
ed

for
each

o
f
its

en
closin

g
d
o
lo
op
s.
T
h
e
n
u
m
b
er

of
ex
p
an
d
ed

L
M
A
D
s

w
h
ich

w
ou
ld
n
ot

b
e
rep

resen
ta
b
le
in
trip

let
n
otation

w
as

cou
n
ted

.
F
in
ally,

th
eir

p
ercen

ta
g
e
w
ith

resp
ect

to
th
e
tota

l
n
u
m
b
er

of
su
m
m
aries

w
as

p
lotted

in
F
ig
u
re

8.1.

F
o
r
th
is

a
n
aly

sis,
array

accesses
th
at

cou
ld

n
ot

b
e
rep

resen
ted

b
y
trip

let
n
otation

w
ere

d
iv
id
ed

in
to

th
e
fo
llow

in
g
�
ve

categories,
as

d
escrib

ed
in

C
h
ap
ter

4:

su
b
sc
rip

te
d
-su

b
sc
rip

ts
{
accesses

d
u
e
to

referen
ces

w
ith

su
b
scrip

ted
-su

b
scrip

t
ex
p
ressio

n
s;

n
o
n
-a
Æ
n
e
{
accesses

d
u
e
to

referen
ces

w
ith

n
on
-aÆ

n
e
su
b
scrip

t
ex
p
ression

s;

tria
n
g
u
la
r
a
Æ
n
e
{
a
ccesses

d
u
e
to

referen
ces

w
ith

in
a
trian

gu
lar

lo
op
;

c
o
u
p
le
d
-su

b
sc
rip

ts
{
accesses

d
u
e
to

referen
ces

w
ith

cou
p
led

-su
b
scrip

t
ex
p
ression

s;

m
u
ltip

le
in
d
e
x
a
Æ
n
e
{
a
ccesses

d
u
e
to

referen
ces

con
tain

in
g
m
u
ltip

le
in
d
ices

in
a
su
b
scrip

t

p
ositio

n
.

In
th
is
classi�

ca
tion

sch
em

e,
each

category
ex
clu

d
es

th
ose

a
b
ove

it.
F
or

in
stan

ce,
a
referen

ce

w
ith

a
su
b
scrip

ted
-su

b
scrip

t
in
sid

e
a
trian

gu
lar

lo
op

w
ou
ld
b
e
cou

n
ted

as
su
b
scrip

ted
-su

b
scrip

t,

an
d
n
ot

trian
g
u
la
r
aÆ

n
e.

4
4
.5

1
3
.6

3

2
1
.2

3
4

3
2
.3

1
.8

1
6
.3

0
0

4
9
.5

3
1
.6

0
.1

su
b
scrip

ted
-su

b
scrip

ts
n
o
n
-affin

e

trian
g
u
lar affin

e
co

u
p
led

-su
b
scrip

ts

m
u
ltip

le-in
d
ex

 affin
e

Percentage

a
d
m

a
r
c
2
d

b
d
n
a

d
y
f
e
s
m

f
l
o
5
2

m
d
g

o
c
e
a
n

q
c
d

t
r
f
d

s
w
i
m

t
o
m
c
a
t
v
t
f
f
t
2

t
u
r
b
3
d

c
m
h
o
g

(
P
e
r
f
e
c
t
)

(
S
p
e
c
9
5
f
p
)

(
N
C
S
A
)

|
|

|
|

|
|

|
|

|
|

|
|

|

| | | | |

0

1
0

2
0

3
0

4
0

5
0

F
ig
u
re

8
.1
:
P
ercen

tage
of

n
on
-trip

let-rep
resen

tab
le
access

su
m
m
aries

versu
s
total

n
u
m
b
er

of
access

su
m
m
aries.

0
.2

2
2
.9

1
2
.7

0
0

0
1
.4

0
0

0
0

0
0

Percentage

a
d
m

a
r
c
2
d

b
d
n
a

d
y
f
e
s
m
f
l
o
5
2

m
d
g

o
c
e
a
n

q
c
d

t
r
f
d

s
w
i
m
t
o
m
c
a
t
v
t
f
f
t
2
t
u
r
b
3
d
c
m
h
o
g

(
P
e
r
f
e
c
t
)

(
S
p
e
c
9
5
f
p
)

(
N
C
S
A
)

|
|

|
|

|
|

|
|

|
|

|
|

|

|

0

1
0

F
ig
u
re

8
.2
:
P
ercen

tage
of

access
su
m
m
aries

w
h
ich

are
n
ot

p
rovab

ly
-m

on
oton

ic
versu

s
total

n
u
m
b
er

of
access

su
m
m
aries.

A
s
d
iscu

ssed
in

S
ection

5.2.1
.2
,
in

ord
er

for
th
e
th
e
sp
an

to
b
e
gu
aran

teed
to

rep
resen

t
th
e

tru
e
d
istan

ce
m
ov
ed

for
a
d
im

en
sion

,
th
e
su
b
scrip

t
fu
n
ction

m
u
st
b
e
m
on
oton

ic
for

th
at

in
d
ex
.

113

Thus, to see how often the LMADs have accurate spans, the percentage of array accesses that

were provably monotonic at compile time was determined.

By their nature, of the �ve categories of references that are not accurately representable

by triplet notation, all but subscripted-subscripts and non-aÆne are intrinsically monotonic.

All the non-aÆne references in the set of test codes were checked and, unexpectedly, every one

of those accesses was provably monotonic. Only the subscripted-subscripts were not provably

monotonic at compile time. This data is presented in Figure 8.2.

This data shows that a large percentage of accesses are monotonic in each of our benchmark

codes. This tends to support the argument that the LMAD is an appropriate representational

form, at least for these benchmark codes.

8.2 The E�ect of Simpli�cation on LMADs

In an attempt to determine how much simpli�cation can be achieved by the techniques of

coalescing and contiguous aggregation, the simpli�cation which was produced by coalescing

and contiguous aggregation for our set of test codes was measured. All LMADs were computed

interprocedurally without applying any simpli�cation techniques. The LMADs produced at all

loop headers and call statements were counted, and the number of dimensions used for all

LMADs was totaled.

Then, all LMADs were computed interprocedurally, but both coalescing and contiguous

aggregation were applied iteratively during the process until no more simpli�cation was possible,

and again the number of LMADs and the dimensions used in them were counted.

The reduction in the total number of dimensions was chosen as a measure to indicate the

amount of simpli�cation which had been performed, because it captures both the reduction in

the number of LMADs (through aggregation) and the reduction in the number of dimensions

(through coalescing).

The results, in Figure 8.3, show that a signi�cant amount of simpli�cation can be achieved

in most cases.

114

32.1
35.5

39.6

26.1

45.1

36.2

46.9

15

22.6

0

38.5

65.1 66.6

0

60.6

Pe
rc

en
ta

ge

arc2d bdna dyfesm flo52 mdg ocean qcd trfd swim su2cortomcatv tfft2 cmhog p3m turb3d
(Perfect) (Spec95fp) (NCSA)

| | | | | | | | | | | | | |

|
|

|
|

|
|

|

0

10

20

30

40

50

60

70

Figure 8.3: Percentage reduction in total number of LMAD dimensions by coalescing and contiguous
aggregation.

8.3 Comparing ART Parallelization with Range Test Parallelization

The Access Region Test version of Polaris and the \old" version of Polaris were used to compile

eleven codes. A comparison was made between the parallelization summaries in the two cases.

When both versions serialized a given loop, or both versions parallelized it, it was left out of

the tables in this section. The one exception to this rule is that when the old version of Polaris

parallelized a loop without a run-time test and the ART version parallelized it with a run-time

test, that was noted in the table. When one version parallelized a loop and the other version

made it serial, the reason for the discrepancy was determined and an entry was made in one of

the following tables for the loop.

8.3.1 An Explanation of the Notes in the Tables

There are three situations, described in the paragraphs that follow, where the Access Region

Test fails to �nd parallelism, while the old Polaris does �nd it:

� SSA deeper analysis

� classi�cation problem

� range info

There are four situations, described in the paragraphs that follow, where the ART �nds

parallelism, while the old Polaris could not:

� Range Test limitation

� privatization

115

PROGRAM- Range Test ART
subroutine/loop Notes

CLOUD3D -

No parallelization di�erences

TFFT2 -

CFFTZ0 do#2 serial parallel Range Test limitation

RCFFTZ do110 serial parallel Range Test limitation

CRFFTZ do100 serial parallel Range Test limitation

CFFTZ do#2 serial parallel Range Test limitation

FFTZ2 do100 serial parallel Range Test limitation

FFTZ2 do100/2 serial parallel Range Test limitation

CFFTZINIT do#2 serial parallel Range Test limitation

TRFD -

OLDA do100 parallel parallel ART runtime test

OLDA do300 parallel parallel ART runtime test

Table 8.1: A comparison of Range Test and ART parallelization for the programs CLOUD3D
from NCSA, TFFT2 from a preliminary version of the SPEC FP95 benchmarks, and TRFD
from the Perfect benchmarks.

� reduction

� run-time test.

SSA Deeper Analysis The \SSA deeper analysis" notation refers to the need to use the

def-use chains of the SSA form for proving or disproving conditions using on-demand analysis

in the code generation pass. This is discussed in detail in Section 6.3.3.2. This has not yet been

implemented in Polaris.

Classi�cation Problem This notation in the tables refers to situations in which it is not

possible to classify a particular array reference due to unknown variables. This is discussed in

detail in Section 6.1.12. This problem is solved by determining the conditions under which the

reference should be classi�ed in each possible category, then attaching a classi�cation condition

and inserting the ARD into the proper category.

These classi�cation conditions can then be used to disprove dependence, as discussed in

Section 6.1.12.

This has also not been implemented yet.

116

PROGRAM- Range Test ART
subroutine/loop Notes

MDG -

INTERF0 do1000 parallel serial SSA deeper analysis

POTENG do2000 parallel serial SSA deeper analysis

MDG do210 parallel parallel ART runtime test

INTRAF0 do1000 serial parallel Range Test limitation

INTRAF0 do1300 serial parallel ART runtime test

CNSTNT do1100 serial parallel Range Test limitation (triang)

INTRAF do1000 serial parallel Range Test limitation

INTRAF do1300 serial parallel ART runtime test

FLO52 -

BCFAR do20 parallel serial classi�cation problem

BCFAR do30 parallel serial classi�cation problem

BCFAR do40 parallel serial classi�cation problem

BCWALL do30 parallel serial classi�cation problem

COLLC do10 IV1 parallel parallel ART runtime test

COLLC do30 IV1 parallel serial classi�cation problem

COLLC do40 IV1 parallel serial classi�cation problem

DFLUX do30 parallel serial classi�cation problem

EULER do50 parallel serial classi�cation problem

EULER do60 parallel serial classi�cation problem

METRIC do15 parallel serial classi�cation problem

PSMOO do40 IV1 parallel serial classi�cation problem

PSMOO do40 IV2 parallel serial classi�cation problem

PSMOO do80 IV1 parallel serial classi�cation problem

PSMOO do80 IV2 parallel serial classi�cation problem

STEP do40 parallel serial classi�cation problem

HYDRO2D -

No parallelization di�erences

Table 8.2: A comparison of Range Test and ART parallelization for the programs MDG,
FLO52 from the Perfect benchmarks, and HYDRO2D from the SPEC FP'95 benchmarks.

117

PROGRAM- Range Test ART
subroutine/loop Notes

OCEAN -

FTRVMT7 do103 serial parallel* Range Test limitation

FTRVMT7 do#2 serial parallel* Range Test limitation

FTRVMT7 do106 serial parallel* Range Test limitation

FTRVMT7 do108 serial parallel* Range Test limitation

FTRVMT7 do#4 serial parallel* Range Test limitation

FTRVMT7 do1060 serial parallel* Range Test limitation

FTRVMT7 do#5 serial parallel* Range Test limitation

FTRVMT7 do1061 serial parallel* Range Test limitation

FTRVMT6 do103 serial parallel* Range Test limitation

FTRVMT6 do#2 serial parallel* Range Test limitation

FTRVMT6 do106 serial parallel* Range Test limitation

FTRVMT6 do108 serial parallel* Range Test limitation

FTRVMT6 do#4 serial parallel* Range Test limitation

FTRVMT6 do1060 serial parallel* Range Test limitation

FTRVMT6 do#5 serial parallel* Range Test limitation

FTRVMT6 do1061 serial parallel* Range Test limitation

Table 8.3: A comparison of Range Test and ART parallelization for the OCEAN program
from the Perfect benchmarks, part 1. \parallel*" means that the loop would be parallelized by
the ART with a modest improvement in symbolic expression simpli�cation.

PROGRAM- Range Test ART
subroutine/loop Notes

OCEAN -

FTRVMT4 do103 serial parallel* Range Test limitation

FTRVMT4 do#2 serial parallel* Range Test limitation

FTRVMT4 do106 serial parallel* Range Test limitation

FTRVMT4 do108 serial parallel* Range Test limitation

FTRVMT4 do#4 serial parallel* Range Test limitation

FTRVMT4 do1060 serial parallel* Range Test limitation

FTRVMT4 do#5 serial parallel* Range Test limitation

FTRVMT4 do1061 serial parallel* Range Test limitation

Table 8.4: A comparison of Range Test and ART parallelization for the OCEAN program
from the Perfect benchmarks, part 2. \parallel*" means that the loop would be parallelized by
the ART with a modest improvement in symbolic expression simpli�cation.

118

PROGRAM- Range Test ART
subroutine/loop Notes

OCEAN -

FTRVMT do103 serial parallel* Range Test limitation

FTRVMT do#2 serial parallel* Range Test limitation

FTRVMT do106 serial parallel* Range Test limitation

FTRVMT do108 serial parallel* Range Test limitation

FTRVMT do#4 serial parallel* Range Test limitation

FTRVMT do1060 serial parallel* Range Test limitation

FTRVMT do#5 serial parallel* Range Test limitation

FTRVMT do1061 serial parallel* Range Test limitation

Table 8.5: A comparison of Range Test and ART parallelization for the OCEAN program
from the Perfect benchmarks, part 3. \parallel*" means that the loop would be parallelized by
the ART with a modest improvement in symbolic expression simpli�cation.

PROGRAM- Range Test ART
subroutine/loop Notes

BDNA -

RESTAR0 do20 serial parallel privatization (code generation)

RESTAR0 do150 serial parallel reduction (runtime)

RESTAR0 do700 serial parallel reduction (runtime)

ACTFOR do238 serial parallel ART runtime test

ACTFOR do240 parallel serial SSA deeper analysis

ACTFOR do110 serial parallel reduction

CNVERT do40 serial parallel privatization (code generation)

CNVERT do50 serial parallel privatization (code generation)

MPOLES do100 serial parallel reduction (code generation)

SITES do960 serial parallel privatization (runtime)

UPDATE do100 serial parallel runtime

UPDATE do100/2 serial parallel runtime

Table 8.6: A comparison of Range Test and ART parallelization for the BDNA program from
the Perfect benchmarks.

119

PROGRAM- Range Test ART
subroutine/loop Notes

ARC2D -

BC do60 parallel serial range info

BC do70 parallel serial range info

BICONG do6 parallel serial range info

FILERY do39 parallel serial range info

YPENT2 do12 parallel serial range info

YPENT2 do22 parallel serial range info

YPENT2 do13 parallel serial range info

TOMCATV -

No parallelization di�erences

SWIM -

No parallelization di�erences

Table 8.7: A comparison of Range Test and ART parallelization for the ARC2D program
from the Perfect benchmarks and the programs TOMCATV and SWIM from the SPEC FP95
benchmarks.

Range Info This notation refers to the need for improved symbolic range information made

available to the compiler. The Access Region Test can theoretically determine independence

in each case, provided it has access to suÆcient symbolic range information for the variables

involved.

An example of such a situation is as follows:

real F(JDIM,KDIM,2)

K = KU-1

do 12 J = JL,JU

. . .

F(J,K,1) = (F(J,K,1) - LD2*F(J,K-2,1) - LD1*F(J,K-1,1))*LDI

F(J,K,2) = (F(J,K,2) - LD2*F(J,K-2,2) - LD1*F(J,K-1,2))*LDI

. . .

12 continue

Here, it is easy to see that the references to F do not involve a dependence, but ART paral-

lelization requires us to compare JU-JL against JDIM. From the original form it is easy to see

that JU� JL � JDIM due to the Inbounds Assumption. In the ARD form, however, the original

120

declared dimensions are lost, and the ART must rely on the range information to retain the

proper relationships.

An alternative way to solve this problem is to mark J as a singleton index, as discussed in

Section 6.1.14.

Range Test Limitation These cases were of two types:

1. non-aÆne subscript expressions

2. access patterns not analyzable by the Range Test

The non-aÆne subscript expressions were found in the TFFT2 program. These used ex-

pressions involving 2L, where L is the index of an outer loop. This will be discussed in detail

in Section 8.4. These patterns were parallelized by the ART primarily through the use of

simpli�cation operations on the LMADs involved.

The non-analyzable access patterns occurred mostly in the OCEAN program. In OCEAN,

the loops which the Range Test could not parallelize were in the form of pattern B from Fig-

ure 6.22.

Privatization As mentioned above, these cases typically involved a complicated last-value

assignment, such as would be needed in the following:

do 20 N=1,NTYPES

if(OTTRAN(N).ne.TTRAN(N)) ICHECK=.TRUE.

20 if (OTROT(N).ne.TROT(N)) ICHECK=.TRUE.

Here, ICHECK is privatized by the ART, depending on the code generator to generate the

proper last-value assignment. This is just a parallel search, and since it only assigns a single

value to the variable, the code generator could even just parallelize the loop without privatizing

ICHECK, avoiding altogether the last-value problem. It could also cause the loop to be aborted

by the �rst processor which sets ICHECK to .TRUE..

Reduction As mentioned above, the situations marked as reductions in this category are

not normally thought of as reductions, but actually refer to a way to parallelize a loop with

subscripted-subscripts without knowing the contents of the subscripting array.

121

An example of the situation is:

do 40 I=0,NOP-1

T(IX(IW+0)+I)=T(IX(IW+0)+I)*SDT

T(IX(IW+1)+I)=T(IX(IW+1)+I)*SDT

T(IX(IW+2)+I)=T(IX(IW+2)+I)*SDT

40 continue

The ART generates both a run-time monotonicity check for IX and a potential reduction for

T. These accesses could be considered a reduction if IX contains the same value in more than

one location, since the references are in the reduction form and there would be a dependence

in the loop. If there is no overlap in the IX array, however, the loop can be run as a completely

parallel loop. The code generator would have to recognize these situations and decide whether

it was worth the expense to test IX at run-time for choosing between the reduction and the

completely parallel loops.

Run-time This notation refers to cases where the \old" Polaris did not parallelize a loop,

but the ART did so with a run-time test involved. The various things which could be tested at

run-time are monotonicity, the overlap condition, the classi�cation condition, the correctness

condition, and a condition which could prove that one condition implies another.

8.3.2 Overall Results

The results show that the Access Region Test matches the results of the old Polaris, and in

some cases, surpasses them. All the cases where the old Polaris can parallelize and the ART

cannot are �xable by the addition of demand-driven analysis, the implementation of conditional

classi�cation, or an increased-precision range analysis.

Some of the cases where the Access Region Test can parallelize a loop are simply beyond the

capabilities of the Range Test, the Omega Test and the compilers whose dependence analysis is

based on Fourier-Motzkin linear constraint solvers. In addition, the run-time dependence con-

dition extraction capabilities of the Access Region Test have been shown to enable parallelism

where Polaris was unable to �nd it before.

122

8.4 Parallelizing TFFT2

The TFFT2 code, from a preliminary version of the SPEC cfp95 benchmarks, is a good showcase

for the capabilities of the Access Region Test. The main loop nests consist of �ve nested loops

in which the call tree is four subroutines deep. Refer to Figure 8.4 for the overall call structure

of one of the main loop nests. Simpli�ed versions of the six routines considered in this section

are presented in Figures 8.5 through 8.7.

The following diÆculties for compilers are caused by the TFFT2 program structure:

1. Array reshaping occurs at the call to FFTZ2, where parameter six changes from one to

four dimensions, and the dimensions are dependent on an outer loop index. The �rst

dimension of the callee's array grows exponentially with the outer loop index and the

third dimension shrinks exponentially with the outer loop index.

2. The inner-most loops in this part of the call tree, those inside FFTZ2, have loop bounds

involving 2 raised to the power of an outer loop index (the loop in CFFTZWORK).

3. The starting point of the reshaped four-dimensional array within CFFTZWORK depends on

the loop index.

4. The loop bounds on the two inner-most loops (within FFTZ2) both are exponential ex-

pressions involving a formal parameter derived from the loop index of an outer loop in

the calling routine. So, they are \triangular" loops in the sense that their upper bounds

depend on an outer loop index, but the shape of the iteration space would not look

triangular.

The Range Test cannot parallelize any loops in the main loop nests, not even the inner-most

loops of the bottom-most subroutine in the call tree. The Access Region Test can parallelize all

of the loops which are parallel in this nest, up to the fourth loop level. The �fth (outer-most)

loop is not parallel.

8.4.1 Access Region Summaries of the Code

This analysis will start at the bottom of the call tree and proceed up, summarizing the accesses

along the way. Array U is read-only in this part of the program, so it won't be considered.

123

CFFTZWORK

FFTZ2

CMULTF

CFFTZ

RCCFTZ

Program TFFT2

Figure 8.4: Call tree for the branch of TFFT2 described in this thesis.

program TFFT2

common S(2**20),U(2*2**20), X(2**20+2), Y(2**20+2)

do II=1,IT

.

call RCFFTZ (1,M,U,X,Y)

.

end do

.

end

subroutine RCFFTZ (IS, M, U, X, Y)

dimension U(1), X(1), Y(1)

.

call CFFTZ (IS, M-1, U, Y, X)

.

end

� X 1
2M�1+0, Y1

2M�1+0

� X 1
2M�1+0, Y1

2M�1+0

Figure 8.5: Highest level routines - main program and RCFFTZ (simpli�ed).

124

subroutine CFFTZ (IS, M, U, X, Y)

dimension U(1), X(1), Y(1)

.

do I=0,2**(M/2)-1

.

call CFFTZWORK (IS, M-M/2, U(1+3*2**(1+M)/2), Y(1+I*2**(1+M-M/2)), X)

.

end do

do I=0,2**(M-M/2)

.

call CMULTF (IS,N1,U(1+2**(1+M)/2 + I*2**(1+M/2)),

X(1+I*2**(1+M/2)), Y(1+I*2**(1+M/2)))

.

end do

do I=0,2**(M-M/2)-1

call CFFTZWORK (IS,M/2, U(1+7*2**(1+M)/4), Y(1+I*2**(1+M/2)), X)

end do

end

subroutine CFFTZWORK (IS, M, U, X, Y)

dimension U(1), X(1), Y(1)

do L0=1, (M+1)/2

call FFTZ2 (IS,2*L0-1, M, U, X, Y)

call FFTZ2 (IS,2*L0 , M, U, Y, X)

end do

end

� X 1
2M+1�1+0,

wY1
2M+1�1+0

�
wX 1

21+M=2�1
+0, kY

1
2M+1�1+0

�
r
kX

1
2M+1�1+0,

w
k Y

1
2M+1�1+0

� wX 1
21+M�M=2�1

+0, kY
1
2M+1�1+0

Figure 8.6: Middle level routines CFFTZ and CFFTZWORK (simpli�ed).

125

subroutine FFTZ2 (IS, L, M, U, X, Y)

dimension U(*), X(*), Y(0:2**(L-1)-1, 0:1, 0:2**(M-L)-1, 0:1)

do I=0,2**(M-L)-1

do K=0,2**(L-1)-1

= X(1+K+I*2**(L-1))

= X(1+K+I*2**(L-1)+2**M)

= X(1+K+I*2**(L-1)+2**(M-1))

= X(1+K+I*2**(L-1)+2**(M-1)+2**M)

Y(K,0,I,0) =

Y(K,0,I,1) =

Y(K,1,I,0) =

Y(K,1,I,1) =

end do

end do

end

subroutine CMULTF (IS, N, U, X, Y)

dimension U(*), X(*), Y(*)

do I=1,N

Y(I) = U(2*I-1)*X(I) - U(2*I)*X(I+N)

Y(I+N) = U(2*I-1)*X(I+N) + U(2*I)*X(I)

end do

end

�
r
kX

1
2�N1�1+0,

w
k Y

1
2�N1�1+0

�
r
kX

1
2M+1�1+0,

w
k Y

1
2M+1�1+0

Figure 8.7: Lowest level routines FFTZ2 and CMULTF (simpli�ed).

126

X
1

M-1
2 - 1

+ 0

X
1

+ 0

- 1
M

2

+ 2
M-1r

r r

r

r

X
1

+ 0

- 12
M+1

r

r

- 2
L-1

2
L-1

-1, 2
M-1

X
1 ,2

L-1

- 2
L-1

2
L-1

-1, 2
M-1

X
1 ,2

L-1

+ 2
M-1

+ 2
M

+ 2
Mr

- 2
L-1

2
L-1

-1, 2
M-1

X
1 ,2

L-1

+ 2
M

X
1

M-1
2 - 1

coalesce

r

r r

- 2
L-1

2
L-1

-1, 2
M-1

X
1 ,2

L-1

+ 2
M-1

X
1

M-1
2 - 1

M
coalesce

coalesce

aggregate

X
1

2 - 1
M

+ 2 M

aggregate

+ 2

aggregate

+ 0

X
1

M-1
2 - 1

+ 2
M-1

coalesce

Figure 8.8: Combination of access descriptors for variable X in routine FFTZ2.

8.4.1.1 Leaf Routines FFTZ2 and CMULTF

Starting in routine FFTZ2, there are four accesses to both array X and array Y. Even though

array X is declared one-dimensional and array Y is declared four-dimensional, the accesses to

both are two-dimensional since there are two nested loops in this routine.

The references to X (all read accesses) in the inner-most loop are:

= X(1+K+I*2**(L-1))

= X(1+K+I*2**(L-1)+2**M)

= X(1+K+I*2**(L-1)+2**(M-1))

= X(1+K+I*2**(L-1)+2**(M-1)+2**M)

The index K drives a stride-one access within X, while the index I has a coeÆcient of

2**(L-1) in each case, so it drives an access dimension with a stride of 2**(L-1). The loop

bounds determine the span of each dimension, so the resulting summaries of the four accesses

within the outermost loop in routine FFTZ2 become r
kX

1;2L�1

2L�1�1;2M�1�2L�1
+0,

r
kX

1;2L�1

2L�1�1;2M�1�2L�1
+2M , r

kX
1;2L�1

2L�1�1;2M�1�2L�1
+2M�1, and r

kX
1;2L�1

2L�1�1;2M�1�2L�1
+2M + 2M�1.

Referring to Figure 8.8, notice that each of these regions can be coalesced, then aggregation

can be applied in two stages, to produce the �nal combined result r
kX

1
2m+1�1+0.

127

Y
1

+ 0

- 1
M

2

Y
1

2 - 1
M

+ 2 M

Y
1

+ 0

- 12
M+1

M
+ 2 + 2

L-1

+ 2
M

+ 2
L-1

1 ,2
L

Y
2

L-1
-1, 2

Y
1 ,2

L

2
L-1

-1, 2
M

Y
1 ,2

L

2
L-1

-1, 2
M

Y
1 ,2

L

2
L-1

-1, 2

- 2

- 2
L

L

+ 0

- 2
LM

M
- 2

L

w

w

w

w

w

w

w

w
coalesce

w+ 2
MY

1

2
L

Y
1

2
L
-1, 2

M
- 2

L

,2
L

-1, 2
M

- 2
L

,2
L

aggregate

aggregate

aggregate

coalesce

+ 0

Figure 8.9: Combination of access descriptors for variable Y in routine FFTZ2.

The accesses to Y (which are all writes in FFTZ2) may be similarly summarized. The raw

accesses are:

Y(k, 0, i, 0) =

Y(k, 0, i, 1) =

Y(k, 1, i, 0) =

Y(k, 1, i, 1) =

Summarizing these accesses to the outermost loop in FFTZ2, the following access descrip-

tors result: w
k Y

1;2l

2l�1�1;2m�2l
+0, w

k Y
1;2l

2l�1�1;2m�2l
+2m, w

k Y
1;2l

2l�1�1;2m�2l
+2l�1, and

w
k Y

1;2l

2l�1�1;2m�2l
+2m + 2l�1. As shown in Figure 8.9, �rst aggregation can be done between pairs

of access descriptors, then coalescing simpli�es the two results, and �nally aggregation can be

applied again, to get the �nal result w
k Y

1
2m+1�1+0.

The net result is that for the routine FFTZ2, argument X is read with region r
kX

1
2m+1�1+0

and argument Y is written with region w
k Y

1
2m+1�1+0. This is a surprising result since the ar-

gument L does not a�ect either region, even though at �rst glance the code within FFTZ2 in

Figure 8.7 would make it seem otherwise. The powerful simpli�cation a�orded by the aggrega-

tion and coalescing operations exposes the true nature of the accesses within FFTZ2.

128

Next, consider the routine CMULTF (refer again to Figure 8.7), which is another leaf in

the call tree. The access patterns are fairly simple, compared to those in FFTZ2. Y is written

in two places, one with a descriptor of w
k Y

1
N�1+0 and the other with a descriptor of

w
k Y

1
N�1+N .

Aggregation can be used to fuse these together as w
k Y

1
2N�1+0. The same operations produce a

read-only access descriptor for X of r
kX

1
2N�1+0.

8.4.1.2 Middle-level Routines CFFTZWORK and CFFTZ

Next, consider subroutine CFFTZWORK, where FFTZ2 is called (refer to Figure 8.6). Since

the access regions for the �fth and sixth parameters to FFTZ2 depend only on the value of

the third parameter (M) and that value does not vary within the L0 loop, and the base o�set

aggregation and coalescing operations exposes the true nature of the accesses within FFTZ2.

Next, consider the routine CMULTF (refer again to Figure 8.7), which is another leaf in

the call tree. The access patterns are fairly simple, compared to those in FFTZ2. Y is written

in two places, one with a descriptor of w
k Y

1
N�1+0 and the other with a descriptor of

w
k Y

1
N�1+N .

Aggregation can be used to fuse these together as w
k Y

1
2N�1+0. The same operations produce a

read-only access descriptor for X of r
kX

1
2N�1+0.

8.4.1.3 Middle-level Routines CFFTZWORK and CFFTZ

Next, consider subroutine CFFTZWORK, where FFTZ2 is called (refer to Figure 8.6). Since

the access regions for the �fth and sixth parameters to FFTZ2 depend only on the value of

the third parameter (M) and that value does not vary within the L0 loop, and the base o�set of

each parameter does not vary, the same region is being accessed in each iteration for each call

site. This causes the access regions from the subroutine to lose their \no-overlap" characteristic

when they are summarized to the L0 loop.

Both calls use the same value of M, so identical regions are accessed in both calls, the only

di�erence being that the parameters X and Y are reversed between the two calls. The parameter

Y is \write-�rst" in the �rst call, then the same region is \read-only" in the second call. This

gives the summary for Y the \write-�rst" characteristic, since the whole region read within Y is

written �rst. The parameter X is \read-only" during the �rst call, then \write-�rst" during the

second call, making it \read-write" when summarized to the L0 loop in CFFTZWORK.

129

Next, consider subroutine CFFTZ (again referring to Figure 8.6), where there are three

loops to deal with. The �rst calls CFFTZWORK:

do i = 0, 2**(m/2)-1

call CFFTZWORK(is, m-m/2, u(1+(3*2**(1+m))/2), y(1+i*2**(1+m+(-1)*(m/2))), x)

end do

The array X is passed to CFFTZWORK in the subscript position which was found to have

the \write-�rst" characteristic. Translating parameter values, the access descriptor at the call

site for X is w
k X

1
2m�m=2+1�1

+0. Summarizing this to the outer loop causes it to lose \no-overlap",

since the access descriptor does not involve i at all.

The array Y is passed in the position which is read �rst, then written. The starting address

of the Y parameter which is sent to the subroutine depends on the value of the index (i) of

the surrounding loop. The access descriptor of the call itself, pulled from the subroutine

summary and translated is Y1
2m�m=2+1�1

+i � 2m�m=2+1. Summarizing that to the level of the

outer loop gives the access descriptor kY
1;2m�m=2+1

2m�m=2+1�1;2m+1�2m�m=2+1+0. Applying coalescing to

that descriptor results in the simpli�ed descriptor kY
1
2m+1�1+0. Note that there is no overlap

between the intervals read and written in di�erent iterations of the outer i loop. So, the access

region for Y can be marked \no-overlap".

The second loop in CFFTZ makes a call to CMULTF:

do I = 0, 2**(M-M/2)-1

call CMULTF(IS, N1, U(1+2**M+I*2**(1+M/2)), X(1+I*2**(1+M/2)), Y(1+I*2**(1+M/2)))

end do

In CMULTF, both X and Y are passed with the same starting point in the call statement

and the same region is accessed for both within CMULTF, so the same analysis applies to

both. From the summary of CMULTF, the access region for Y can be translated to the CFFTZ

context due to the call statement, which is w
k Y

1
2�n1�1+i � 2

1+m=2. Summarizing this to the

outer loop, it becomes w
k Y

1;21+m=2

2�n1�1;2m+1�21+m=2+0. This generates a no-overlap sequence as long

as 2 � n1 � 1 < 21+m=2 (the no-overlap condition for summarization). Since n1 is set to 2m=2

earlier in this routine, making 2 �n1� 1 equal 21+m=2� 1, that is true. The coalesced version of

the access descriptor for Y is w
k Y

1
2m+1�1+0. So, the access to X is of the same form: r

kX
1
2m+1�1+0.

The only di�erence is that X is read-only, while Y is write-only.

130

The third loop in CFFTZ contains another call to CFFTZWORK:

do i = 0, 2**(M-M/2)-1

call CFFTZWORK(IS, M/2, U(1+(7*2**(1+M))/4), Y(1+I*2**(1+M/2)), X)

end do

The access descriptor for Y at the call site is Y1
21+m=2+1 + i � 21+m=2. Summarizing to the

outer loop, it becomes kY
1;21+m=2

21+m=2�1;2m+1�21+m=2+0. This can be coalesced to kY
1
2m+1�1+0,

since it satis�es the no-overlap condition. The access descriptor for X can be derived from the

routine-level summary in CFFTZWORK, becoming wX 1
21+m=2�1

+0.

The access regions must next be summarized at the routine level of CFFTZ. For the array

X, the summaries of the three loops: wX 1
2m�m=2+1�1

+0, rX 1
2m+1�1+0, and

wX 1
21+m=2�1

+0 must

be combined. They may be combined as X 1
2m+1�1+0.

8.4.1.4 Highest Level Routines

In the routine RCFFTZ, the parameters are translated due to the call to CFFTZ, so the

descriptors turn out to be X 1
2m�1+0 and Y

1
2m�1+0 (both carrying an overlap, indicating depen-

dence).

Finally, in the highest level in the call tree, the main program for TFFT2, a loop surrounds

the call site of RCFFTZ, but the loop index of that loop is not involved in the call, so each

iteration accesses the same locations. The access patterns summarized to the outer loop would

be identical: X 1
2m�1+0 and Y1

2m�1+0 (again, both carry an overlap, indicating dependence).

131

9 THE CONTRIBUTIONS OF THIS THESIS

AND FUTURE WORK

This thesis describes the Access Region Descriptor (ARD), which can represent memory accesses

more precisely than traditional triplet notation. The ARD distills program code for array

accesses into the information critical to several important compiler analysis techniques. This

descriptor is not constrained by the declared dimensions of an array and therefore eliminates the

array reshaping problem when translating array accesses from one program context to another.

The ease with which accesses can be translated across procedure boundaries makes it an ideal

vehicle for interprocedural analysis. The ARDs can precisely represent non-aÆne expressions,

making possible parallelization in situations where no other known dependence test has been

successful. The precision of the ARD and its simpli�cation operations make it a useful vessel

within algorithms for generating data movement messages.

This thesis also describes Memory Classi�cation Analysis (MCA) which distills the im-

portant information about the relationships between memory accesses in a program. These

relationships are embodied in the summary sets of ARDs produced by MCA. It is shown herein

that this information is exactly what is needed for doing dependence analysis, and not coinci-

dentally, also for privatization, reduction and induction analysis, three of the most important

parallelism-enabling transformations used in parallelizers.

The Access Region Test (ART) is also described. This is the algorithm which uses the

summary sets of ARDs produced by MCA to parallelize programs by combining privatization,

reduction and induction analysis. It is shown, through argument and experiment, to be more

powerful than a combination of the Range Test [8] and the GCD Test.

The various components of MCA are able to generate conditions when they cannot be

certain of their analysis. These conditions can be combined within the code generation pass for

doing deeper, demand-driven analysis, or for generating a runtime dependence test. As shown

in Section 6.1.13, the classi�cation condition can also be used to assist in generating conditional

prefetch commands.

132

The combination of the ARD, the ART and MCA can precisely represent subscripted-

subscript access within loops, and can sometimes parallelize loops containing such accesses.

Experiments are reported here which show that these techniques can parallelize more loops

than can the Range Test. All loops without a dependence in the routine TFFT2 can be

parallelized despite its heavy use of non-aÆne subscript expressions, nested loops containing

subroutine calls, complicated array reshaping, and triangular loops. The diÆcult and important

FTRVMT/do 109 loop in the Perfect benchmark routine OCEAN can also be fully parallelized

(representing about 40% of the serial execution time). The TURB3D code from the SPEC

FP'95 benchmarks, which grew from 2100 lines to 20,000 lines with full subroutine inlining and

required 20 hours to process by Polaris, can be parallelized by the algorithms described here in

just 5 minutes.

9.1 Future Work

This work suggests a number of interesting avenues for future research.

9.1.1 Code Generation Pass

First, the code generation pass should be implemented. This will be an interesting component

in and of itself. Designing an algorithm which can collect the run-time test conditions and

decide what to do based on them would be an interesting task. Such an algorithm would have

to balance the e�ort desired by the user with information it can gather about the \importance"

of the loop in question and the conditions it needs to prove, to decide how to proceed.

The code generation pass will need to have several demand-driven deeper analysis algorithms

at its disposal for proving conditions, generating the induction closed forms, and gathering

de�nitions of subscripting arrays.

One goal would be to handle irregular problems by using the demand-driven deeper analysis

to discover facts about subscripting arrays, and to generate runtime tests for whatever facts

cannot be discovered.

Also, an interesting sub-task would be to explore the question of how to combine the various

runtime test conditions into the proper runtime test, which is both minimal and appropriate.

133

9.1.2 Symbolic Infrastructure

Secondly, the symbolic infrastructure of Polaris must be improved. There are still bits of

\obvious" information which Polaris does not infer from the structure of the program. Symbolic

expression simpli�cation can also be improved. The whole expression infrastructure could

be optimized. An interesting question is \How should symbolic expression manipulation be

structured to make it powerful enough to support MCA and the ART, yet fast enough to use

in a commercial compiler?".

9.1.3 Communication Generation

Thirdly, issues in generating precise data movement should be studied. The precise memory

access representation and de�ned simpli�cation techniques of the ARD makes it a natural for

use in generating data messages for moving data between processors. The conditions which are

produced by the various components within MCA could be used to generate di�erent messages

under di�erent conditions.

134

BIBLIOGRAPHY

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-

Wesley, Reading, Mass., 1986.

[2] S. Amarasinghe. Parallelizing Compiler Techniques Based on Linear Inequalities. PhD

thesis, Stanford University, January 1997.

[3] J. Backus. The History of FORTRAN I, II, and III. Annals of the History of Computing,

1(1), July 1979.

[4] V. Balasundaram and K. Kennedy. A Technique for Summarizing Data Access and its Use

in Parallelism Enhancing Transformations. Proceedings of the SIGPLAN Conference on

Programming Language Design and Implementation, June 1989.

[5] Utpal Banerjee. Loop Transformations for Restructuring Compilers. Kluwer Academic

Publishers, Norwell, Massachussats, 1993.

[6] Utpal Banerjee. Dependence Analysis. Kluwer Academic Publishers, Norwell, MA, 1997.

[7] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe
inger, T. Lawrence, J. Lee,

D. Padua, Y. Paek, W. Pottenger, L. Rauchwerger, and P. Tu. Parallel Programming

with Polaris. IEEE Computer, 29(12):78{82, December 1996.

[8] William Blume. Symbolic Analysis Techniques for E�ective Automatic Parallelization. PhD

thesis, Univ. of Illinois at Urbana-Champaign, Dept. of Computer Science, June 1995.

[9] William Blume and Rudolf Eigenmann. Symbolic Range Propagation. Proceedings of the

9th International Parallel Processing Symposium, April 1995.

[10] William Blume and Rudolf Eigenmann. The Range Test: A Dependence Test for Symbolic,

Non-linear Expressions. Proceedings of Supercomputing '94, pages 528{537, November

1994.

135

[11] M. Burke and R. Cytron. Interprocedural Dependence Analysis and Parallelization. Pro-

ceedings of the SIGPLAN Symposium on Compiler Construction, pages 162{175, July

1986.

[12] D. Callahan and K. Kennedy. Analysis of Interprocedural Side E�ects in a Parallel Pro-

gramming Environment. Journal of Parallel and Distributed Computing, 5:517{550, 1988.

[13] B. Creusillet and F. Irigoin. Interprocedural Array Region Analyses. In Lecture Notes in

Computer Science. Springer Verlag, New York, New York, August 1995.

[14] B. Creusillet and F. Irigoin. Exact vs. Approximate Array Region Analyses. In Lecture

Notes in Computer Science. Springer Verlag, New York, New York, August 1996.

[15] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. EÆciently Computing

Static Single Assignment Form and the Control Dependence Graph. ACM Transactions

on Programming Languages and Systems, pages 451{490, October 1991.

[16] G. Dantzig and B.Eaves. Fourier-Motzkin Elimination and its Dual. Journal of Combina-

torial Theory, pages 288{297, 1973.

[17] R. Eigenmann, J. Hoe
inger, and D. Padua. On the Automatic Parallelization of the

Perfect Benchmarks. IEEE Transactions on Parallel and Distributed Systems, pages 5{23,

January 1998.

[18] Dennis Gannon and Ko-Yang Wang. Using AI Techniques to Resturcture Programs for

Di�erent Parallel Architectures. In Kai Hwang; Douglas Degroot, editor, AI and Super-

computing Systems, 1987.

[19] J. Grout. Inline Expansion for the Polaris Research Compiler. Master's thesis, Univ. of

Illinois at Urbana-Champaign, Dept. of Computer Science, May 1995.

[20] J. Gu, Z. Li, and G. Lee. Symbolic Array Data
ow Analysis for Array Privatization and

Program Parallelization. Proceedings of Supercomputing '95, December 1995.

[21] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion, and M. Lam. Max-

imizing Multiprocessor Performance with the SUIF Compiler. IEEE Computer, 29(12):84{

89, December 1996.

136

[22] M. Hall, B. Murphy, S. Amarasinghe, S. Liao, and M. Lam. Interprocedural Analysis

for Parallelization. Proceedings of 8th Workshop on Language and Compilers for Parallel

Computing, August 1995.

[23] M. Hall, B. Murphy, S. Amarasinghe, S. Liao, and M. Lam. Detecting Coarse-grain Par-

allelism Using An Interprocedural Parallelizing Compiler. Proceedings of Supercomputing

'95, December 1995.

[24] P. Havlak. Interprocedural Symbolic Analysis. PhD thesis, Rice University, May 1994.

[25] Chris Huson. An Inline Subroutine Expander For Parafrase. Master's thesis, Univ. of

Illinois at Urbana-Champaign, Dept. of Computer Science, December 1982.

[26] Z. Li and P. Yew. EÆcient Interprocedural Analysis for Program Parallelization and

Restructuring. Proceedings of the SIGPLAN Symposium on Parallel Programming: Expe-

rience with Applications, Languages and Systems, July 1988.

[27] Z. Li, P. Yew, and C. Zhu. An EÆcient Data Dependence Analysis for Parallelizing

Compilers. IEEE Transactions on Parallel and Distributed Systems, 1(1):26{34, January

1990.

[28] D. Maydan, S. Amarasinghe, and M. Lam. Array Data-Flow Analysis and its Use in Array

Privatization. Proceedings of ACM SIGPLAN Symposium on Principles of Programming

Languges, January 1993.

[29] Y. Paek. Automatic Parallelization for Distributed Memory Machines Based on Access

Region Analysis. PhD thesis, Univ. of Illinois at Urbana-Champaign, Dept. of Computer

Science, April 1997.

[30] Y. Paek, J. Hoe
inger, and D. Padua. Simpli�cation of Array Access Patterns for Compiler

Optimizations. In Proceedings of the ACM SIGPLAN 98 Conference on Programming

Language Design and Implementation, June 1998.

[31] C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B Leung, and D. Schouten. The

Structure of Parafrase-2: An Advanced Parallelizing Compiler for C and Fortran. In Lecture

Notes in Computer Science. Springer Verlag, New York, New York, August 1990.

137

[32] W. Pottenger. Induction Variable Substitution and Reduction Recognition in the Polaris

Parallelizing Compiler. Master's thesis, Univ. of Illinois at Urbana-Champaign, Dept. of

Computer Science, December 1994.

[33] W. Pugh. A Practical Algorithm for Exact Array Dependence Analysis. Communications

of the ACM, 35(8), August 1992.

[34] Z. Shen, Z. Li, and P. Yew. An Empirical Study of Fortran Programs for Parallelizing

Compilers. IEEE Transactions on Parallel and Distributed Systems, 1(3):350{364, July

1990.

[35] R. Triolet, F. Irigoin, and P. Feautrier. Direct Parallelization of Call Statements. Proceed-

ings of the SIGPLAN Symposium on Compiler Construction, pages 176{185, 1986.

[36] P. Tu. Automatic Array Privatization and Demand-Driven Symbolic Analysis. PhD thesis,

Univ. of Illinois at Urbana-Champaign, Dept. of Computer Science, May 1995.

[37] P. Tu and D. Padua. Automatic Array Privatization. August 1993.

[38] P. Tu and D. Padua. Gated SSA-Based Demand-Driven Symbolic Analysis for Parallelizing

Compilers. Proceedings of the 9th ACM International Conference on Supercomputing, pages

414{423, July 1995.

138

VITA

Jay Philip Hoe
inger was born on December 24, 1951 in Belleville, Illinois. He began his

long association with the University of Illinois in 1970 as a college freshman. He received the

degree of Bachelor of Science in Computer Science in 1974, then a Master of Science degree

in Computer Science in 1977. He worked at the Illinois State Geological Survey as a scienti�c

programmer from 1972 through 1980. He joined Colwell Systems in Champaign, Illinois in 1980

to work as a systems programmer, then as Manager of the Systems Programmers. In 1985, he

left Colwell to return to the University of Illinois, speci�cally at the newly-formed Center for

Supercomputing Research and Development. He worked there in Professor Padua's compiler

group until the Center's demise, at which time the group became a part of the University's

Coordinated Sciences Laboratory. In 1997, the group moved to the Department of Computer

Science. In 1995, Jay decided to enroll in the Ph.D. program at the University of Illinois. In

August, 1998, he began work as a Senior Research Scientist at the Center for Simulation of

Advanced Rockets at the University of Illinois.

139

