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1 Introduction

This report will analyze one of the two main branches of the call tree of the SPEC program TFFT2. The
other main branch is very similar, and the same type of analysis applies to it. First, we describe the access
region representation used to describe very precisely the accesses to arrays in the program. Next, we show
a strategy for using access regions for parallelizing programs, which involves

1. the precise interprocedural summarization of the array accesses made in the program,

2. the use of these summaries to privatize arrays and parallelize loops.

Finally, we describe the structure of the TFFT2 program and describe in detail how we can use our repre-
sentation and parallelization strategy for parallelizing it.

The access region notation represents the array elements which are accessed due to the nested loops
surrounding the access site. Operations on these access summaries will be used to combine them, to simplify
their form, and to determine whether sets of accesses overlap.

2 Problems with triplet notation

Quite often within compilers, the set of array elements accessed by a section of code has been represented
in triplet notation. Triplet notation has the form:

lower : upper : stride

which represents a sequence of integers, starting at lower and proceeding to upper in steps of stride. When
triplet notation is used to represent accesses to an array, the accesses are typically expressed by using triplets
in array subscript positions, for example:

A( 1:100:2 , 10:20:1, 1:3:1 )

The development of the access region notation was motivated by our observation that triplet notation is
insu�cient to accurately describe the values for array subscripts in some programs (such as TFFT2), where
subscripts like

X(1+K+I*2**(L-1))

are found (in which I, K, and L are indices of the surrounding loops).

1



3 Access region notation

A slight generalization of triplet notation, which we call the access region notation, is able to represent such
an access, however.

To summarize an array reference in a nested loop, we must �rst identify the set of basic induction
variables [1], one per loop, in the loop nest. We will refer to such a basic induction variable for a loop as the
loop index.

In the access region notation, we summarize the e�ect of each loop index on an array subscript expression
by the stride and span due to the index, de�ned as follows. The di�erence between the values of the subscript
expression at successive values of a loop index is the stride due to that index. The di�erence between the
value of the subscript expression evaluated at the last value of the index and the value of the subscript
expression evaluated at the �rst value of the index we call the span due to that index. The stride and span
together form a dimension of the access, due to a single index. Note that the access dimensionality of an
array may be di�erent from the declared dimensionality of the array.

The set of elements referenced by a subscript expression within nested loops can be completely charac-
terized by expressing the e�ect of all loop indices. The place where the access starts is called the \starting
point", which is expressed as an element o�set from the �rst element of the array (o�set zero refers to the
�rst element of the array).

So, we can describe the set of array elements being accessed through an array reference inside a nested
loop with an access descriptor, expressed in the following form for the array A:

Astride1;stride2;���
span1;span2;���

+start

where stridei and spani form the i-th access dimension, due to loop index i.
In addition, we will characterize a region as being either \write-�rst", \read-only" or \read/write" and

either \overlap" or \no-overlap". We will refer to these as the access characteristics of the region.
Write-�rst refers to the situation where, for every element in the access region, a write occurs as the �rst

access. Reads and other writes may follow or not, in any order, it doesn't matter. Read-only is a label for a
region in which the only accesses are reads. Read/write is used for any other situation.

A no-overlap region, with respect to a given dimension, refers to the situation where di�erent values of
the loop index cause non-overlapping sets of locations to be accessed. All other regions are called overlap
regions.

We will annotate the access region descriptor on the left upper part of the variable name with r to mean
read-only, or w to mean write-�rst. No letter in that position refers to read/write. On the left lower part
of the variable name, we will use \k" to refer to no-overlap. Absence of the \k" implies that one or more
locations is repeated within the set of locations accessed.

For the purposes of this paper, we will refer to the ith stride as �i, the ith span as �i, and the starting
point as � , so the general form of a d-dimensional access region for array A is:

[r;w]
[ k ]A

�1;�2;����d
�1;�2;����d+� .

We will normalize a given access descriptor such that �i and �i are positive quantities. When the stride
is negative, the starting point will be adjusted to make this possible. For instance, an access with a stride
of -1 of 100 elements starting at element o�set 99 (99, 98, 97, � � �, 0) can be equivalently represented as a
stride 1 access of 100 elements starting at element o�set 0 (0, 1, 2, � � �, 99). The order is not important, only
which elements are accessed is important. So,
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A
�1
�99+99 will be normalized as A1

99+0.

As an example of the use of an access descriptor to represent the accesses in a nested loop, consider the
access summary of the array A in the following loop nest:

REAL A(0:100)

DO I=1,N,2

DO J=1,6

A(3*I+J) = . . .

END DO

END DO

The stride due to the I loop is 6, while the stride due to the J loop is 1. In addition, the starting point
for the access structure is the element of A addressed when I and J have their �rst values (both being 1 in
this case), and the o�set is therefore 4. So, the access region representation of the accesses to A is:

w
kA

1;6
5;6(N�1)+4.

4 Operations with access regions

4.1 Constructing the original access descriptor

The original construction of an access descriptor from an array reference in a program is done by constructing
the access dimensions and a starting point expression. Usually, in the context of a single statement, a single
array reference accesses a single location, in which the stride and span may be represented by (0,0). In other
cases, the array reference might be in a CALL statement or a vector assignment statement, in which cases
the appropriate dimensions for the access must be used.

The starting point expression is constructed by applying the array storage ordering function de�ned for
the language being used (column-major for Fortran and row-major for C) along with the declared dimensions
of the array, to the subscripting expression, giving an expression for the o�set of the access from the �rst
element of the array. It is important to remember to subtract the lower bound of each declared dimension,
so that the result represents an o�set from the beginning of the array. For example, given the following
Fortran code fragment:

REAL D(128,128)

... D(I,2*J) ...

the access descriptor formed would be

D0
0 + (I � 1) + 2 � 128 � (J � 1).

When the access descriptor is constructed for an array reference which is a parameter in a CALL statement,
the union of all access descriptors for the formal parameter in that position are copied to the call site, the
formal parameter names are translated to the corresponding actual parameter names, and the new starting
point expression (as described above) is added to the starting point expression of each formal parameter
descriptor.
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4.1.1 Constructing the descriptor annotations

The annotations for the descriptor are constructed in a straightforward manner. If the reference is to a
single array element, it obviously doesn't overlap and so is marked with the no-overlap characteristic. If
the single-element reference is a read, the descriptor is marked read-only and if it is a write, it is marked
write-�rst.

For the parameters to a CALL statement, all descriptor annotations are simply copied from the original
descriptors.

The sections which follow, describing the operations aggregation, summarization, and coalescing, each
include descriptions of how to calculate the access characteristics.

4.2 Aggregation

Another operation which is useful for access descriptors is aggregation. Aggregation is an operation which
may be performed on two access descriptors which are conjunctive.

A formal de�nition of conjunctive regions is as follows:

De�nition 1 [Conjunctive Regions] Consider two d-dimensional access descriptors A = A�1;�2;���;�d
�1;�2;���;�d+�

and A0 = A
�01;�

0

2;���;�
0

d

�0
1
;�0
2
;���;�0

d
+ � 0 such that � � � 0. If the dimensions of the two descriptors may be paired such

that all d strides match and at least d� 1 spans match, then we may select a candidate dimension from each
descriptor for the aggregation. If only d � 1 dimensions match, then the candidate dimensions are those
for which the span did not match. If all d dimensions match, then any pair of dimensions with the same
stride, one from each descriptor, may be selected as candidate dimensions. Let us refer to the candidate
dimensions selected, as the stride/span pairs (�ip ; �ip) from descriptor A and (�0iq ; �

0
iq
) from descriptor A'.

If the following conditions hold

1. �ip divides � � � 0, and

2. � � � 0 � �0
iq
+ �0iq ,

then the descriptors are conjunctive.

The aggregation operation is de�ned as follows:

De�nition 2 [Aggregation Operation] Let A and A0 be the access descriptors which are conjunctive

in De�nition 1 with the two stride/span pairs (�ip ; �ip) and (�0
iq
; �0iq). Then, A [ A0 = A

�1;���;�ip ;���;�d
�1 ;���;�ip+t;���;�d

+� 0

where t = � � � 0.

As an example of the aggregation operation, consider the following loop nest:

REAL A(100)

DO I=1,N,2

DO J=1,3

A(3*I+J) = . . .

END DO

DO J=4,6

A(3*I+J) = . . .

END DO

END DO

The two writes to the array A have access descriptors

w
kA

1;6
2;6(N�1)+4 and w

kA
1;6
2;6(N�1)+7
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These access descriptors can be shown to be conjunctive, according to De�nition 1 (all strides and spans
match; �ip = �0iq = 1; 1 divides 7� 4; and 3 � 2 + 1) , and the aggregation operation produces the following
access region descriptor:

w
kA

1;6
2;6(N�1)+4 [ w

kA
1;6
2;6(N�1)+7 ) w

kA
1;6
5;6(N�1)+4

4.2.1 Propagating access characteristics within aggregation

The order of read and write accesses must be determined to evaluate the read/write access characteristic.
If the accesses are only reads or only writes, then it is easy to mark the proper characteristic. However,
when both reads and writes occur, we must determine which comes �rst and the extent of each. If it
can be determined that even a single location is read before being written, the descriptor must be marked
read/write. But if it can be determined that the write accesses happen before the reads and that the write
access region covers the read access region, then we can mark the descriptor write-�rst. This subject has
been extensively discussed in the array privatization literature, for instance in [2].

When two regions are determined to be conjunctive, as described in De�nition 1, then the resulting
descriptor can be marked with the no-overlap characteristic whenever

� � � 0 = �0
iq + �0iq [No overlap � aggregation]

4.3 Summarization

The process of taking an access region de�ned by an access descriptor and forming a new access region which
represents the region accessed during the execution of some outer loop is referred to as summarizing the
access to the loop.

First, the stride of the access due to the particular loop index is determined. To do that, the incremented
form of the descriptor's starting point expression is formed, and the original starting point expression is
subtracted. Then, the di�erence is multiplied by the stride of the index. For instance, for the Fortran loop

DO I = init, high, loopstride

if the starting point expression is a function of I (f(I)), then an incremented starting point expression is
formed by replacing I by I+1 and the original expression is subtracted from it, then multiplied by loopstride:

Stride due to I: (f(I + 1)� f(I)) � loopstride

Next, the span of the access is calculated by multiplying the stride by the number of steps taken within
the loop. the span would be

Span : Stride �Steps

The number of steps is calculated by forming an expression one less than the number of iterations. For
the above DO-loop, the expression would be

Steps : MAX((high�init)=loopstride; 0):

Within loops where it can be proven that there is at least one iteration, the expression can be simpli�ed to

Steps : (high � init)=loopstride:

Then, the new access descriptor is made by copying the dimensions of the original descriptor and adding
a new dimension consisting of the stride and span just calculated. If the stride can be determined to be
negative, the starting point expression of the new descriptor is formed by substituting the last value of the
loop index, for the loop index variable, into the original starting point expression. Otherwise, the �rst value
of the loop index is substituted for the loop index variable in the original starting point expression.
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4.3.1 Propagating access characteristics within summarization

If the dimensions are sorted by strides, �1 being the smallest stride and �d being the largest stride, then if

k�1X

i=1

�i < �k [No overlap � summarization (dimension k)]

holds, then no duplication due to index k can exist in the sequence.
The reason for this is easy to see in terms of the nature of nested loops, and the strides and spans due to

each loop. The nature of a nested loop is that during one iteration of a given loop, all the inner nested loops
must iterate to completion. For the overall sequence of integers to be unique, the values due to any given
loop must \stride over" all the values produced by all loops nested inside it, and the length to be strided
over is represented by the sum of the inner spans.

The read/write characteristics are not changed by summarization.

4.4 Coalescing

The next operation for the access region notation is one which determines when it is possible to reduce the
number of dimensions in an access region descriptor. If it can be shown that two dimensions of an access
descriptor �t together seamlessly (with no gaps), then the number of dimensions in the descriptor can be
reduced by one.

A formal de�nition of coalesceable dimensions follows:

De�nition 3 [Coalesceable Dimensions] Given the access descriptor:

A
���;�j;���;�k;���
���;�j;���;�k;��� + � ;

if the following conditions hold:

1. �j divides �k

2. �j + �j � �k

then the two dimensions j and k are coalesceable, and by eliminating the k-th dimension, we can form the
access descriptor:

A
���;�j;���
���;�j+�k;��� + �:

This condition holds in the above example, where

w
kA

1;6
5;6(N�1)+4 can be written as : w

kA
1
6(N�1)+5+4

The coalescing operation serves to simplify the descriptor of the access pattern, making it easier to do
operations with such descriptors.

4.4.1 Propagating access characteristics within coalescing

When a region can be coalesced, according to De�nition 3 above, then it may be further determined that it
has the no-overlap characteristic when, for the two dimensions j and k being coalesced,

�j + �j = �k [No overlap � coalescing]:

Coalescing does not a�ect the read/write characteristics of the descriptor.
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REAL A(N,M)

DO J=1,Q

DO I=1,M

CALL X(A(1,I),N)

END DO

DO I=1,M

CALL Y(A(1,I),N)

END DO

END DO

SUBROUTINE X(A,N)

REAL A(N)

DO J=1,M

DO I=1,N

A(I) =

= A(I)

END DO

END DO

END

SUBROUTINE Y(A,N)

REAL A(N)

DO J=1,M

DO I=1,N

= A(I)

A(I) =

END DO

END DO

END

�

wA
1;N
N�1;(N�1)�M+0

�

w
kA

1;N
N�1;(N�1)�M+0

� wA1
N�1+(I � 1) �N

� kA
1;N
N�1;(N�1)�M+0

�

A1
N�1+(I � 1) �N

�
wA1

N�1+0
�

w
kA

1
N�1+0

�

A1
N�1+0
�

kA
1
N�1+0

Figure 1: Code example for propagation of access characteristics

4.5 Parallelization using access characteristics

Once the access regions are computed for all loops and all routines are marked with the access characteristics,
the loops may be parallelized based on the access characteristics alone. If an array is accessed in a loop
and its descriptor is marked with either the read-only, write-�rst, or no-overlap characteristics, all potential
dependences due to that array may be eliminated. This is obvious in the case of read-only. The no-overlap
characteristic means that di�erent values of the current loop index never cause a single array element to be
accessed more than once, eliminating the chance for any dependence. The write-�rst characteristic means
that the portion of the array represented by the access region may be privatized, eliminating all dependences
associated with it.

As an example of propagating these characteristics interprocedurally, consider the code in Figure 1. The
access descriptor for routine X is wA1

N�1+0, and for routine Y is A1
N�1+0. When these are translated

through their call sites, the outer I loop around each site causes the access to be no-overlap ( wk A
1;N
N�1;(N�1)�M+0

and kA
1;N
N�1;(N�1)�M+0, for X and Y respectively). Then, when they are aggregated within the outer J

loop in the main program, we �nd that the write-�rst access preceeds the read-write access, with the same
extent, so the result is a write-�rst access: wA1;N

N�1;(N�1)�M+0 for the J loop. This means that the outer loop

may be parallelized since the whole array A may be privatized to the outer loop, eliminating all apparent
dependences for it in the call tree structure.

7



5 General parallelization strategy

The general strategy for parallelizing a program using access regions is to construct the access descriptors
for the program by traversing the loop structure and the call-tree bottom-up, then to transform the program
into parallel form by privatizing arrays and parallelizing loops based on the access descriptors from the
top-down.

5.1 Bottom-up access descriptor construction

To begin the bottom-up construction pass, the call tree is topologically sorted, then the sorted list of routines
is traversed from the leaf routines to the main routine. During the traversal, within a given routine, we scan
the statement list and for each array reference found, we �rst make an access region descriptor representing
the elements of that array referenced by the statement alone (ignoring any surrounding loops). Then, we
traverse the loop structure from the point of reference to the procedure level, applying region abstraction to
successively outer loops and �nally to the whole routine.

Region abstraction involves applying the following three operations (already described in Section 4),
within a given loop or, in the last step, within the whole procedure:

1. [Summarization] Summarize the access regions remaining after aggregation by applying the loop
bounds to the access descriptors (there is nothing for this operation to do at the procedure level).

2. [Aggregation] Attempt to combine separate access regions for a single array into fewer access
regions by applying aggregation to conjunctive regions.

3. [Coalescing] Attempt to simplify the summarized access regions by applying coalescing where
appropriate. If at least one access descriptor was coalesced in this step, when this step is �nished, go
back to step 2.

5.2 Top-down parallelization

Once the access regions are computed for the whole program, the parallelization process proceeds down the
call tree from the main program to the leaf routines. The routines are visited via the topologically-sorted
list used in the bottom-up phase, but in the reverse order.

Within each routine, the statement list is scanned and whenever a loop is encountered, the list of access
descriptors attached to it is checked for access annotations. As stated in Section 4.5, dependences due to
an array reference may be removed when any of the access characteristics \no-overlap", \write-�rst", or
\read-only" are marked on the descriptor. Whenever the write-�rst annotation occurs, the array involved is
privatized, and code to copy the last-value of the private array to the shared array is added. If any access
region which is attached to the loop lacks an annotation, then the loop must be serialized, or checked further
by a di�erent dependence testing technique.

6 Parallelizing TFFT2

6.1 The TFFT2 code structure

The TFFT2 code structure is straightforward, but several di�culties must be addressed by compilers which
try to parallelize this code. Please refer to Figure 2 for the overall structure of this branch of TFFT2.
Simpli�ed versions of the six routines considered in this report are presented in Figures 3 through 5. The
following di�culties for compilers are caused by the TFFT2 program structure:

1. There are �ve code levels due to the subroutine calls inside loops.

2. Array reshaping occurs at the call to FFTZ2, where parameter six changes from one to four dimensions,
and the dimensions change with new values of the outer loop bounds. The �rst dimension of the callee's
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CFFTZWORK

FFTZ2

CMULTF

CFFTZ

RCCFTZ

Program TFFT2

Figure 2: Call tree for the branch of TFFT2 described in this paper

PROGRAM TFFT2

COMMON S(2**20),U(2*2**20), X(2**20+2), Y(2**20+2)

DO II=1,IT

.

CALL RCFFTZ (1,M,U,X,Y)

.

END DO

.

END

SUBROUTINE RCFFTZ (IS, M, U, X, Y)

DIMENSION U(1), X(1), Y(1)

.

CALL CFFTZ (IS, M-1, U, Y, X)

.

END

�

X 1
2M�1+0, Y1

2M�1+0

�

X 1
2M�1+0, Y1

2M�1+0

Figure 3: Highest level routines - main program and RCFFTZ (simpli�ed)
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SUBROUTINE CFFTZ (IS, M, U, X, Y)

DIMENSION U(1), X(1), Y(1)

.

DO I=0,2**(M/2)-1

.

CALL CFFTZWORK (IS, M-M/2, U(1+3*2**(1+M)/2), Y(1+I*2**(1+M-M/2)), X)

.

END DO

DO I=0,2**(M-M/2)

.

CALL CMULTF (IS,N1,U(1+2**(1+M)/2 + I*2**(1+M/2)),

X(1+I*2**(1+M/2)), Y(1+I*2**(1+M/2)))

.

END DO

DO I=0,2**(M-M/2)-1

CALL CFFTZWORK (IS,M/2, U(1+7*2**(1+M)/4), Y(1+I*2**(1+M/2)), X)

END DO

END

SUBROUTINE CFFTZWORK (IS, M, U, X, Y)

DIMENSION U(1), X(1), Y(1)

DO L0=1, (M+1)/2

CALL FFTZ2 (IS,2*L0-1, M, U, X, Y)

CALL FFTZ2 (IS,2*L0 , M, U, Y, X)

END DO

END

�

X 1
2M+1�1+0,

wY1
2M+1�1+0

�

wX 1
21+M=2�1

+0, kY
1
2M+1�1+0

�
r
kX

1
2M+1�1+0,

w
k Y

1
2M+1�1+0

� wX 1
21+M�M=2�1

+0, kY
1
2M+1�1+0

Figure 4: Middle level routines CFFTZ and CFFTZWORK (simpli�ed)
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SUBROUTINE FFTZ2 (IS, L, M, U, X, Y)

DIMENSION U(*), X(*), Y(0:2**(L-1)-1, 0:1, 0:2**(M-L)-1, 0:1)

DO I=0,2**(M-L)-1

DO K=0,2**(L-1)-1

= X(1+K+I*2**(L-1))

= X(1+K+I*2**(L-1)+2**M)

= X(1+K+I*2**(L-1)+2**(M/2))

= X(1+K+I*2**(L-1)+2**(M/2)+2**M)

Y(K,0,I,0) =

Y(K,0,I,1) =

Y(K,1,I,0) =

Y(K,1,I,1) =

END DO

END DO

END

SUBROUTINE CMULTF (IS, N, U, X, Y)

DIMENSION U(*), X(*), Y(*)

DO I=1,N

Y(I) = U(2*I-1)*X(I) - U(2*I)*X(I+N)

Y(I+N) = U(2*I-1)*X(I+N) + U(2*I)*X(I)

END DO

END

�
r
kX

1
2�N1�1+0,

w
k Y

1
2�N1�1+0

�
r
kX

1
2M+1�1+0,

w
k Y

1
2M+1�1+0

Figure 5: Lowest level routines FFTZ2 and CMULTF (simpli�ed)
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array grows exponentially with the outer loop bound and the third dimension shrinks exponentially
with the outer loop bound.

3. The inner-most loops in this part of the call tree, those inside FFTZ2, have loop bounds involving 2
raised to the power of an outer loop index (the loop in CFFTZWORK).

4. The starting point of the reshaped four-dimensional array within CFFTZWORK depends on the loop index.

6.2 Access region summaries of the code (Bottom up pass)

We will start at the bottom of the call tree and proceed up, summarizing the accesses as we go. Array U is
only read in this part of the program, so we won't consider it in the rest of this summary.

6.2.1 Leaf routines FFTZ2 and CMULTF

For the routine FFTZ2, refer to Figure 6 for a diagram of the operations on the access regions for variable
X, and to Figure 7 for a diagram of the operations on the access regions for variable Y.

Starting in routine FFTZ2, we �nd four accesses to both array X and array Y. Even though array X is
declared one-dimensional and array Y is declared four-dimensional, the accesses to both are two-dimensional
since there are two nested loops in this routine.

The references to X (all READ accesses) in the inner-most loop are:

= X(1+K+I*2**(L-1))

= X(1+K+I*2**(L-1)+2**M)

= X(1+K+I*2**(L-1)+2**(M-1))

= X(1+K+I*2**(L-1)+2**(M-1)+2**M)

The index K drives a stride-one access within X, while the index I has a coe�cient of 2**(L-1) in
each case, so it drives an access dimension with a stride of 2**(L-1). The loop bounds determine the
span of each dimension, so the resulting summaries of the four accesses within the outermost loop in rou-

tine FFTZ2 become r
kX

1;2L�1

2L�1�1;2M�1�2L�1+0,
r
kX

1;2L�1

2L�1�1;2M�1�2L�1+2
M , r

kX
1;2L�1

2L�1�1;2M�1�2L�1+2
M�1, and

r
kX

1;2L�1

2L�1�1;2M�1�2L�1
+2M + 2M�1.

Referring to Figure 6, notice that each of these regions can be coalesced, then aggregation can be applied
in two stages, to produce the �nal combined result r

kX
1
2m+1�1+0.

The accesses to Y (which are all WRITEs in FFTZ2) may be similarly summarized. The raw accesses
are:

Y(k, 0, i, 0) =

Y(k, 0, i, 1) =

Y(k, 1, i, 0) =

Y(k, 1, i, 1) =

Summarizing these accesses to the outermost loop in FFTZ2, we get the following access descriptors:
w
k Y

1;2l

2l�1�1;2m�2l+0,
w
k Y

1;2l

2l�1�1;2m�2l+2
m, w

k Y
1;2l

2l�1�1;2m�2l+2
l�1, and w

k Y
1;2l

2l�1�1;2m�2l+2
m + 2l�1. As shown

in Figure 7, �rst we can do aggregation between pairs of access descriptors, then coalescing simpli�es the
two results, and �nally aggregation can be applied again, to get the �nal result w

k Y
1
2m+1�1+0.

The net result is that for the routine FFTZ2, argument X is read with region r
kX

1
2m+1�1+0 and argument

Y is written with region w
k Y

1
2m+1�1+0. This is a surprising result since we see that the argument L does

not a�ect either region, even though at �rst glance the code within FFTZ2 in Figure 5 would make it seem
otherwise. The powerful simpli�cation a�orded by the aggregation and coalescing operations allows us to
see the true nature of the accesses within FFTZ2.

Next, we consider the routine CMULTF (refer again to Figure 5), which is another leaf in the call tree.
The access patterns are fairly simple, compared to those in FFTZ2. Y is written in two places, one with
a descriptor of w

k Y
1
N�1+0 and the other with a descriptor of w

k Y
1
N�1+N . We can use aggregation to fuse

these together as w
k Y

1
2N�1+0. The same operations produce a READ access descriptor for X of r

kX
1
2N�1+0.
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Figure 6: Combination of access descriptors for variable X in routine FFTZ2
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Figure 7: Combination of access descriptors for variable Y in routine FFTZ2
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6.2.2 Middle-level routines CFFTZWORK and CFFTZ

Working our way up to the top of the call tree, the next stop is subroutine CFFTZWORK, where FFTZ2
is called (refer to Figure 4). Since the access regions for the �fth and sixth parameters to FFTZ2 depend
only on the value of the third parameter and that value (M) does not vary within the L0 loop, and the starting
point of each parameter does not vary, the same region is being accessed in each iteration for each call site.
This causes the access regions from the subroutine to lose their \no-overlap" characteristic when they are
summarized to the L0 loop.

We can easily see that since both calls use the same value of M, identical regions are accessed in both calls,
the only di�erence being that the parameters X and Y are reversed between the two calls. The parameter Y is
\write-�rst" in the �rst call, then the same region is \read-only" in the second call. This gives the summary
for Y the \write-�rst" characteristic, since the whole region read within Y is written �rst. The parameter X
is \read-only" during the �rst call, then \write-�rst" during the second call, making it \read-write" when
summarized to the L0 loop CFFTZWORK.

The next stop up the call tree is in subroutine CFFTZ (again refering to Figure 4), where there are
three loops to deal with. The �rst calls CFFTZWORK:

DO i = 0, 2**(m/2)-1

CALL CFFTZWORK(is, m-m/2, u(1+(3*2**(1+m))/2), y(1+i*2**(1+m+(-1)*(m/2))), x)

END DO

The array X is passed to CFFTZWORK in the subscript position which we found to have the \write-
�rst" characteristic. Translating parameter values, we �nd that the access descriptor at the call site for X
is w

k X
1
2m�m=2+1�1

+0. Summarizing this to the outer loop causes it to lose \no-overlap", since the access
descriptor does not involve i at all.

The array Y is passed in the position which is read �rst, then written. The starting address of the
Y parameter which is sent to the subroutine depends on the value of the index (i) of the surrounding
loop. The access descriptor of the CALL itself, pulled from the subroutine summary and translated is
Y1
2m�m=2+1�1

+i � 2m�m=2+1. Summarizing that to the level of the outer loop gives the access descriptor

kY
1;2m�m=2+1

2m�m=2+1�1;2m+1�2m�m=2+1+0. Applying coalescing to that descriptor results in the simpli�ed descriptor

kY
1
2m+1�1+0. Note that there is no overlap between the intervals read and written in di�erent iterations of

the outer i loop. So, the access region for Y can be marked \no-overlap".
The second loop in CFFTZ makes a call to CMULTF:

DO i = 0, 2**(m-m/2)-1

CALL CMULTF(is, n1, u(1+2**m+i*2**(1+m/2)), x(1+i*2**(1+m/2)), y(1+i*2**(1+m/2)))

END DO

In CMULTF, both X and Y are passed with the same starting point in the call statement and the same
region is accessed for both within CMULTF, so the same analysis applies to both. From the summary of
CMULTF, we can construct the access region for Y in the CALL statement, which is w

k Y
1
2�n1�1+i � 21+m=2.

Summarizing this to the outer loop, it becomes w
k Y

1;21+m=2

2�n1�1;2m+1�21+m=2
+0. This generates a no-overlap

sequence as long as 2 �n1�1< 21+m=2 (the no-overlap condition for summarization). Since n1 is set to 2m=2

earlier in this routine, making 2 � n1� 1 equal 21+m=2 � 1, that is true. The coalesced version of the access
descriptor for Y is w

k Y
1
2m+1�1+0. So, the access to X is of the same form: r

kX
1
2m+1�1+0. The only di�erence

is that X is read-only, while Y is write-only.
The third loop in CFFTZ contains another call to CFFTZWORK:

DO i = 0, 2**(m-m/2)-1

CALL CFFTZWORK(is, m/2, u(1+(7*2**(1+m))/4), y(1+i*2**(1+m/2)), x)

END DO

The access descriptor for Y at the call site is Y1
21+m=2

+1 + i � 21+m=2. Summarizing to the outer loop,

it becomes kY
1;21+m=2

21+m=2�1;2m+1�21+m=2
+0. This can be easily coalesced to kY

1
2m+1�1+0, since it satis�es
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the no-overlap condition. The access descriptor for X can be derived from the routine-level summary in
CFFTZWORK, becoming wX 1

21+m=2�1
+0.

The access regions must next be summarized at the routine level of CFFTZ. For the array X, we must
combine the summaries of the three loops: wX 1

2m�m=2+1�1+0,
rX 1

2m+1�1+0, and
wX 1

21+m=2�1+0. They may

be combined as X 1
2m+1�1+0.

For the array Y, the three summaries are kY
1
2m+1�1+0,

w
k Y

1
2m+1�1+0, kY

1
2m+1�1+0. These regions may

be combined as Y1
2m+1�1+0.

6.2.3 Highest level routines

In the routine RCFFTZ, we translate the parameters in the call to CFFTZ, so the descriptors turn out to
be X 1

2m�1+0 and Y1
2m�1+0.

Finally, in the highest level in the call tree, the main program for TFFT2, a loop surrounds the call
site of RCFFTZ, but the loop index of that loop is not involved in the call, so in each iteration accesses
the same locations. The access patterns summarized to the outer loop would be identical: X 1

2m�1+0 and
Y1
2m�1+0.

6.3 Interprocedural parallelization (Top-down pass)

The interprocedural parallelization pass starts at the TFFT2 main program. The summaries on the loop in
the main program indicate overlapping read/write regions for both X and Y, so it is not possible to parallelize
that loop.

Descending into the call tree, through RCFFTZ (which has no loops), to CFFTZ, in the �rst loop
we �nd all parameters to the call to be read-only except Y and X. Y was summarized as \non-overlapping
read/write", and X is summarized as \write-�rst", so, by privatizing X, the �rst loop is parallelizable. The sec-
ond loop calls CMULTF with all parameters read-only except Y, which is summarized as \non-overlapping
write-�rst", therefore it is parallelizable. The third loop is much the same as the �rst loop, with X \write-�rst"
(and therefore privatizable) and Y \non-overlapping read/write", so it is also parallelizable.

We can continue descending the call tree doing the same kind of analysis if the target machine can use
more than one level of parallelization.

7 Conclusion

We have presented a new way of representing array accesses within a program section, called access region
notation. This representation accurately represents the access pattern driven by a set of nested loops
surrounding an array reference, makes it easy to translate the access pattern through a subroutine call, and
makes use of powerful operations to both combine and simplify the representations. This representation is
more accurate than triplet notation, can easily summarize accesses across procedure boundaries, and can
represent all the information needed to eliminate possible dependences within loops.

We have presented a two-pass method for interprocedurally parallelizing a program, based on the access
region notation. The �rst interprocedural pass is a bottom-up pass on the call tree for constructing access
descriptors, and marking them as to their characteristics, such as \non-overlapping write-�rst" or \read-
only". The top-down interprocedural pass simply checks the descriptors for annotations, using them to
parallelize at the outer-most level possible.

Finally, we show in detail how the the SPEC benchmark program TFFT2 can be parallelized using these
techniques, despite the di�cult problems which TFFT2 presents to a compiler.
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