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Distributed memory multiprocessors provide a scalable and a�ordable solution for high

performance scienti�c computing. Accessing the data e�ciently in these machines often requires

complex program transformations based on accurate analysis of the memory access pattern.

This work can be done manually; however, automatic transformation by a compiler is very

important not only because it facilitates the development of new programs in the familiar

sequential paradigm, but also because it may help port the vast amount of legacy code to new

multiprocessor systems with little human e�ort.

This dissertation explores the applicability of fully automatic parallelizing techniques for

distributed memory multiprocessors. In this research, an ordinary Fortran 77 program is as-

sumed as input, and no information is required from the programmers. Only the abilities of

the compiler are used to detect parallelism from the input program, to distribute data, and to

control communication in the system. To achieve this goal, a variety of compiler techniques

are used, including traditional compiling techniques and new techniques developed speci�cally

with distributed memory architectures as the target. Combining these traditional and new tech-

niques, various sequential benchmark programs are tested on one of the distributed memory

machines.
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CHAPTER 1

INTRODUCTION

1.1 Code Transformation for Multiprocessor Systems

In the past two decades, as the limits of semiconductor technology are approached [42], tech-

niques for the architectural design of multiprocessor systems have been in great demand, and

signi�cant progress has been made in that research. As a result, these techniques are now

commonly referred to as major breakthroughs in high-performance computing.

In contrast, the programming of these multiprocessor systems, whose purpose is to fully

utilize these systems, still remains in its infancy. As a consequence, until now, programmers

were usually required to write explicitly parallel programs by hand, posing many di�culties for

the users who needed a multiprocessor system for high-performance computing.

One of these di�culties was that programmers needed to have a thorough understanding

of the characteristics of the target multiprocessor system and the applications they were using.

This increased software development costs and, even worse, made parallel programs hard to port

to other multiprocessor systems because they sometimes had to be rewritten to take advantage
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of the new systems. Above all, because programmers, by nature, are not adept at writing

programs in parallel form, parallel programming was error-prone, and also, maintaining the

programs written in parallel form was di�cult. Without addressing these di�culties, progress

in computational science and engineering would have remained hampered.

Parallelizing compilers, which are designed to automatically transform conventional sequen-

tial codes into parallel form, have been developed for the past twenty years as a solution for

these problems. Such compilers consist of diverse modules that automate the code transforma-

tion procedure so as to minimize as much as possible the need for information from users. In

general, these modules of parallelizing compilers can be divided largely into two components:

frontend and backend. The frontend contains several compiler modules which attempt to expose

or to identify implicit parallelism embedded in a program. Based on the exposed parallelism

information, the backend tries to produce e�cient parallel programs for the target machine,

addressing many crucial code generation issues which are quite often machine-dependent.

The code transformation procedure of parallelizing compilers can be di�erentiated according

to their target machines, as discussed above. In this section, we divide the multiprocessor

systems into two classes, subject to their memory organization, and compare several code

transformation issues of parallelizing compilers between these classes of machines.

The �rst class of machines we consider is shared-memory multiprocessors with Uniform

Memory Access(UMA) architecture. Much work [13, 43, 58, 73] has been done in recent years

on automatic parallelization of conventional sequential codes for these machines. This work has

led to signi�cant progress and has opened the door to several new strategies currently under

study.
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Parallelization techniques for UMA machines are better understood than those for other

classes of machines, mainly because of the simplicity of programming UMA machines. In the

code transformation for UMA machines, parallelism is much more important than any other

issue. Therefore, the parallelizing compiler's frontend tasks for these machines are usually

very complex, while the backend tasks may be as simple as directly mapping the parallelism

information exposed by the frontend to target machine parallel codes through the use of various

language constructs. For this reason, most research on code transformation for UMA machines

has focused on developing compiler techniques that are primarily for the frontend modules of

parallelizing compilers, such as:

{ e�ective dependence detection techniques [14, 30, 60, 61, 73],

{ dependence elimination techniques [21, 59, 69],

{ the optimization techniques for parallel job and loop scheduling [46, 57], and

{ the techniques for optimizing data locality and reuse in caches [38, 40, 72].

The work on parallelizing compilers for UMA machines also has given us the foundations

necessary to tackle the study of compiler algorithms for more complex classes of machines

like distributed memory multiprocessors, the target of the compiler project reported in this

dissertation.

Distributed memory machines provide a scalable and a�ordable solution for high perfor-

mance scienti�c computing. Due to the non-uniformity of memory access in these machines,

the cost of local and remote memory accesses may di�er from one to several orders of magnitude,

thus signi�cantly a�ecting parallel performance.
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Consequently, in distributed memory architecture, parallelism is no longer the only factor

determining good performance of parallel programs; another crucial factor that a�ects the

e�ciency of data access in the system, and therefore must be considered, is communication.

This often requires the backend modules to be very complicated, because they need to perform

program transformations based on the accurate analysis of the memory access pattern, and a

thorough understanding of the machine architecture. This requirement of somewhat machine-

dependent backend modules makes it more di�cult to port parallel codes between distributed

memory machines than between UMA machines. In all, these facts form a more compelling

argument for the importance of parallelizing compilers for distributed memory machines over

UMA machines.

The most common approach to program distributed memory systems is to use

{ standard message-passing libraries [45, 49], or

{ shared-memory programming models [3, 22, 27, 48, 64].

The message-passing programs based on the standard libraries are easy to port, but developing

them requires sophisticated programming skills and a great deal of time because this work is usu-

ally done manually. Compared with message-passing models, programming in shared-memory

models is easier because the software or underlying hardware hides from the programmers most

of the complicated details involved in the data movement and distribution. However, obtaining

good performance from shared-memory programs still requires much work on the part of the

programmer. In order to improve upon this situation, research is actively underway to automate

as much as possible the process of generating e�cient parallel programs [6, 8, 9, 19, 41, 56].
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This dissertation presents our recent work on the development of compiler algorithms to au-

tomatically transform full sequential Fortran 77 codes into parallel form for distributed memory

multiprocessors. These algorithms have been implemented in Polaris [13, 51, 52], a parallelizing

compiler developed by the authors and others. The code transformation does not rely on di-

rectives or any other type of information from the programmer. The compiler gathers from the

source code all the information needed to expose parallelism, distribute data, and control data

movement. This fully automatic parallelization is very important not only because it facilitates

the development of new programs in the familiar sequential paradigm, but also because it may

help to port the vast amount of legacy code to new multiprocessor systems.

1.2 The Polaris Compiler

As discussed in the previous section, parallelizing compilers have been extensively studied during

the past twenty years or so. Especially for UMA machines, academic prototypes and commercial

products of the compilers have been available for many years [71]. The Polaris compiler is one

of these academic prototypes developed at the University of Illinois. Like most others, the main

objective of Polaris is to develop and implement e�ective parallelization techniques for scienti�c

programs.

Polaris was developed to overcome limitations in the analysis and transformation techniques

implemented in other systems and to be robust enough to allow serious experimental studies.

Figure 1.1 shows the two main phases of Polaris.

Taking a sequential Fortran 77 program as input, Polaris converts the program into its

internal representation (IR) form [29]. The IR form includes an extensive collection of powerful
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Fortran 77

BackEnd
Target-specific Code Transformation

FrontEnd
Parallelism Detection

Generic Parallel Code

Distributed Memory Machines
(SGI PowerChallenge, Convex C3)

UMA Shared-memory Machines
(Cray T3D/T3E, Convex Exampler, IBM SP-2)

Figure 1.1: Components of the Polaris compiler

programmanipulation operations that facilitate the implementation of compiler transformations

in Polaris.

After a program is converted into IR form, it is analyzed and transformed by a sequence of

compiler passes, the modules implemented in Polaris. The frontend passes, whose function is to

identify implicit parallelism, include data dependence analysis, inlining, induction variable sub-

stitution, reduction recognition, and privatization [14, 31, 59, 69]. To support data dependence

analysis expressions with symbolic values, additional modules for powerful symbolic constant

and range manipulation [12] have been implemented in Polaris. The frontend outputs the par-

allel program in IR form extended with annotations that identify the parallelism detected by

these modules.

Using the parallelism identi�ed by the frontend, the backend applies machine-speci�c trans-

formations and generates the target parallel program as output. As shown in Figure 1.1, Polaris

has been used to restructure code for a variety of UMA shared memory multiprocessors and,
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due mainly to the simplicity of the structure of UMA machines, good performance results do

not require sophisticated backend optimizations. Therefore, during the past several years, the

main focus of the Polaris group has been only on the frontend in order to accurately identify

parallelism, with very little e�ort devoted to the backend. The experiment result has been that,

on an extensive collection of programs gathered from the Perfect benchmarks, SPEC95fp bench-

marks, and other sources from the National Center for Supercomputing Applications(NCSA),

Polaris produce excellent speedups for the commercial UMA machines listed in Figure 1.1. Fig-

ure 1.2 demonstrates that Polaris substantially outperforms PFA, the native parallelizer of the

SGI multiprocessors [13].

Sp
ee

du
ps

tff
t2

sw
im

tom
ca

tv

bd
na trf

d
mdg

PFA

Polaris

clo
ud

3d

cm
ho

g

ap
ps

p

hy
dr

o2
d

wav
e5

arc
2d

flo
52

| | | | | | | | | | | |

|
|

|
|

|
|

|

0

1

2

3

4

5

6

7

Figure 1.2: Parallel performance of Polaris on SGI Challenge 8 processors

Despite these successful results on UMA machines, the original version of Polaris was not

capable of generating e�cient parallel codes for distributed memorymachines listed in Figure 1.1

because of the naive code transformation algorithms implemented in its backend. To achieve
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reasonable parallel performance on these machines, it is necessary to deal with data distribution,

data movement, and other issues involving communication. For the work presented in this

dissertation, we have extended both the frontend and backend of Polaris (without particular

e�orts devoted to the backend) to generate e�cient code for distributed memory machines

as well. The distributed memory machines that Polaris is currently considering are listed in

Figure 1.1.

1.3 Code Transformation for Distributed Memory Machines in

Polaris

As discussed in the previous sections, speedups on distributed memory multiprocessors depend

mainly on two important factors: parallelism and communication. If the programs are intrin-

sically serial or if the compiler cannot identify parallelism embedded within them, we cannot

expect good parallel performance. Also, we have seen that high communication costs resulting

from frequent remote memory accesses are a serious obstacle to attaining good performance in

these systems. Good performance is possible only when both of these factors are dealt with

through powerful dependence analysis, and through proper data and work partitioning across

the system.

In this section, we will �rst provide an overview of several well-known code transformation

strategies for distributed memory systems. Based on the analysis of these strategies, we chose to

follow a di�erent approach, which we also briey discuss in this section. Finally, in this section,

we will discuss several research issues, including the Access Region, a new region analysis

technique that enhances the e�ectiveness of our approach.
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1.3.1 Overview of Code Transformation Strategies

A frequently-followed approach when programming distributed memory systems can be called

data-partition oriented. The approach consists of trying to �nd a good data partition [41,

6] that leads to low communication costs along with maximum possible parallelism. Work

partitioning or computation assignment to processors is usually done as a function of the data

layout, following strategies such as the owner-compute rule [68]. In some cases, these work

partitioning rules may sacri�ce load balancing for low communication costs and simpli�cation

of loop scheduling. Sometimes parallelism is reduced to obtain better data locality [4].

The data-partition oriented approach often involves complex data and work partitioning,

plus occasional data redistribution [19, 56] which may be needed when the access patterns

change. The techniques based on this approach work well on applications with a regular mem-

ory access pattern. Finding an optimal data partition, however, is often problematic because

many scienti�c applications contain several di�erent algorithms that require conicting dis-

tribution strategies for fast execution. For example, in the subroutine foo in Figure 1.3, an

array X is accessed horizontally in the �rst loop nest and vertically in the second. Conventional

techniques may start the program with X distributed by rows, and redistribute X by columns

somewhere between the two loop nests. If M is less than N, this redistribution will cause ad-

ditional communication to move data unrelated to this computation. Also, it is impossible to

have a communication-free data partition for Y because the access regions are overlapped across

loop iterations.

Aliasing is another common factor that makes data partitioning di�cult. In the example, if

the dummy arrays X and Y are aliased to the same array (a common style of programming prac-

tice), then it becomes di�cult, or impossible in some cases, to have di�erent data distributions
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subroutine foo(X,Y,Z,M,N)

real X(N,N), Y(*), Z(*)

� � �

doall I = 1, M

X(I,1) = Z(2**(M-I))

do J = 1, M

X(I,J+1) = X(I,J) + Y(I+J)

enddo

enddo

� � �

doall J = 1, M

do I = 1, J

X(I+1,J) = X(I,J) + Y(J-I+1)

enddo

enddo

Figure 1.3: Code example to illustrate the data distribution issue

for them. Above all, to determine the proper data placement, we need additional information

about all other arrays aliased with X and Y in other subroutines, which requires a very complex

interprocedural analysis. Complex subscripting patterns, including subscripted-subscripts and

non-a�ne expressions, are also well-known factors that prevent the identi�cation of optimal

solutions, as in the case of the array Z in the example.

The data-partition oriented approach is particularly e�ective when remote memory accesses

in the target machine are quite expensive. This is the case in some systems, such as loosely-

coupled multicomputers, and networks of workstations. But, our experience [54] tells us that we

do not have to follow this approach for several existing machines [23, 25, 32, 33] which support

very low remote memory latency; although the data partition issue still remains important in

these machines, we have found that it is possible to obtain reasonable speedups for a wide

spectrum of scienti�c applications on these machines even without sophisticated data partition

algorithms.
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Based on all these observations, we decided to follow an approach, summarized in Figure 1.4,

that is not data-partition oriented. First, parallelism is exposed from the input program. Then,

using the parallelism information, our algorithm tries to evenly distribute parallel work prior

to considering any data distribution. Given the work distribution, the data regions that each

individual processor accesses are identi�ed. Based on the memory access pattern, data are

privatized to reduce communication overhead and improve locality, and all non-privatized arrays

are simply block-distributed across the distributed memories. Finally, most of the non-local

accesses in the code are localized by copying shared data to private data using data prefetching

and poststoring strategies.

Parallelism
Detection

Work
Partitioning

Data
Privatization

Data
Distribution

Data
Localization

- - - -

Sequential Fortran 77 Code Target Parallel Code

?
6

Figure 1.4: Code transformation for distributed memory multiprocessors in Polaris

We discuss in detail this transformation procedure in Chapter 3. As can be seen from the

performance results presented in Chapter 4, data localization and other techniques discussed

in this thesis compensate for the lack of sophisticated data distribution techniques at least in

the T3D, one of the target machines we consider in this study.

1.3.2 Research Issues

The code transformation algorithm shown in Figure 1.4 requires three important compiler

analysis techniques:

1. data dependence analysis
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2. communication analysis

3. symbolic access region analysis

Data dependence analysis and communication analysis are the techniques used to address the

two key issues that a parallelizing compiler for distributed memory machines should consider:

parallelism and communication. In fact, detection of parallelism in sequential codes is the

key ingredient to successful automatic parallelization for all types of modern multiprocessors.

The increasing use of computers with large numbers of fast processors is making it even more

important for compilers to �nd large amounts of parallelism within a program.

The data localization phase generates data prefetching and poststoring operations between

local and remote memory. However, naive data copying operations may increase communication

overhead too much and o�set the advantages of the prefetching and poststoring strategies.

Clearly, a sophisticated communication analysis is required to keep this overhead at a reasonable

level.

To simultaneously support powerful dependence analysis and communication analysis, a

parallelizing compiler must have an e�cient and exible way of representing and manipulating

memory access patterns. We found that most existing representations, such as triplet notation

(also called regular section descriptor) [14, 20, 68, 70] and convex regions [7, 26] sometimes

must discard critical information. This prevents the detection of parallelism in certain loops

as well as prevents e�cient communication analysis for data copying. For this purpose, we

have conducted an in-depth study of access patterns in many scienti�c benchmark programs

to develop a new representation called the Access Region [53], a generalization of traditional

triplet notation.
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Access region analysis often needs e�ective symbolic analysis because it must handle in its

analysis many symbolic terms (for example, program variables whose values are unknown at

compile time). In our access region analysis, we employ various techniques already implemented

in Polaris for this purpose, such as constant propagation, induction variable substitution, sym-

bolic range propagation, and simpli�cation of symbolic expressions [12].

1.4 Organization of Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we will discuss the access

region analysis used in our code transformation algorithm. In the discussion, we will �rst

present the motivation for a more powerful representation to be introduced to our access region

analysis. Then, we will describe the Access Region and several basic operations on it. Finally,

we will show how the Access Region can be used for dependence analysis and communication

analysis.

In Chapter 3, we will discuss in detail our code transformation strategies for distributed

memory multiprocessors. In the presentation, we �rst discuss the shared-memory programming

model and the distributed memory machines that we are targeting by the transformation. After

this, we will detail each phase of the code transformation procedure shown in Figure 1.4.

To evaluate the e�ectiveness of our techniques, we have conducted experiments on one of our

target machines using various sequential codes from the SPEC95fp [62] and Perfect [11] bench-

marks. We chose the Cray T3D [23] as our target machine in the experiment. In Chapter 3,

the speci�cation of the T3D and several code transformation issues that are T3D machine-

dependent are �rst presented. The experimental results and the analysis on the results follows.
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In Chapter 5, we will discuss a few additional techniques, and conclude this dissertation.

Although these techniques are not used to obtain the results reported in Chapter 3, they have

been found helpful to further improve performance in our hand experiments [47].
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CHAPTER 2

ACCESS REGION ANALYSIS

Communication optimization [54, 55] for distributed memory systems depends heavily on ac-

cess region analysis, the analysis of array subscripting patterns in a program. There are also

many other important compiler problems depending on the analysis, including dependence

detection [12] and array privatization [69].

For access region analysis, it is necessary to represent the array accesses in some standard

fashion. For instance, Tu and Padua [70] approximated access regions with the triplet notation

in their array privatization work. The same notation was used by Tseng [68] and Chatterjee, and

Gilbert and Long [20] for message generation. To gain simplicity, Blume and Eigenmann [14]

excluded the stride from the triplet notation in their dependence test, but this was at the expense

of accuracy. Convex regions [26] express the geometrical shape of array accesses. They can be

used with Fourier-Motzkin-based dependence tests [60, 67]. Balasundaram and Kennedy [7]

proposed a simpli�ed form of the convex region representation to detect task parallelism.

Such representations are designed to balance their compile-time e�ciency and accuracy.

Generally, design decisions leading to these forms have come down on the side of reducing
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accuracy, or limiting accuracy to that needed for a speci�c compiler module in order to increase

e�ciency. But, limited accuracy can prevent compiler transformations. We have found that, in

some important cases, compiler techniques based on traditional access region representations

are not e�ective due to either the ine�ciency or inaccuracy of the representations.

Based on our experience with the Perfect [11] and SPEC95fp [62] benchmarks, and other

full scienti�c codes, we have developed the Access Region, a region access representation which

takes advantage of the clear structure inherent in the array accesses of most scienti�c programs.

Our design attempts to allow maximum accuracy without sacri�cing e�ciency.

Section 2.1 shows several instances encountered in our empirical experience that indicated

the limitation of the triplet notation as the region representation, which motivated us to develop

a new region representation for Polaris. Section 2.2 and 2.3 describe this new representation,

and Section 2.4 discusses operations on the representation. Section 2.5 discusses the module

being implemented in Polaris to process these representations, and Section 2.6 shows how it is

used for the access region analysis in the parallelization for distributed memorymultiprocessors.

2.1 Motivation for Better Access Representations

Our experiments indicate that compiler modules in the Polaris parallelizer which uses the triplet

notation for array access patterns often are not e�ective due to the limited accuracy of the triplet

notation. In this section, we will discuss some examples found in our experiments.

2.1.1 Dependence Analysis

Polaris has been successfully obtaining speedups for many scienti�c applications on a variety

of shared-memory multiprocessors. However, we have seen that Polaris still fails to obtain
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good speedups on some applications. We carefully studied these programs and found one

reason is to be that the limited accuracy of the triplet notation made unable to handle several

common access patterns occurring in these programs, thus leading to preventing Polaris from

parallelizing loops in these programs. For instance, these programs commonly contain complex

access patterns such as those involving multiple strides and diagonal access patterns. Also,

these access patterns typically depend on many symbolic values in the program, often unknown

at compile time. Consider the loop in Figure 2.1 which is extracted from INTRAF do1000, one

of the most time consuming loops in the MDG benchmark.

do I=1,M,N

� � �
FX(I)=FX(I)*FHM

FX(I+2)=FX(I+2)*FHM

FX(I+1)=FX(I+1)*FOM

� � �
enddo

Figure 2.1: Simpli�ed code from MDG

Polaris was not able to parallelize this loop because the value of N is statically unknown.

However, it is easy to see that the loop is parallelizable for N > 2. In order to handle this

case, we need a representation which can handle multiple strides, with conditions, and some

mechanism to manipulate them to generate predicates for run-time tests. The triplet notation

used by Polaris cannot support this manipulation and Polaris, therefore, simply serializes the

loop. Without this mechanism, we might have to employ expensive run-time techniques [61, 63]

in order to parallelize this loop.

As another example, consider the loop in Figure 2.2, which can be found in FFT programs

such as the TFFT2 benchmark. It is the most important loop in TFFT2 and contains several

complications:
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� both the K and J loops are triangular loops;

� the subscript expressions of array references to X are non-a�ne; and

� the access pattern for X has multiple varying strides: 1 and 2L�1.

do I = 0, 2**M-1

do L = 1, (1+M)/2

do J = 0, 2**(1+M-L)-1

do K = 1, 2**(L-2)

� � �
X(K+J*2**(L-1)) = � � �
X(K+J*2**(L-1)+2**(L-2)) = � � �
� � �

enddo

enddo

do J = 0, 2**(M-L)-1

do K = 1, 2**(L-1)

� � �
� � � = X(K+J*2**(L-1))

� � � = X(K+J*2**(L-1)+2**M/2)

� � �
enddo

enddo

enddo

enddo

Figure 2.2: Code from TFFT2 after inlining and induction variable substitution

The portion of the array X which is used in this loop is privatizable because the part of the array

which is read is completely covered by the part that is written. However, any representation

which cannot handle non-a�ne expressions cannot represent this access region. Although the

Polaris dependence analyzers [12, 69] can handle non-a�ne expressions, the other complexities

involved in these access patterns prevent them from privatizing X to parallelize this loop.
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2.1.2 Communication Analysis

Communication optimization for distributed memorymachines, such as the Cray T3D [5, 23, 39]

and the SGI Origin [65], showed a need for gathering even more precise array access information

for supporting e�cient data movement and copying between distributed memories. For instance,

for data movement in these systems, the communication analyzer often needs to selectively

decide between small exact(MUST) regions and a large approximate(MAY) region in order to

reduce remote memory latency. To meet this requirement, an access region representation must

support the notion of accuracy.

2.2 Description of Access Regions

In our quest for a better access pattern representation, we considered the convex regions.

However, forms that represent access patterns by sets of constraints typically must use a more

general dependence test [60], which is not e�ective for non-a�ne expressions. Forms that use

the triplet notation cannot handle such complicated access patterns, as discussed earlier, but

lend themselves to more e�cient manipulation in many parts of a compiler. We, therefore,

decided to develop a new representation by combining the accuracy of convex regions with the

e�ciency of triplet notation, along with information about accuracy to inform the compiler

modules of the accuracy of the region they are dealing with.

In our approach, we attempt to keep the exact region access pattern as long as possible.

There are times when we cannot avoid losing accuracy; when this is the case, we mark that the

access information is approximate.
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2.2.1 Components of Access Regions

Within a program section such as a loop or a procedure, a reference to an arrayX is represented

by X(s(I)) where s(I) is the subscript function de�ned on the set of indices I = fi1; i2; � � � ; img

in which each index ik varies from lk to uk with stride sk , denoted as [lk:uk:sk ], within the pro-

gram section. s(I) need not be a�ne. If X is multi-dimensional, then the subscript expression

is linearized [17] to generate s(I). The array region R accessed by the array reference is repre-

sented by the four-tuple

R = (Access Descriptor, Accuracy, Access Type, Predicates)

where the access descriptor is represented by two parts, the access function and index ranges:

(f(I))[i1 = l1 : u1 : s1][i2 = l2 : u2 : s2] � � � [im = lm : um : sm].

The accuracy is either

MUST or MAY

where accuracy MUST indicates that R is accurate and MAY indicates that it could be an

overestimation. An access region R may have three values as the access type:

READ, WRITE, and �

where R has access type READ if R is only read by the corresponding reference(s). Similarly,

it has access type WRITE if R is only written. Otherwise, R has access type � (e.g., if R is

both read and written). The predicates are conditions under which R is valid.

The access function f(I) is the same as the corresponding subscript function s(I), as long as

s(I) is a monotonic function [74] within the index ranges. Although many subscript functions

encountered in scienti�c programs may not be a�ne, most are monotonic so that they can

be used to generate monotonic access functions directly. Those few which are not monotonic

may be converted to a monotonic function with a possible accuracy loss. For instance, in
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Figure 2.3, the access region for IV is ((J-2)[J=1:N:1],MUST,READ,Ty) since J-2 is clearly

monotonic. However, for the access region for V, ((IV(J-2))[J=1:N:1],MUST,READ,T), we

cannot determine whether IV(J-2) is monotonic unless we have knowledge about the contents

of IV. In this case, we may convert the access region for V to ((J)[J=VLOW:VHIGH:1],MAY,� � �),

at the cost of accuracy of access information, to obtain a simpli�ed monotonic function J which

covers all the possible access region by V(IV(J-2)).

subroutine foo(X,Y,Z,W,M)

real V(VLOW:VHIGH),W(M,*),X(*),Y(M,*),Z(*) � � �
� � �
do J = 1, N

do I= 1 ,J

W(2*J,I) = V(IV(J-2))

enddo

if (P) then

Q(3*I) = � � �
endif

enddo

� � �
do I = 1, N, 1

do J = 1, N, 1

do K = 1, 4*J, 2

X(I+5*J+K) = Z(N*J+I)

enddo

Z(J+N*I) = Y(C,D) + Y(I+1,I)

enddo

enddo

Figure 2.3: Code example for the Access Region representation

Predicates add precision to R. In Figure 2.3, even when the compiler cannot determine the

value of P, the access region for Q can be represented by ((3I)[I=1:N:1],MUST,WRITE,P). Alter-

natively, for ow-insensitive analysis, we may represent this as ((3I)[I=1:N:1],MAY,WRITE,T).

Also, when we linearize the subscript expression of the multi-dimensional array W in the �gure,

y
T represents TRUE, which means that there is no constraint on this region.
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we might lose the original array dimension information. In order to avoid that, we can extract

predicates from the array dimension information to produce the region

((2J+(I-1)M)[J=1:N:1][I=1:J:1],MUST,WRITE,1� 2J �M).

In the operations in Section 2.4, this extra predicate will be used through the range dictio-

nary [12] combined with various symbolic manipulation modules to supply accurate symbolic

range information.

2.2.2 Abstract Access Form

We have seen that, for the most part, within limited sections of a program, the access regions

of interest have a regularity of structure. By this we mean that the common accesses are very

structured in real cases. Furthermore, quite often, related access regions have a similarity of

structure. This is generally true because several references to a single array within a loop

nest are generally accessed using the same loop indices and with similar subscript expressions.

Experimental evidence for the regularity and similarity of array subscripting may be gleaned

from the work of others [14, 60, 66] who note that their dependence tests, built to be e�ective

and fast speci�cally for regular and similar access patterns, are successful for most access

patterns encountered in real scienti�c programs. For a more speci�c description of similarity

and regularity, consider the example in Figure 2.4.

We try to capture the properties of regularity in our region access representation in terms

of two important characteristics: strides and spans. A regular access region R for an array

is composed of a �nite number of discrete array elements, arranged in a region according to

regular strides. The collection of elements separated by the same stride stretches for a �nite

distance which we call a span. In Figure 2.4, the access made by array reference X(5*I-4)
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subroutine foo(X)

� � �
do I = 1, 4

� � � = X(5*I-4)

do J = 1, 3

� � � = X(5*I+J-4)

� � � = X(5*I+J-3)

enddo

enddo

� � �
do K = 1, 5

� � � = X(4*K)

� � � = X(4*K-2)

enddo

� � �

Figure 2.4: READ accesses to array X within subroutine foo

has a stride of 5 and a corresponding span of 15 since the elements accessed made by the

reference stretch from X(1) to X(16) with regular stride 5; this can be represented equivalently

by triplet notation X(1:16:5). Similarly, the accesses made by two references X(5*I+J-4) and

X(5*I+J-3) are composed of two strides, 5 and 1, due to loop indices I and J, respectively,

with the strides having their matching spans, 15 and 2.

We can �nd the similarity of accesses shared by three references, X(5*I-4), X(5*I+J-4)

and X(5*I+J-3). Likewise, the accesses made by two references, X(4*K) and X(4*K-2), can be

found to be similar. These examples illuminate to us that those similarities are closely related

to the strides and spans involved in those access patterns; that is,

\Access patterns composed of the same (or almost same) strides and spans are similar".

For the formal description of strides and spans, suppose that f(I) is a monotonic access function

de�ned on the set of indices I = fi1; i2; � � � ; img where lk � ik � uk; 1 � k � m. We �rst de�ne

the span of f(I) due to ik 2 I to be the maximum distance moved by varying only ik:

�ik = jf(i1; � � � ; ik�1; uk; ik+1; � � � ; im)� f(i1; � � � ; ik�1; lk; ik+1; � � � ; im)j.
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In our Access Region notation, a zero span indicates a single element region, and a negative

span indicates an empty region. For �ik > 0, the stride of the access due to ik is de�ned to be

�ik = jf(i1; � � � ; ik�1; ik + sk ; ik+1; � � � ; im)� f(i1; � � � ; ik�1; ik; ik+1; � � � ; im)j,

and it can be any integer number for �ik � 0.

Using the characteristics of span and stride, the access region R can be represented by

another form, which we call the abstract access form, as follows:

R = ( A
�i1 ;�i2 ;���;�im
�i1 ;�i2 ;���;�im

+ l, Accuracy, Access Type, Predicates )

where l is the lower bound of R, which is the o�set from zero of the �rst element in R. In this

form, the access descriptor is represented by a list of the spans and strides where we de�ne

(�ik ; �ik) to be the k-th stride/span pair of R.

Using the abstract access form, we try to capture the similarity of the structures of di�erent

access regions. First, we de�ne the `degree of similarity' between access regions in terms of

stride/span pairs and lower bounds.

De�nition 2.1 Access regions are isomorphic if they represent the same access pattern.

As an example of isomorphic regions, consider the access pattern in Figure 2.5, which covers

the range from Z(0) to Z(11) with stride 1. This access pattern could be represented by triple

notation Z(0:11:1), which is represented equivalently by access region Rz with descriptor

A1
11(+0), denoted in upper solid lines in the �gure. The lower solid lines represent the access

region R0
z with descriptor A1;2

1;10, and we see that Rz and R0
z are isomorphic because they

represent the same access pattern. A region with access descriptor A3;1
9;2, denoted in dashed

lines, is another isomorphic region of Rz and R0
z. So is a region with access descriptor A1;3;6

2;3;6.

From the above examples, we learn that an access pattern can be represented by numerous

access descriptors with di�erent stride/span pairs. In fact, there are an in�nite number of
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Z(0) Z(1) Z(2) Z(3) Z(4) Z(5) Z(6) Z(7) Z(8) Z(9) Z(10) Z(11)

A1
11 + 0

A1;2
1;10 + 0

A3;1
9;2 + 0

-

XXXXXz
XXXXXz

Figure 2.5: Isomorphic regions for the access to array Z

access descriptors for a region which represent the same region. To show this, let's consider the

following theorem.

Theorem 2.1 An access descriptor A�1;���;�k;���;�m
�1;���;�k;���;�m

+ l, which represents a region R, can be

expanded to form other descriptors which also represent R by adding a stride/span pair (��; 0)

in any position, such as A�1;���;�
�;�k;���;�m

�1;���;0;�k;���;�m
+ l, and A�1;���;�k;�

�;���;�m
�1;���;�k;0;���;�m

+ l, where �� can be any

integer number.

PROOF: By the de�nition of a zero span, it is obvious that adding a stride/span pair (��; 0)

to an arbitrary access descriptor does not add any new elements to the access region which is

represented by the descriptor, nor does it subtract any elements from the region. Therefore,

the access region represented by the access descriptor with (��; 0) has the same elements as the

original access region. For instance, consider a region represented by A1;2
1;10 in Figure 2.5. It is

clear that none of the access descriptors, A��;1;2
0;1;10 , A

1;��;2
1;0;10 or A1;2;��

1;10;0 , change the original access

pattern at all (this can be seen by drawing the access regions for each descriptor). 2

By Theorem 2.1, we can see that a region represented by A1;2
1;10 also can be represented in

in�nite ways (e.g., by descritors Ai1;1;2
0;1;10, A

i1;i2;1;2
0;0;1;10 , A

i1 ;i2;i3;1;2
0;0;0;1;10 , and so on, where ik, k � 1, can

be any number).
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Given access regions R1 and R2, with lower bounds l1 and l2 respectively, we characterize

the regions based on their stride/span pairs and lower bounds as follow;

1. jl1 � l2j is the distance between the regions.

2. If the distance is 0, then the two regions are aligned. Otherwise, they are non-aligned.

3. Stride/span pairs (�1; �1) from R1 and (�2; �2) from R2 match if �1 = �2 and �1 = �2.

From these de�nitions on access regions, we draw the following theorem.

Theorem 2.2 Suppose that two access descriptors A and A0 have the same number of stride/span

pairs and the same lower bounds. If each stride/span pair in A has a unique matching stride/span

pair in A0, then the regions represented by the two access descriptors are identical and, therefore,

the two regions are isomorphic.

PROOF: It is trivial to show that a region represented by access descriptor A
�1;���;�i;���;�j;���;�m
�1;���;�i;���;�j ;���;�m

+ l

can be represented equivalently by access descriptor A
�1;���;�j;���;�i;���;�m
�1;���;�j;���;�i;���;�m

+ l. This tells us that

the order of stride/span pairs in the access descriptor does not change the representation of the

access region itself. 2

Converting the access region to the abstract form helps us to identify the similarity between

access patterns using Theorem 2.2. For instance, in Figure 2.3, the abstract access form

(AN;1
N2�N;N�1 +N + 1,MUST,READ,T)

is for the access region of Z(N*J+I), ((NJ+I)[J=1:N:1][I=1:N:1],MUST,READ,T). Similarly,

the form

(A1;N
N�1;N2�N +N + 1,MUST,WRITE,T)

is for the access region of Z(J+N*I), ((J+NI)[J=1:N:1][I=1:N:1],MUST,WRITE,T). Since we
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can �nd corresponding matching stride/span pairs, the two regions are isomorphic. Also, they

have the same lower bound N +1; thus, we can prove that the WRITE region of Z(J+N*I) and

the READ region of Z(N*J+I) are exactly the same.

This abstract access form is not limited by the original array dimensionality. By lineariza-

tion, for instance, we can represent access patterns for multi-dimensional arrays. In Figure 2.3,

the array Y is accessed along a diagonal. We apply linearization to the subscript expression and

represent it accurately as AM+1
(N�1)(M+1) + 2. Traditional triplet notation would have to express

such a diagonal access pattern as Y(2:N+1:1,1:N:1), which is inaccurate. The abstract form

here makes it obvious that the access is regular, with a single stride. Also, notice that the

access region for the single element Y(C,D) can be represented by A��

0 + C+ (D� 1)M where ��

can be any integer number.

Sometimes, a span or stride may not be a constant, varying on the values of indices in I.

Figure 2.6 shows a simpli�ed version of code in Figure 2.2. The access region for X(2**I+J) is

((2I+J)[I=1:N:1][J=1:2I:1],MUST,WRITE,T), and the access descriptor of its corresponding

abstract form is A2I ;1
N;2I�1

+3 where index I varies from 1 to N . Here, �I and �J vary depending

on the value of index I, while �J and �I are a constant or a symbolic constant. This case

typically happens in triangular loops or when the subscript functions are non-a�ne.

do I = 1, N, 1

do J = 1, 2**I, 1

X(2**I+J) = � � �
enddo

enddo

Figure 2.6: Simpli�ed code example from TFFT2 in SPEC95fp benchmarks
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De�nition 2.2 Suppose that I is a set of indices fi1; i2; � � � ; img within a program section,

on which an access descriptor A
�i1 ;�i2 ;���;�im
�i1 ;�i2 ;���;�im

+ l is de�ned. An index ik 2 I is de�ned to be

region-dependent on an index ik0 2 I if either �ik or �ik is an expression containing ik0.

In Figure 2.6, index J is region-dependent on I because �J contains index I, and I is

also region-dependent on itself. As another example in Figure 2.7, J is region-dependent on I

because �J(=I-1) contains I.

do I = 1, N, 1

do J = 1, I, 1

X(I*(I-1)/2+J) = � � �
enddo

enddo

Figure 2.7: Simpli�ed code example from TRFD in Perfect benchmarks

In order to apply the region operation techniques discussed in Section 2.4, we need to

handle the region-dependent indices in R so that all strides and spans in the access descriptor

are constant. In the next section, we describe how we could handle the region-dependent indices

when we generate the abstract access form.

2.2.3 Generating Abstract Access Form with Coalescing

Although many access regions encountered in scienti�c applications are generated by multiple

indices, they usually form stream accesses with simpler structures when they are aggregated.

That is the case where the references to an array make a series of contiguous accesses with

one index and jump over those accesses with another index to start a new section of accesses.

As an example, note the loop in Figure 2.8. The references to both arrays SX and SY access

�ve contiguous elements with stride 1 and jump the elements with stride 5 to the next section,
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resulting in contiguous access to the arrays from the M-th element to the (N+4)-th element.

Similar access patterns also can be commonly found in full scienti�c programs [13].

do 50 I = M,N,5

STEMP = STEMP + SX(I)*SY(I) + SX(I+1)*SY(I+1) +

* SX(I+2)*SY(I+2) + SX(I+3)*SY(I+3) + SX(I+4)*SY(I+4)

50 continue

Figure 2.8: A loop in the SDOT routine from the BLAS library

The access pattern generated by multiple indices with various strides is usually represented

by an access region with the same number of stride/span pairs. However, as we discussed in

Section 2.2.2, an access pattern can be represented by various isomorphic regions with a di�erent

number of stride/span pairs. In the case of contiguous access, like that shown in Figure 2.8, the

pattern always can be represented by an access region with a single index. For instance, the

access region representation ((I+J)[I=1:N:4][J=0:2:2],� � �) has two indices with strides 2 and 4.

Here, the index I is redundant because we can represent the same access region only with index

J after combining the index ranges into the form ((J)[J=1:N+2:2],� � �).

Coalescing is a technique for simplifying the region representation by eliminating these

redundant indices, as described in Figure 2.9, where the form �ij(uk) refers to the value of the

expression �ij with uk substituted for ik. In the algorithm, the access regionR is of the abstract

access form, and indices ij and ik are de�ned in R with index ranges [lj :uj :sj ] and [lk:uk:sk],

respectively. coalesce region determines whether ik is redundant. If so, it removes ik and

combines the original index ranges to generate the new range for ij . In order to determine

whether ik is redundant, the stride of ik and stride/span pair of ij must be examined to test if

ij can represent the same access region without ik by adjusting the span �ij .
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coalesce region(R, ij, ik) f
if (�ij divides �ik and �ik � �ij + �ij) f

remove redundant index ik from R
if (ij is region-dependent on ik)

�ij = �ij (uk) + �ik
else

�ij = �ij + �ik
g

g

Figure 2.9: Algorithm sketch for coalescing a region

Consider the example shown in Figure 2.3 to illustrate the colealescing operation. In the

example, the access region for Z(N*J+I) has the access descriptor AN;1
N2�N;N�1 + N + 1. The

coalesce region routine converts the region to a formwith a simpler descriptor A1
N2�1+N+1,

since �I(= 1) divides �J (= N), and �J � �I+�I(= N). Similarily, we obtain the same coalesced

region for Z(J+N*I) in the example.

When we gather array region information from the program and convert the information to

an abstract form, we apply coalescing to eliminate unnecessary indices from R. The coalescing

operation for a region with m stride/span pairs needs, in the worst case, m2 �m invocations

of routine coalesce region for pair-wise comparisons.

According to our study, coalescing in many cases [12] helps us to remove non-constant strides

or spans from the access descriptor in the abstract form. The access descriptor A2I ;1
N;2I�1

+ 3

from TFFT2 in Figure 2.6, for example, can be coalesced to a simpler form A1
2(N+1)�1

+ 3 by

removing the index I . The resulting abstract form, therefore, contains only constant strides

and spans. Similarly, the original descriptor A1;I
I�1;N2�N

2 �1
+ 3 from TRFD in Figure 2.7 can be

coalesced to A1
N2+N

2 �1
+ 3.

In some cases where coalescing cannot remove those indices from the access descriptor, we

may convert the original access region to an overestimated MAY region in order to eliminate
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them. For instance, if index j is region-dependent on a set of indices i1; � � � ; in, then we apply

the following heuritic rules;

1. the new stride �0
j = 1

2. the new span �0j = max(�j) subject to the index ranges [i1=l1:u1:s1]� � �[in=ln:un:sn]

Consider the triangular loop in Figure 2.10 as an example. The access region for X is

(A1;M
I�1;(N�1)M + 1,MUST,WRITE,T)

after linearization. The coalesce region algorithm cannot remove the index I in the access

descriptor without converting the original region to

(A1;M
N�1;(N�1)M + 1,MAY,WRITE,T)

since max(I � 1) = N � 1 for I is in the range [I=1:N:1].

real X(M,*)

� � �
do I = 1, N, 1

do J = 1, I, 1

X(J,I) = � � �
enddo

enddo

Figure 2.10: Triangular loop example

Although we may lose accuracy of region information by the conversion to a MAY region

in this example, this approximate information is no less accurate than can be represented

by the triplet notation X(1:I:1,1:N:1) which can be converted to an approximate region

X(1:N:1,1:N:1) [69]. We have found that this approximate information can still be useful in

many ow-insentive analyses, including communication analysis for data block prefetching and

poststoring.
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2.3 Characteristics of Access Regions

In general, it is very di�cult to obtain the exact solution for the problem of the operations

between arbitrarily-shaped access regions. The algorithm to deal with this problem would be

too complicated or sometimes even intractable. For instance, consider the intersection of two

access regions.

Theorem 2.3 The problem of intersection between m arbitary access regions is NP-hard.

PROOF: Let Ci, 1 � i � m and D be n-tuples of integers; that is, Ci = (ci1; ci2; � � � ; cin) and

D = (d1; d2; � � � ; dn). Suppose that we are provided with an integer programming problem to

�nd an n-tuple of integers (x1; x2; � � � ; xn) such that a system of m2 equalities

(cj1 � ci1)x1 + (cj2 � ci2)x2 + � � �+ (cjn � cin)xn = 0

holds subject to the constraints 0 � xk � dk, 1 � k � n and 1 � i; j � m. By the de�nition

of the Access Region, we can transform this integer programming problem into a problem of

intersection between m access regions Ri, 1 � i � m, represented by m access descriptors

A ci1; ci2;���; cin
ci1d1;ci2d2;���;cindn

, respectively. It follows that the integer programming problem has a solution

if and only if the access regions intersect. 2

Theorem 2.3 proves that the general problem of intersection between arbitrary access regions

is no less di�cult than the integer programming problem, the well-known NP-complete problem.

However, our access analysis on a real program revealed that most regions of interest are usually

simple and regular and have similar shapes. Above all, the numbers of strides and spans to

represent these access regions are small in most cases.
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These observations lead to the conclusion that we do not need such complex algorithms for

many problems encountered in the real world. Instead, we have developed various polynomial

region operation algorithms whose main focus is simple or similar input regions.

The main issue here then is what criteria we can use to determine what input regions are

\simple" or \similar". These criteria, called the input conditions, must be determined based

on common access patterns in real programs. If conditions for simple regions are too general,

they may increase the complexity of the operation algorithms for these regions. If conditions

are too strict, they may make the algorithms useless for many important cases we must handle.

There are, of course, many cases containing access patterns that are more complex than

those that can be handled by polynomial time algorithms. For these complicated cases, we

can simplify the regions themselves to satisfy the given input conditions by converting to MAY

regions, at the cost of accuracy of results, to apply polynomial time algorithms.

If a loss of accuracy is not allowed, then we could convert the problem of operations on

access regions to an equivalent integer programming problem which di�erent techniques based

on Fourier-Motzkin variable elimination [60, 67] can handle since, as suggested in Theorem 2.3,

both the problems can be interchangeably transformed. Although these integer programming

techniques use worst-case exponential time algorithms, these also have proven to be e�cient

and successful in handling integer programming problems in real cases.

In Figure 2.11, we summarize the whole procedure discussed above for processing the in-

put regions depending on the input conditions, given Fourier-Motzkin based algorithms and

polynomial time region operation algorithms.

The notion of the similarity and simplicity of regions, which is determined upon given input

conditions, is embodied in several terms, such as conjunctive regions, complementary regions
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Transform to integer programming problems

Input regions

Fourier-Motzkin algorithms

Simplify input regions

Is accuracy loss tolerable?

Check input conditions
condition satified

condition failed

yes

no

region operation algorithms
Polynomial time

Figure 2.11: Procedure for the operations on the Access Region

and subregions. In this section, we discuss these various characteristics of regions for qualifying

the similarity of input regions. The characteristics will be used in the basic operations on Access

Regions to determine the input conditions for a given operation.

2.3.1 Conjunctive Regions

X(1) ... ...... ...X(6) X(11) X(16) X(20)

R1 = (A5
15 + 1; � � �)

R2 = (A1;5
2;15 + 2; � � �)

R3 = (A1;5
2;15 + 3; � � �)

R4 = (A4
16 + 2; � � �)

R5 = (A4
16 + 4; � � �)

Figure 2.12: Access descriptors for the accesses in Figure 2.4

In Figure 2.12, we can clearly �nd the similarity between R2 and R3. In fact, they are identical

except for their lower bounds di�ering by 1. In the same �gure, the similarity between R4 and

R5 can be noticed as well. These similarities are more or less immediately noticeable because

the regions have exactly the same stride/span pairs. However, we also can see that there is some
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similarity between R1 and R2 (or R3), although they have a di�erent number of stride/span

pairs.

From these examples, we can learn that the stride is one important component which de-

termines the similarity between two regions in the Access Region notation.

De�nition 2.3 If two regions can be represented by the access descriptors with the same

strides (not necessarily spans), then they are de�ned to be compatible.

Theorem 2.4 The relation `compatible' is commutative and associative.

PROOF: Suppose two regions R and R0 are compatible. Then, by de�nition, the descriptors of

R and R0 have the same strides; that is, the number of stride/span pairs of the regions are the

same and there is a unique matching stride � in R for every stride �0 in R0 such that � = �0,

and vice versa. Since the operation '=' is commutative, it is trivial to show that R0 and R are

also compatible. Now, let R0 and R00 be compatible. Then, the access descriptors of R0 and

R00 also have the same strides. Similarly, since the operation '=' is associative, it is clear that

the access descriptors of R and R00 should have the same strides. It follows that R and R00 are

compatible. 2

Based on De�nition 2.3, we can calculate two groups of compatible regions from Figure 2.12:

(R1;R2;R3) and (R4;R5),

where compatible regions are put in the same parentheses. It is straightforward to show that

R4 and R5 are compatible, and that R2 and R5 are compatible. However, to show that R1

and R2 (or R3) are compatible, we �rst have to use Theorem 2.1 to compute a double-stride

access descriptor A5;��

15;0 + 1 from the original single-stride descriptor A5
15 + 1, both of which

equivalently represent R1 where �� can be any number. This enables us to prove that R1 and
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R2 are compatible because the two strides of the two regions are now identical; that is, 5 = 5

and �� = 1.

De�nition 2.4 Let a region R be represented by the access descriptor A�1;�2;���;�m
�1;�2;���;�m

+ l, and R0

be A
�01;�

0
2;���;�

0
m

�01;�
0
2;���;�

0
m

+ l0 such that l � l0. Let d be l0� l, the distance between R and R0. If there exist

stride/span pairs (�i; �i) in R and (�0
j ; �

0
i) in R

0, satisfying �i = �0
j, �ind

y and d � �i+ �i, then

they are conjunctive, as long as all other stride/span pairs match.

Intuitively, we can see that conjunctive regions are compatible while the converse is not

necessarily true. For instance, consider two regions R1 and R2. To show they are conjuntive,

we represent R2 with the access descriptor A5;��

15;0 + 1, as described above, because the regions

must have the same numbers of stride/span pairs in order to prove the conjunctiveness using

De�nition 2.4. We choose (��; 0) and (1; 2) each for comparison because the other pairs of

stride/span, (5; 15), already match. Since �� can be any number by de�nition, we set �� = 1

to match the counterpart stride of (1; 2). Now, since the distance d between the two regions

is 1 (= 2 � 1), we can show that ��nd and d � �� + 0, thereby proving that R1 and R2 are

conjunctive. As described earlier, it is easy to see that these conjunctive regions are compatible

as well.

Theorem 2.5 Let R and R0 be two conjuntive regions, as de�ned in De�nition 2.4. The

union of the two regions can be represented by an access descriptor A
�01;���;�

0
j ;���;�

0
m

�01;���;�
0
j
+d;���;�0m

+ l, which

has the lower bound of region R and the same stride/span pairs as region R0 except a single

pair (�0
j ; �

0
j + d) substituted for the original pair (�0

j ; �
0
j) in R

0.

y
�ind denotes that �i divides d.
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PROOF: Since R and R0 are conjunctive, all other stride/span pairs match and the remaining

pairs, (�i; �i) and (�0
j ; �

0
j), satisfy the conditions in De�nition 2.4, this proves that the regions

are compatible, but shifted by d. Thus, the union of the regions must have the same stride/span

pairs except for one pair whose span must encompass the total range stretched by both (�i; �i)

and (�0
j ; �

0
j). The total range computes �i + �0j � (�i � d) where �i � d is the length of the

overlapping area by the two pairs, which results in �0j + d by simplication. 2

Using the notion of the conjuntive region, Theorem 2.5 provides a theoretical ground upon

which we identify the similarity of di�erent regions and aggregate them into a single region. It

can be noticed that the aggregated region generated by Theorem 2.5 is still compatible with

the original regions. For example, R1 and R2 can be aggregated to a region which can be

represented by a new access descriptor A1;5
3;15 + 1, as shown in Figure 2.13. Clearly, this new

region R1 [ R2 is compatible with R1 and R3.

X(1) ... ...... ...X(6) X(11) X(16) X(19)

R1 = (A5
15 + 1; � � �)

R2 = (A1;5
2;15 + 2; � � �)

R1 [R1 = (A1;5
3;15 + 1; � � �)

Figure 2.13: Aggregation of two regions R1 and R2

The aggregated region R1 [R2 and R3 in Figure 2.12 again can be shown to be conjuntive

by De�nition 2.4. Thus, using Theorem 2.5, we can obtain a larger region R1[R2 [R3 which

can be represented by an access descriptor A1;5
4;15+1. This aggregated region is compatible with

its subregions, that is, R1, R2, R3, R1 [R2 and R2 [ R3.

The regions from Figure 2.12 can be classi�ed into three groups where conjunctive regions

are put in the same group:
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(R1;R2), (R2;R3) and (R4;R5).

Notice that (R1;R2) and (R2;R3) do not imply (R1;R3). This is because, unlike compatible

regions, the relation `conjunctive' is not associative. Therefore, R1 [ R3 is not compatible

with its subregions R1 or R3 because the union of non-conjunctive regions is not necessarily

compatible with the original regions.

2.3.2 Complementary Regions

...X(6)... ... ...X(2) X(10) X(14) X(18)

A2
16 + 2

A4
16 + 2;A4

12+ 4

A8
16 + 2;A8

8 + 4;A8
8 + 6;A8

8 + 8

Figure 2.14: Decompositions of access region �R = (A2
16 + 2; � � �)

In Figure 2.12, we can see that the access pattern of region �R, originally represented by an

access descriptor A2
16 + 2, is actually identical to a union of two regions with the descriptors

A4
16 + 2 and A4

12 + 4, which are, repectively, denoted as a solid line and a dashed line in the

middle of the �gure. Similarly, �R can be represented by a union of four regions with forms

A8
16 + 2, A8

8 + 4, A8
8 + 6, and A8

8 + 8, as shown at the bottom of the �gure.

This example shows that region �R can be decomposed into n subregions such that a single

stride/span pair of each subregion is (2n; �) where � is some integer less than or equal to the

span 16 of �R, while their other stride/span pair is the same as that of �R. We call these n

subregions of �R n-complementary regions of �R. The regions, with forms A4
16 + 2 and A4

12 + 4,

are 2-complementary regions of �R. Likewise, the regions, with forms A8
16 + 2, A8

8 + 4, A8
8 + 6,

and A8
8 + 8, are 4-complementary regions of �R.
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Theorem 2.6 Given an arbitrary region R, n-complementary regions of R are compatible.

PROOF : The proof is obvious from the de�nition of n-complementary regions. 2

Theorem 2.7 Let n regions Ri, 1 � i � n, be n-complementary regions of a region R rep-

resented by access descriptor A�1;���;�k;���;�m
�1;���;�k;���;�m

+ l. Then, for an arbitrary k, 1 � k � m, region

R can be represented equivalently by a union of the n regions, each with access descriptor

A
�1;���;�0k;���;�m
�1;���;�0k;���;�m

+ l+ (i� 1)�k where �
0
k = n�k and �0k = b

�k � i�k
�0
k

c�0
k.

PROOF : As can be seen in the example from Figure 2.14, n-complemented regions are, in fact,

the interleaved subregions of a region; thus, the strides of the n subregions must be of n times

�k for a certain k. The lower bounds of each subregion are increased by �k at a time starting

from l. The spans of the regions can be calculated from the starting address of each region and

their new strides. 2

Theorem 2.7 provides a glimpse of the concept of the aggregation operations on access

regions with `similar' structure; that is, if we have any n-complementary regions of access

region R, we can aggregate the n regions into one region R. For example, in Figure 2.12,

the two regions, with descriptors A4
16 + 2 and A4

16 + 4, can be aggregated to the region with

descriptor A2
18 + 2 since A4

16 + 2 and A4
16 + 4 form 2-complementary regions of the region

with A2
18 + 2. We will discuss further how to use the notion of complementary regions in the

aggregation operation in Section 2.4.3.

In Section 2.2.3, we discussed how we use the coalescing operation to generate, given an

access region as input, some isomorphic regions with fewer stride/span pairs by eliminating

redundant indices involved in the original access pattern. In a similar but more general way,

complementary regions also can be used to derive, from a given access region, its isomorphic
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access regions having di�erent stride/span pairs. For example, in Figure 2.5, 3-complementary

regions of Rz are the regions with descriptors A3
9 + 0, A3

9 + 1, and A3
9 + 2 through which we

can identify Rz as a union of the three regions with distance 1 between the regions. Let d be

the distance and n be the number of complementary regions. If we want to combine the three

access descriptors to generate a double-stride region represented by a descriptor A3;�
9;� + l, then

we �rst expand the descriptors of these regions to apply Theorem 2.7:

A3;��

9;0 + 0, A3;��

9;0 + 1, and A3;��

9;0 + 2,

where �� can be any number. First, we can calculate l = 0 and � = 1 since the equality

l+ (i� 1)� = i� 1 for 1 � i � 3

can be obtained by applying Theorem 2.7 to this example. Now, in order to calculate �, we

have to use the equation

b� � i
�� c�� = 0 for 1 � i � 3,

where �� = 3 because �� = 3 �� according to Theorem 2.7. Using this equation, we can identify

that the span � is 2. Thus, we obtain the descriptor A3;1
9;2+0 as the result of these computations

for this example. As a consequence, we can see that R in Figure 2.5 can be represented by

either A1
9 + 0 or A3;1

9;2 + 0.

The above example shows how we use complementary regions to expose the components of

the original access region for the analysis of the access pattern of the region. This will help us

to determine subregions of the region and to perform intersection and subtraction operations

on access regions.
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2.3.3 Subregions

In previous sections, we use the term subregion to mean a region whose elements accessed by

the region are a subset of the elements accessed by another region. In other words, we say that

R0 is a subregion of R if the elements accessed by R0 are a subset of the elements accessed by

R. For instance, all of the n-complementary regions of R are subregions of R.

To formulate the general problem of subregions, suppose that a regionR0 has access descrip-

tor A
�01;���;�

0
m

�01;���;�
0
m
+ l0 and another region R has access descriptor A�1;���;�n

�1;���;�n
+ l. Then, the problem:

\Is R0 a subregion of R?"

can be rephrased equivalently as an integer programming problem

\Is there an n-tuple of integers, (x1; x2; � � � ; xn), which satis�es the equality

nP

i=1
�ixi�

mP

j=1
�0
jyj = l0�l for any permutation of integers, (y1; y2; � � � ; ym), subject

to the constraints, 0 � xi �
�i
�i
, 1 � i � n, and 0 � yj �

�0j
�0
j

, 1 � j � m?"

For example, suppose that R is represented by A1;15
7;60 + 1 and R0 by A4;30;1

4;30;2 + 24. In order

to determine if R0 is a subregion of R, we construct the equation

x1 + 15x2 � 4y1 � 30y2 � y3 = 23

with �ve constraints

0 � x1 � 7, 0 � x2 � 4, 0 � y1 � 1, 0 � y2 � 1 and 0 � y3 � 2:

In this case, we can prove that R0 is not a subregion of R by showing that there is no solution

(x1; x2), subject to the constraints, satisfying the equation when y1 = y2 = y3 = 0. If R00 has

the same access descriptor as R0 but with a lower bound of 32, that is, A4;30;1
4;30;2 + 32, then we

have a di�erent equation

x1 + 15x2 � 4y1 � 30y2 � y3 = 31,
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subject to the same constraints given above. From this equation, we can see that R00 would

become a subregion of R since the equation now holds on any values of (y1; y2; y3).

Similar to other operations on access regions, such as intersection and subtraction, it is

NP-hard to �nd a solution for this general access region problem for subregions. However, the

properties of regularity and similarity of usual access patterns in real programs, supported by

the discussion about similar access patterns in Section 2.2.2, lead us to solve this problem in

the form of the integer programming problem.

From the discussion with the example from Figure 2.4, we argued that the similarity of

access patterns depends on the similarity of strides and spans involved in those accesses. The

similarity of strides and spans does not necessarily mean that the strides and spans must be

exactly the same, but that they must have functional relationships between them, such as one

being a multiple of the other. Back to the example from Figure 2.12, if we have an access

region with descriptor A2
20 + 0, then we can see that many elements accessed by the region

are `regularly' overlapping with those from the region with descriptor A4
20 + 2 in Figure 2.12,

but not with the regions with descriptor A5
15 + 1. This is, in fact, mainly because stride 4 is

a multiple of stride 2, although two regions have di�erent strides. From this example, we may

say,
\Two regions are similar if each stride of one region can

be represented as a multiple of the other region's stride".

As another example for this case, let's consider the two regions R and R0 above again. In

the example, we see that strides 1, 4, and 30 of R0 can be represented by multiples of stride

1 and 15 of R. After considering their spans, we may couple the strides with each other to

rebuild the equation as
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(x1 � 4y1 � y3) + 15(x2 � 2y2) = 23.

In this new equation, we only have two terms, each of which corresponds to each index for R,

on the left hand side, thus simplifying the problem. Here, we attempt to prove that

R0 is not a subregion of R

by calculating the possible boundaries of values of both terms, which are

�6 � x1 � 4y1 � y3 � 7 and �2 � x2 � 2y2 � 4.

If we move the �rst term on the left-hand side to the right-hand side, we get

15(x2 � 2y2) = 23� (x1 � 4y1 � y3)

from which we learn that the right-hand side must be a multiple of 15 in order to match the

left-hand side. To test this, we produce boundary conditions for the right-hand side

16 � 23� (x1 � 4y1 � y3) � 29

It is clear that the right-hand side cannot be equal to the left-hand side because the term

23 � (x1 � 4y1 � y3) on the right-hand side cannot be a multiple of 15, thereby proving R0 is

not a subregion of R.

Now, let's compare another region, R00, which was given above, with R. Since R00 has the

same stride/span pairs as R0, their strides also can be represented by multiples of strides R,

which results in an equation

(x1 � 4y1 � y3) + 15(x2 � 2y2) = 31.

This equation is again converted to

(x1 � 4y1 � y3 � 1) + 15(x2 � 2y2 � 2) = 0

where the constant term 31 is split into 30 (a multiple of 15) and 1 (the remainder), and

absorbed into the two terms on the left-hand side. Now, instead of attempting to solve the

whole equation, we divide the original problem into two subproblems:
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x1 � 4y1 � y3 = 1, and x2 � 2y2 = 2

We can see that if x1 and x2 satisfy both the equations, then

R00 is a subregion of R,

even though the converse is not necessarily true. Based on this observation, let's �rst look at

the equation x1 � 4y1 � y3 = 1. First, we convert it to x1 = 1 + 4y1 + y3 to show that x1

sati�es this equation for whatever values (y2; y3) have subject to the given contraints. Then,

we calculate the boundaries of the terms x1 and 1 + 4y1 + y3, which are

0 � x1 � 7 and 1 � 1 + 4y1 + y3 � 7.

From this, we can show that 1 + 4y1 + y3 is a subrange of x1. Now, consider the next equation

x2 � 2y2 = 2. In a similar way, we calculate the boundaries of the terms x2 and 2 + 2y2, and

show that

2 � 2 + 2y2 � 4 is a subrange of 0 � x2 � 4.

Consequently, we have proven that R00 is a subregion of R by showing that x1 and x2 satisfy

both the equations for any permutations of integers, (y1; y2; y3).

As can be seen in these two examples, we may simplify the original problem in real programs,

taking advantage of the property of similarity of access patterns. In addition, we have found

in the study of real programs that loops which are more deeply-nested than three or four are

uncommon. Although the numbers of stride/span pairs do not always depend directly on the

nesting of loops, this fact helps keep the numbers relatively small in access region problems,

which convinces us that most problems of our interest will have only low order polynomial time

complexities.
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2.4 Basic Operations on Access Regions

Many components of a parallelizing compiler rely on the analysis of array access regions. De-

pendence analysis checks whether the access patterns of arrays overlap. Array privatization,

one of the most important dependence-elimination techniques, is based on region intersection

and subtraction operations. A precise aggregation operation on access regions is important for

generating the data communication needed for distributed memory machines.

The complete implementation of these operations has not been done as yet. For the experi-

ments reported in this dissertation, we developed a few primitive algorithms for these operations.

These algorithms are not general enough to handle all the cases occurring in real programs.

The full versions of the algorithms are still under development.

One important prerequisite study we should conduct to develop the full version of algorithms

is thorough analyses of access patterns in a broad range of scienti�c applications. For this

purpose, the study on the access patterns of real programs based on benchmarks from the

Perfect and SPEC95fp benchmark suites would be required. Based on this study, the complete

algorithms to be used in the procedure for the operations on Access Regions shown in Figure 2.11

can be implemented. Those complete algorithms will de�ne the input conditions and region

operation algorithms for each target operation.

For now, therefore, we will put aside the full description of these algorithms and, throughout

this section, we will discuss only the basic issues of input conditions and algorithms for three

basic operations (intersection, subtraction, aggregation) which were used for the analysis of

array access regions in our experiments.
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2.4.1 Intersection

The intersection algorithm for two access regions can return either the exact region(s) of inter-

section, or a more simple YES/NO-style answer by checking whether the exact result is empty.

Theorem 2.3 shows that even generating the simple YES/NO answer has worst-case exponential

time complexity.

However, we found that, especially for simple and similar regions, we can solve the problem

with worst-case polynomial time algorithms. For instance, consider two regions, represented by

triplet notation: V(1:8:1) and V(5:15:1). Intersecting these two regions does not require ex-

pensive general algorithms; instead, only traditional interval algorithms are requred to produce

the result, V(8:15:1).

Similarly, for two access regions represented by access descriptors A4
16 + 2 and A4

16 + 4 in

Figure 2.12, we get an empty region as the result by simply checking the strides and spans.

For these kinds of simple and similar regions, the polynomial time region operation algorithms

discussed in Section 2.3 have been developed for intersection. We call these algorithms region

intersection algorithms.

The input conditions for intersection, as mentioned in the beginning of Section 2.4, are not

yet fully de�ned. However, one input condition we currently have for the intersection operation

is

\Are all the input regions single-stride?"

where a single-stride region is one whose access descriptor has only a single stride. To describe

the region intersection algorithm for single-stride regions, suppose we are given two input access

regions R1 and R2 for array Y which are represented by descriptors A2
18(+0) and A

3
12 + 3,

respectively. The regions are shown in in Figure 2.15.

46
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Figure 2.15: R1 \R2 = (A2
18; � � �)\ (A

3
12 + 3; � � �) =) (A6

6 + 6; � � �)

To perform intersection of the input regions (A2
18 \ (A3

12 + 3)), the region intersection

algorithm �rst determines the area of R1 which overlaps R2, called the overlapping area. If R1

and R2 have lower bounds l1 and l2, then we can compute the upper bounds u1 and u2 of the

regions by adding spans to the lower bounds. By comparing the lower and upper bounds, we

can determine the overlapping area. In this example, the overlapping area ranges from Y(3) to

Y(15) in the array Y.

Next, the region intersection algorithm�nds a stride �lcm which is the least commonmultiple

(LCM) of the strides of both R1 and R2. Then, it forms a set of complementary regions with

that stride for each original region. In this example, �lcm is 6 and, thus, the complementary

regions with stride 6 are 3-complementary regions of R1, represented by three access descriptors

A6
18, A

6
12 + 2, and A6

12 + 4, repectively. Similarly, 2-complementary regions of R2 can be

represented by two descriptors which are A6
12 + 3 and A6

6 + 6. These complementary regions

are marked with dashed lines in Figure 2.15.
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Then, it must determine which of the complementary regions in those sets access the same

elements within their overlapping area Y(3:15). This operation requires �nding synchronized

regions of the complementary regions whose elements belong solely to the area.

De�nition 2.5 If two regions R and R0 have the same n strides, say �i; 1 � i � n, and

LCM(�1; �2; � � � ; �n) divides jl1� l2j, the distance between the regions, then they are de�ned to

be synchronized.

For example, the general form of all synchronized regions of A6
12+2 is A6

�� +2+6d where d

and �� can be any integer. Among these, there is only one synchronized region which accesses

the overlapping area in Figure 2.15: A6
6+ 8. Likewise, we can compute two other synchronized

regions of the original complementary regions ofR1: A6
6+4, A

6
6+6. We make a set S1 composed

of these three resulting regions. Similarly, we compute the synchronized regions of the original

complementary regions of R2, A
6
12 + 3,A6

6 + 6, and make a set S2 composed of these regions.

The regions in S1 and S2 are highlighted among the dashed lines in Figure 2.15. The result of

intersection of R1 and R2 is

S1 \ S2 = fA
6
6 + 8;A6

6 + 4;A6
6 + 6g \ fA6

12 + 3;A6
6 + 6g = fA6

6 + 6g.

We can generalize in a very natural way to the region intersection algorithms for multi-stride

regions by providing several other input conditions, such as:

\Do all the stride/span pairs of input regions match with the exception of at most one pair?".

One example of the input regions satisfying the above condition would be A2;100
18;800 and A

3;100
12;800+3.

The stride/span pair (100,800) from each region matches, but the other, (2,18) and (3,12), do

not. In this example, we extend the ideas used to process the single-stride case, such as

complementary regions and synchronized regions. In order to calculate the intersection of the

two regions, we reduce by ignoring the matched pairs of the multi-stride problem to a single-
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stride problem, which is the intersection of A2
18 and A

3
12+3. Now, this problem can be handled

in the same way described above in Figure 2.15, which produces fA6
6 + 6g. We expand this

result to fA6;100
6;800+ 6g for the �nal result.

In the full version of the intersection operation on Access Regions, more input conditions

will be needed. The corresponding region intersection algorithmswill be de�ned in a way similar

to that mentioned in this section.

2.4.2 Subtraction

The region subtraction algorithm is a slightly modi�ed version of the region intersection algo-

rithm. Like the intersection operation, the general problem of the subtraction operation on

access regions requres worst-case exponential time algorithms to solve. However, based on our

access analysis on real programs, most access regions for those programs do not need such

expensive algorithms. Therefore, we established various input conditions for subtraction which

are almost the same as for intersection. One of these conditions is

\Are the input regions all single-stride?"

Suppose two regions R1 and R2 are single-stride. When we compute the subtraction operation

R1 � R2, similar to intersection in Section 2.4.1, we �rst identify the overlapping and non-

overlapping areas between regions R1 and R2 using their lower bounds and upper bounds. The

elements of R1 in the non-overlapping area must be part of the result of intersection. If there

is an area of overlap, then we must calculate the elements which are accessed by both regions,

and remove them from R1. The remaining elements in R1 must be part of the result.

Just as in the intersection algorithm, the region subtraction algorithm converts any two

single-stride regions to sets of regions with the same stride by �nding their complementary
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regions with the appropriate stride. Then, it �nds a stride �lcm which is the least common

multiple (LCM) of the strides of both R1 and R2, and forms a set of complementary regions

with that stride for each original region. Next, it must �nd which of the complementary regions

in those sets access the same elements within the overlapping area. This is done by �nding a

pair of complementary regions, one from each set, which are synchronized.

The �nal result consists of all those complementary regions of R1 which were not synchro-

nized with any complementary regions of R2, plus the parts of R1 from the non-overlapping

areas, which were calculated earlier.

For example, let's consider again the two regions from Figure 2.15. This time, the task is

to subtract R2 from R1, as displayed in Figure 2.16.

after distance 3before distance 3

6 + 8A
6 2

16A + 16
2A 2

6 + 6A
6

before distance 16 after distance 16
A 6 + 46

+ 0

R1

R2

R1 �R2

Figure 2.16: R1 �R2 =) (A2
2; � � �); (A

6
6+ 4; � � �); (A6

6+ 8; � � �); (A2
2 + 16; � � �)

First we �nd the non-overlapping area in R1, which is

Snon�overlap = fA2
b (3�1)

2
c�2
;A2

b (18�(12+3))
2

c�2
+ 12+ 3 + 1g

where the new spans are calculated in a way similar to that shown in Theorem 2.7. Next,

we �nd the LCM(2; 3), which is 6 in this example. Then, we compute the 3-complementary

regions of R1, which are

S1 = fA6
�� ;A

6
�� + 2;A6

�� + 4g

where �� is a span not yet computed. Similarly, we �nd the 2-complementary regions of R2,

which are
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S2 = fA
6
�� + 3;A6

�� + 6g.

Comparing S1 and S2, and identifying that A
6
�� fromR1 and A

6
��+6 fromR2 are synchronized,

we remove A6
�� from S1 to produce

Soverlap = S1 � fA6
��g = fA

6
�� + 2;A6

�� + 4g.

The region A6
�� + 2 has a lower bound less than 3, placing it outside the overlapped area;

therefore, we recompute its lower bound to place it inside the overlapped area, with the result

A6
�� + 8. Now, we compute the new spans for the regions in Soverlap:

A6
b 12+3�4

6
c�6

+ 8 = A6
6 + 8 and A6

b 12+3�8
6

c�6
+ 4 = A6

6 + 4.

They are included to make the complete result

Sresult = Snon�overlap [ Soverlap = fA
6
6 + 8;A6

6 + 4;A2
2;A

2
2 + 16g.

Similar to the cases with intersection of multiple-stride regions, we can handle subtraction

of multiple-stride regions by enforcing some input conditions such as those discussed in Sec-

tion 2.4.1. To illustrate the multi-stride case, consider the following loop from the ARC2D

benchmark in Figure 2.17.

real X(P,Q,R)

� � �
do J = 1, N, 1

do K = 1, M, 1

X(J,K,2) = � � �
X(J,K,1) = � � �

enddo

� � � X(J,M,1) � � �
� � � X(J,M,2) � � �

enddo

Figure 2.17: Simpli�ed code example in ARC2D from the Perfect benchmarks

Let Rinner be the access region made by the references X(J,K,1) and X(J,K,2), and Router be

the one made by the references X(J,M,1) and X(J,M,2). In order to calculate Rinner �Router,

the subscripting expressions are �rst linearized and aggregated, to produce the regions
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Rinner = (A1;P;PQ
N�1;(M�1)P;PQ+ 1, � � � ) and Router = (A1;P;PQ

N�1;0;PQ + (M � 1)P + 1, � � � ).

Notice that, in this example, the stride/span pairs are the same between the two regions except

for the middle one in each region. By ignoring the other pairs, therefore, we can reduce the

multi-stride problem to a single-stride problem, which is R0
inner �R

0
outer where

R0
inner = (AP

(M�1)P + 1, � � � ) and R0
outer = (AP

0 + (M � 1)P + 1, � � � ).

The region subtraction algorithm calculates this reduced problem to generate the result

S0result = S
0
non�overlap [ S

0
overlap = fA

P
(M�2)P + 1g.

By expanding S0result for the original multi-stride problem, we have the �nal result

Sresult = fA
1;P;PQ
N�1;(M�2)P;PQ + 1g.

2.4.3 Aggregation

The task of aggregation is to identify the access patterns of input regions and to combine regions

with similar structure. In Section 2.3, we discussed how conjunctive regions and complementary

regions are combined. The �rst step of the region aggregation algorithm is to partition the

input regions into groups based on the similarity of their strides and spans. Here, we de�ne the

similar regions as conjunctive regions or complementary regions. We cluster all conjunctive or

complementary regions into the same groups.

After combining the regions that belong to the same group into an aggregated region, the

region aggregation algorithm identi�es subregions among these aggregated regions, and absorbs

the subregions into their super-regions. The �nal result is a set of the regions remaining after

this step.

To illustrate the aggregation operation, consider the subroutine foo in Figure 2.12. The

access patterns for X within foo and their corresponding abstract forms are shown in the �gure.
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Given these input regions, the region aggregation algorithm uses the following procedure to

produce a single aggregated region, represented by descriptor A1
19 + 1, for the summarized

MUST READ region for X in foo:

1. Following Theorem 2.1, A5
15 + 1 is expanded to A��;5

0;15 + 1 where �� can be any number.

2. �� in A��;5
0;15 + 1 is set to 1 to be compatible with others, A1;5

2;15 + 2 and A1;5
2;15 + 3.

3. Three conjunctive regions with descriptors A1;5
0;15 + 1, A1;5

2;15 + 2 and A1;5
2;15 + 3 are now

aggregated to a region with A1;5
4;15 + 1, as discussed in Section 2.3.1.

4. A1;5
4;15 + 1 is coalesced to A1

19 + 1 by the function coalesce region.

5. Two complementary regions with A4
16 + 2 and A4

16 + 4 are combined to the aggregated

region with A2
18 + 2 because they represent 2-complementary regions of the aggregated

region.

6. A2
18 + 2 is �nally absorbed into A1

19 + 1 because A2
18 + 2 represents a subregion of what

is represented by A1
19 + 1.

2.5 Implementation in Polaris

A Region Processor is the module we are implementing in Polaris for supporting the basic

operations for Access Region manipulation, which are described in Section 2.4. Each region

operation within the Region Processor is structured as a decision tree, as shown in Figure 2.18.

Each decision is a simple one, such as \is the lower bound value of R1 larger than the upper

bound value of R2". A compiler implementor can easily extend the decision tree structure to

improve accuracy by simply adding more branches to the tree.
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Figure 2.18: Region processing in Polaris

We decided to design the region operations for regions with similar structures. However, if

the regions do not meet the similarity constraints, our representation allows us to simplify the

regions and still use our operations, or else choose di�erent techniques which might be a better

�t [67, 60].

Since the access regions being operated on will often involve unknown values, the Region

Processor is designed to proceed with the operations by making favorable assumptions, and to

return the expressions representing those assumptions as conditions under which the result is

correct. The condition expressions could be evaluated at runtime, when perfect information is

available, to choose between alternative transformations.

The work of the Region Processor is supported by two important features of the Polaris

compiler. First, the program is represented in Gated Single Assignment (GSA) form [70]. The

GSA form makes it easy to determine which de�nition of a variable is used at any point in the

program, and the conditions under which a certain de�nition is used. Second, the symbolic

manipulation modules in Polaris, such as range propagation and the range dictionary, make

the value ranges for variables available at any point in the program. These features provide a

mechanism which can determine relationships between variables even when their exact values

are unknown. This rich environment was crucial to the success of the Range Test [14], and can

enable many of the symbolic operations of the Region Processor.
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The predicate for an access regionRmay be thought of as the pertinent information found in

the gating information from the GSA form and in the value range constraints. These conditions

and values provide the symbolic manipulation context for making decisions within the region

processor. Thus, implicit in the descriptions of the operations in Section 2.4 is the use of the

predicates, which provide the ability to reason symbolically about the relationships between

variables.

2.6 Usage of Access Region Analysis

The array privatizer, dependence analyzer, and communications generation modules can all

make use of the Region Processor. The advantages of this are many. First, the Region Processor

should greatly simplify each of these modules by removing all region-handling code from them

and letting them concentrate on strategies for using the results of the region processing and

the conditions produced by it. Second, it promotes a demand-driven style of compilation, as

opposed to a pass-based style. The use of a consistent region representation and framework

makes it possible to pass Access Regions between several compiler modules, which are called

as they are needed. Third, the conditions generated by the Region Processor make it possible

to parallelize loops at run-time instead of serializing them for lack of information.

Each compiler module uses the region aggregation algorithm to combine the array accesses

of interest in a program section as shown in Figure 2.19. The program section could be a

loop-nest, a subroutine, or any part of the input program. The module then can use the Region

Processor to perform any of the other operations on the aggregated regions. If the Region

Processor lacks the information it needs to perform the operation, it returns a condition under

which the result is correct.
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Figure 2.19: Use of the Region Processor

This framework also could be used as a basis for interprocedural analysis. The regions of

each array which are accessed in a subroutine could be summarized in the form of an Access

Region and then used in the analysis just like any other Access Region.

2.6.1 Dependence Analysis

Using the powerful expressiveness of Access Regions and the Region Processor support, we can

reformulate the de�nition of dependences in terms of regions and use that reformulation to

parallelize programs. In [36], we formally propose a new dependence test, called the Region

Test. Since we detailed the test in that previous work, we will only briey mention the basic

concepts of the Region Test in this section.

The Region Test is designed to solve dependence problems at variable granularity in that it

can test for loop-based dependence between individual array references, dependence for whole

loops, or dependence between arbitrarily large code sections for a particular array. For each

granularity of dependence problems, we consider three types of dependence between array

accesses: ow, anti, and output [74]. First, for intraprocedural loop-based dependence problems

in a loop
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do I = l; u; s

� � � X(f(I)) � � �

enddo

whose index starts at the value l and strides in steps of s to an upper bound of u, we

reformulate the de�nitions for the three types of cross-iteration dependences in terms of array

regions in the form of Access Regions. The basis for the reformulation is that a cross-iteration

dependence exists if and only if the portion of an array accessed prior to an arbitrary iteration

overlaps with the portion accessed in that iteration or later. To state this in terms of values of

the loop indices, let t be an arbitray iteration of the I-loop between l and u. Then, we say that

there is a cross-iteration dependence if and only if the portion of an array accessed in iterations

from l to t � s overlaps with the portion accessed in interations from t to u.

We write the region-based de�nition of a cross-iteration ow dependence for an array X in

such a loop as follows:

FLOW : [W(X)l:t�s:s \R(X)t:u:s]t=l+s:u:s.

This refers to aggregating the write (W) accesses to the array over the iterations between l

and t � s, and then intersecting that region with the aggregated read (R) accesses of X in the

iterations between t and u. The interation t can be any iteration in the range from l + s to u.

No ow dependence exists if the intersection is empty; otherwise, a ow dependence exists. We

can de�ne an anti dependence in a similar way. In this case, the read comes �rst, so we denote

it as

ANTI : [R(X)l:t�s:s \W(X)t:u:s]t=l+s:u:s.

Similarly, for output dependence, we express it as

OUTPUT : [W(X)l:t�s:s \W(X)t:u:s]t=l+s:u:s.
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This intraprocedural loop-based dependence technique allows us to solve the dependence

problems presented in Section 2.1. For the loop from TFFT2, shown in Figure 2.2, we can

employ the function coalesce region to summarize the regions accessed at each loop level.

The region of X written in the �rst J loop may be calculated by �rst aggregating the writes,

and then coalescing the regions to produce the abstract form:

W(X)0:t�1:1 =W(X)t:2M�1:1 = (A1
2M

+ 1;MUST;WRITE;T).

Similarly, the region of X read in the second J loop becomes:

R(X)0:t�1:1 = R(X)t:2M�1:1 = (A1
2M + 1;MUST;READ;T).

By subtracting the READ region from the WRITE region, we get an empty region, showing that

the read region is equal to the write region regardless of the value of t. This implies that there

exist anti and output dependences in the I-loop. Therefore, following the array privatization

algorithm [69], we can remove these dependences by privatizing X. Since X has no cross-iteration

ow dependence in the I-loop, it no longer blocks the loop from being parallelized.

The loop in Figure 2.2 is the most important in TFFT2; thus, good speedups were not

possible without parallelizing this loop. To measure the e�ectiveness of the Region Test, we

tested the performance of the TFFT2 benchmark on the Cray T3D [23] both with and without

applying the Region Test. The results, shown in Table 2.1, demonstrate that the Region Test

allows us to signi�cantly reduce the parallel execution times.

PEs Parallelized without Region Test Parallelized with Region Test Speedup
(sec) (sec) improvement

4 764 188 4.06
8 634 114 5.56
16 563 69.0 8.16
32 540 47.0 11.5
64 522 36.0 14.5

Table 2.1: Comparison of parallel execution times
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The Access Region representation also helps us to summarize access patterns in order to

avoid inlining for parallelization problems involving loops with subroutine calls. Figure 2.20

shows a code example similar to some loops in TURB3D. The array U undergoes reshaping as

it is passed to the subroutine, but this is not a problem since all array references are linearized

by the Access Region representation anyway.

subroutine caller

common U(N,M,L)

� � �
do I = 1, M

call foo(U(1,I,1))

enddo

� � �
return
...

subroutine foo(X)

common X(*)

� � �
do J = 0, L-1

do K = 1, N

X(J*N*M+K) = � � �
enddo

enddo

� � �
return

Figure 2.20: Simpli�ed code example from TURB3D program

The access descriptor for the region accessed in the subroutine foo is A1;NM

N�1;(L�1)NM
+ 1.

This same pattern happens regardless of the argument passed to the subroutine, making this

a useful summary of the access. Arguments passed to the subroutine supply di�erent starting

points for that access pattern. In the Figure, the I-loop containing the call to foo produces an

additional stride (N) for the access pattern, making the write accesses for prior iterations of the

outer loop

W(U)1:t�1:1 = (A1;NM;N

N�1;(L�1)NM;(t�2)N + 1; � � �),
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and the write accesses for later iterations

W(U)t:M :1 = (A1;NM;N

N�1;(L�1)NM;(M�t+1)N + (t� 1)N + 1; � � �).

Since intersection W(U)1:t�1:1\W(U)t:M :1 is empty, we can prove that there is no dependence

in the I-loop, thus making the loop parallel.

Many compilers give up when confronted with unknown values. Run-time parallelization

techniques have been proposed [61, 63] for these cases, but, until now, these have required

the potentially high overhead involved in checking individual array accesses for dependence at

run-time. We suggest a di�erent approach where the conditions, which we call safe conditions,

can be extracted from the code to test at run-time.

Safe conditions are those under which it is safe to parallelize a section of code. Given a loop

with safe conditions, we can produce a two-version loop which will check the safe condition at

run-time and choose between a parallel version and a serial version of the loop as follows:

if (safe-conditions) then

Parallelized Loop

else

Serialized Loop

endif

We can apply this simple run-time test with safe conditions to the example in Figure 2.1.

Here, we �rst need the condition extraction function of the Region Processor. The use of

predicates of the Access Region inside the Region Processor gives the Region Test a way to

extract the safe conditions from the code. In the example, the aggregated write region for FX

in the loop is

(A1;N
2;2(M�1)+ 1,MUST,WRITE,T).
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In order to determine the dependences involved, we must show that the second stride (N) is

greater than the �rst span (2), which allows the access to FX on each iteration to stride beyond

the array elements accessed on the previous iteration. Since N is unknown, the Region Processor

would generate the condition N > 2 as a safe condition. Now, using the condition, we can then

produce code which will check the condition at run time, choosing between a parallel version

and a serial version of the loop.

We have observed that this predicate-based run-time test is useful for various programs,

such as MDG and OCEAN from the Perfect benchmarks.

2.6.2 Communication Analysis

Single-sided communication protocols [24, 27, 45, 48] in the form of PUT/GET primitives have

been rapidly gaining wide acceptance. A great advantage of PUT/GET primitives is that their

use of asynchronous data communication works well with the shared-memory programming

paradigm, which is also assumed by Polaris.

PUT/GET operations are useful for removing anti and output dependences, as illustrated

in [28]. By using the function coalesce region and the region aggregation algorithm in the

loop shown in Figure 2.21, the Region Processor calculates the region of upwards exposed uses [1]

of array V as

A1
MN+N�((t�1)N+1)+ (t � 1)N + 1

for each iteration I = t. The write region for the same iteration is

A1
N�1 + (t� 1)N + 1.

The write region for all the following iterations from I = t+ 1 to M is

A1
MN+N�(tN+1)+ tN + 1.
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The region intersection algorithm would report an overlap between

A1
MN+N�((t�1)N+1)+ (t� 1)N + 1 and A1

MN+N�(tN+1)+ tN + 1,

implying an anti dependence. To make the loop nest parallel, we can eliminate the dependence

by privatizing the array V and generating a GET for the upwards exposed use region.

do I=1,M

do K=1,N

do L=I,1+M-I

� � � = V(K+(I-1)*N+L*N)

enddo

V(K+(I-1)*N) = V(K+(I-1)*N) � � �
enddo

enddo

Figure 2.21: Code from MDG, with the induction variables substituted

We also use PUT/GETs to implement the shared data copying scheme [54, 55] in SPMD

parallel codes for distributed memory multiprocessors. In the scheme, we use shared memory

as a repository of values for use in private memory. Before a parallel loop starts, the processors

copy all data that is used in the loop from shared memory into private memory. After the

loop execution completes, the processors copy the results back to shared memory so that all

the processors have access to the results. By doing so, we can localize most of the data that

are used by the processors in the computations. In Chapter 3, we will give the details of this

scheme and how this is used to optimize communication in the code generation for distributed

memory multiprocessors.

In the data copying scheme, gathering precise array access information into a exible rep-

resentation is essential for supporting e�cient copy(PUT/GET) operations. Our recent ex-

periments with benchmarks showed that our implementation of the scheme, based on our new

representation, has been successful, as presented in Chapter 4.
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CHAPTER 3

AUTOMATIC CODE

TRANSFORMATION

3.1 Target Parallel Programming and Machine Models

Starting with a conventional Fortran77 program, the Polaris code transformation procedure

shown in Figure 1.4 generates a parallel version for distributed memory multiprocessors. The

parallel version code is a shared-memory program which has the following characteristics:

� Single Program Multiple Data (SPMD) paradigm,

� explicit synchronization through barriers and locks,

� explicit data declaration as private or shared, and

� asynchronous communication with PUT/GET primitives.
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The parallel program is in SPMD form and follows the master/slave (or the master/worker)

model [18] in which one of the parallel processors, the master, executes all sequential regions,

and the other processors, the slaves, participate only in the computations of parallel regions.

Barriers are inserted around parallel regions, such as parallel loops, and calls to subprograms

containing parallel regions, and are used to explicitly control the ow of execution of masters

and slaves. That is, the slaves wait at barriers while the master is in a sequential region.

When the master hits a barrier preceding a parallel region, the slaves are released to join the

computation of the region. The slaves return to the barrier after they complete the parallel

region. Locks are useful for establishing critical sections where global operations using shared

variables, such as reduction operations, are performed.

The program data are explicitly declared as either private or shared. A private variable

is replicated to every local memory. In contrast, only one object for each shared variable exists

in the system and is accessible to all processors. Shared arrays can be given BLOCK or CYCLIC

distribution, similar to those in other parallel programming models [19, 64].

PUT/GET operations will be used to implement prefetching and poststoring schemes for the

control of data movement between shared memory and private memory in the data localization

phase shown in Figure 1.4. One reason we have chosen to use PUT/GET operations is that they

work well with the shared-memory programming paradigm in that they allow the processors to

asynchronously access any data object in the systemwhether the object is private or shared. An-

other reason is that PUT/GET operations have been rapidly gaining wide acceptance. Several

portable shared-memory programming models [27, 45, 48] supporting PUT/GET operations

already have been implemented on ordinary message-passing machines, such as the IBM SP-

1/2 [37], Intel Paragon [16], and TMC CM-5 [34]. Furthermore, several existing and newly
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proposed large-scale machines directly support these primitives in hardware [23, 24, 25, 32],

which reduces the e�ect of the increased communication overhead resulting from the data copy

operations.

Our techniques can be applied to any distributed memory system that supports all these

characteristics by either hardware or software. However, for our techniques to be more e�ective,

we speci�cally target the machines that provide special H/W mechanisms in order to support

fast synchronization and low-latency asynchronous remote memory access for global address

space operations.

3.2 Polaris Modules for Code Transformation

In this section, we describe the compiler modules used to implement each phase of the Polaris

code transformation procedure shown in Figure 1.4. Among these modules, the modules that

implement parallelism detection, data privatization, and data localization rely on the analysis

of array access patterns in a program.

As discussed earlier, array access patterns must be expressed in some standard represen-

tation for which Polaris uses the triplet notation. However, we have found that the triplet

notation does not always accurately capture complex access patterns that are commonly en-

countered in real programs and, thus, prevents our complier modules from carrying out their

techniques in some important cases. For these cases, the Access Region representation has

proven to be e�ective because of the increased accuracy of the access pattern analysis which in

turn improved the e�ectiveness of the Polaris code transformation procedure.

In the work presented here, we make use of both the traditional techniques based on the

triplet notation and the new techniques based on the Access Region.
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3.2.1 Parallelism Detection

The techniques implemented in Polaris to detect parallelism include: dependence analysis,

inlining, induction variable substitution, reduction recognition, and privatization [14, 31, 59, 69].

Since these techniques are well documented in other places, we will not discuss them any further

in this dissertation.

The loops that are identi�ed as parallel by these techniques are marked with parallel

directives. For instance, the I-loop in Figure 3.1 has been identi�ed to have no cross-loop

dependence and, thus, is marked with a parallel directive for later modules searching for

parallel loops.

cdir$ parallel (I)

do I = 1, N

X(I) = � � �
enddo

print *, X(N), N

� � �

Figure 3.1: Code example with a parallel loop in Polaris

The dependence analysis techniques in Polaris have been developed to be e�ective mainly

for the important loop patterns that commonly occur in scienti�c programs. This strategy has

worked well on medium- and small-scale UMA shared-memory multiprocessors, where a few

important loops in a program dominate the overall performance [13]. In large-scale multipro-

cessors, however, more accuracy has been found to be necessary because small unimportant

loops often become important to determine the multiprocessor speedups, as illustrated in Ta-

ble 3.1 where the serial coverage is the percentage of execution time consumed by serial loops.

As illustrated in the table, the serial loop execution time can be ignored for eight or fewer

processors; but, in the spirit of Amdahl's law, the serial loop execution time becomes signi�cant
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Processors Parallel Loops (sec) Serial Loops (sec) Serial Coverage (%)

2 120 3.2 2.7
8 31 2.8 8.2
64 6.1 2.7 31

Table 3.1: Loop execution times using the MDG benchmark on the Cray T3D

as the number of processors increases. We, therefore, found it necessary to parallelize very small

loops to generate high quality parallel programs for distributed memory multiprocessors, thus

motivating us to develop the Region Test discussed in the previous chapter.

The Region test is similar to the Range Test [12], the most powerful dependence test used by

Polaris, in the sense that both are based on array access region analysis; but, the experiments

showed that the Region Test can break many dependences that the Range Test conservatively

assume present mainly because of the accuracy of the Access Region representation. Capitaliz-

ing on the powerful expressiveness of the Access Region, the Region Test is especially useful for

parallelizing loops with very complicated access patterns. Consequently, the test contributes

signi�cantly to scalable speedups, as demonstrated in the experimental results (see Chapter 4).

3.2.2 Work Partitioning

We transform the original program annotated with parallel directives into the SPMD parallel

form described in Section 3.1, where all parallel loop iterations are statically assigned to the

processors. We use the same loop scheduling scheme for the distributed memory architectures

as Polaris currently uses for UMA architectures: cyclic schedules for triangular loops, and block

schedules for square loops [57]. According to our experiments, these conventional static schedul-

ing schemes provide relatively good load balancing between processors at low loop scheduling

costs in most cases.
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Figure 3.2 shows the results after the code in Figure 3.1 is transformed by the work parti-

tioning module. P is the number of processors and my pid is the processor ID number between

0 and P-1.

ILOW = my pid+1
IHIGH = N

do I = ILOW, IHIGH, P
X(I) = � � �

enddo

if (slave) goto wait

print *, X(N), N

wait: call barrier()

� � �

Figure 3.2: SPMD code with the cyclic scheduled parallel loop from Figure 3.1

Notice that the print statement, as is usually the case with most I/O statements, is in a

sequential region and, therefore, the slaves skip the statement by jumping to a barrier and wait

there for the master.

For the case of loops containing reductions [59, 74] it is necessary to modify the simple

strategy used by Polaris for a parallel loop without reductions, as shown in Figure 3.3.

cdir$ parallel (J)

do J = 1, M

do I = 1, N

� � �
A(I) = A(I) + � � �
� � �

enddo

enddo

Figure 3.3: A parallel loop with reduction

The original array A in Figure 3.3 will be declared shared in the SPDM parallel code, and

a private array A0 with the same size and type as A will substitute for A in the reduction loop.

The transformed loop, which is shown in Figure 3.4, consists of three parts: the loop preamble,

the loop body, and the loop postamble. In the preamble, A0 is initialized by all processors before
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the loop execution. After the loop body execution completes, the partial results stored in A0

are gathered into A in the postamble.

cdir$ private A0, � � �
cdir$ shared A(distribution), � � �

...

cdir$ loop preamble

JLOW = M/P*my pid+1
JHIGH = M/P*(my pid+1)

A0(1:N) = 0.0

cdir$ loop body

do J = JLOW, JHIGH

do I = 1, N

� � �
A0(I) = A0(I) + � � �
� � �

enddo

enddo

cdir$ loop postamble

call set lock(lock)

A(1:N) = A(1:N)+A0(1:N)

call clear lock(lock)

Figure 3.4: SPMD code with the block scheduled parallel loop from Figure 3.3

This parallel version of the loop has the disadvantage that the postamble is executed serially

because it is in a critical section. This works well for a few processors, but a di�erent strategy is

needed for a large number of processors. In our current implementation, A0 within each processor

is (conceptually) divided into P sections. The postamble consists of two phases. First, the i-th

section of all processors, 1 � i � P , is copied into the i-th processor. Then all processors add

in parallel the P sections copied into them. As expected, this approach of parallelizing the

postamble has an important impact on performance. This is illustrated in Table 3.2, which

contains the measurement of loop INTERF do1000 from the benchmark MDG.

If several loops in a multiply-nested loop nest are parallel, then our current loop scheduling

scheme parallelizes only one loop (usually the outermost loop) in the nest. Whereas this scheme
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Processors Preamble Loop Body Serial Postamble Parallel Postamble
(sec) (sec) (sec) (sec)

2 0.014 260 0.39 0.10
64 0.017 11 2.7 0.13

Table 3.2: Comparison of reduction parallel loops execution times

simpli�es the loop scheduling algorithm, it has the drawback that sometimes we may not fully

utilize the degree of parallelism in a multiply-nested parallel loop nest, particularly when the

number of iterations of the outermost loop is small relative to the number of processors.

To overcome this drawback, the traditional loop interchanging technique is recommended

to move more practical inner loops to the outer level so that an inner loop can be parallelized.

A more general scheme for this problem will be a multi-level loop distribution onto processors

where the iteration space of multiple loops in a loop nest is hierarchically allocated to processors.

Although we do not consider this scheme in the work of this dissertation, this is another possible

technique to take full advantage of multiply-nested parallel loops.

3.2.3 Data Privatization

Given a partition of the computation, the Polaris privatizer analyzes the data regions accessed

by each processor and declares data as private if the data is always accessed by the same

processor. The bene�ts of data privatization are many. One is that it removes some types

of output and anti dependences, as discussed in [28]. For instance, the Region Test would

determine that the loop PREDIC do1000 in Figure 3.5 has only anti dependences; hence, this

loop can be parallelized if the dependences are eliminated by renaming the array X as a private

array and copying the upwards exposed use [1] regions of X to the private array with PUT/GET

primitives. The parallel version of this loop is shown in Section 3.2.4.
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do I = 1, M

do K = 1, N

do L = 1, 1+M-I

� � � = X(K+(I-1)*N+L*N)

enddo

X(K+(I-1)*N) = X(K+(I-1)*N) � � �
enddo

enddo

Figure 3.5: Loop from the MDG benchmark, with induction variables substituted

Data privatization is important to distributed memory architectures because it increases not

only parallelism, but also the chance that the processors fetch their data from local memories,

thus reducing the overall communication overhead. Furthermore, in some non-cache coherent

multiprocessor systems [23, 25], shared data may not be cached, thereby causing performance

degradation whenever the computation uses shared data. Data privatization presents additional

bene�ts in these machines by providing more chances for processors to use data caches in their

computations.

Data privatization in Polaris consists of two passes: loop and procedure privatizers. The loop

privatizer [69] tries to �nd parts of a data object that are written prior to being read in each

iteration of a loop. In order to do so, it identi�es the read region whose access is covered by the

write region on the same iteration by aggregating all writes and reads to the data object and

intersecting the two regions. The intersection is the portion of the object which is privatizable.

The scope of the loop privatizer is con�ned to a loop nest. For example, in Figure 3.6, the

loop privatizer identi�es TEMP as privatizable, but not array W which is read in the I-loop and

written in another loop within the subroutine goo.

The procedure privatization is a variation of the loop privatization. Its purpose is to try to

�nd parts of a data object written in the previous program section prior to being used in the

current section. A program section can be any code segment within a program, including loops
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subroutine foo(V,L)

real W(LEN,2), V(*) � � �
� � �
call goo(V,W,L)

� � �
ILOW = L/P*my pid+1
IHIGH = L/P*(my pid+1)

do I = ILOW, IHIGH

TEMP = W(I,1) + W(I,2)

V(I) = TEMP � � �
enddo
...

subroutine goo(A,B,L)

� � �
JLOW = L/P*my pid+1

JHIGH = L/P*(my pid+1)
do J = JLOW, JHIGH

B(J,1) = � � �
B(J,2) = � � �

enddo

� � �

Figure 3.6: Simpli�ed code from the SU2COR benchmark after work partitioning

and subroutines. In Figure 3.6, the privatizer �rst aggregates the region W(ILOW:IHIGH,1:2)

read in the I-loop and the region W(JLOW:JHIGH,1:2) written in goo. Then, it determines

that the write region covers the read region in all processors by proving that JLOW � ILOW and

JHIGH � IHIGH, from which W is identi�ed as privatizable. It is clear from the code that each

processor accesses at most LEN/P elements in the �rst dimension of W in the SPMD code; hence,

the privatizer redeclares W to have W(LEN/P,2) and changes the subscript expressions of W in

foo. Notice that the formal parameter B in goo also must be declared as private in order to

match the private attribute of the actual parameter W in foo.

Figure 3.7 shows the code after data privatization is applied. We now have �ve privatized

variables in foo. Notice that the formal parameter V is not privatized. One reason for this is
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subroutine foo(V,L)

real W(LEN/P,2), V(*) � � �
cdir$ private TEMP, W, I, ILOW, IHIGH

� � �
call goo(V,W,L)

� � �
ILOW = L/P*my pid+1

IHIGH = L/P*(my pid+1)
do I = ILOW, IHIGH

TEMP = W(I-ILOW+1,1) + W(I-ILOW+1,2)

V(I) = TEMP � � �
enddo
...

subroutine goo(A,B,L)

� � �
JLOW = L/P*my pid+1
JHIGH = L/P*(my pid+1)

do J = JLOW, JHIGH

B(J-JLOW+1,1) = � � �
B(J-JLOW+1,2) = � � �

enddo

� � �

Figure 3.7: Code after applying data privatization to the code from Figure 3.6

that the actual parameter corresponding to V in the subroutine which calls foo could be shared.

We will discuss how to deal with these non-privatized arrays in the next section.

3.2.4 Data Distribution and Localization

We declare all non-privatized arrays as shared and BLOCK-distribute all their dimensions. Then,

we apply the shared data copying scheme [54] to localize most of the accesses to these shared

arrays that are made by the processors. In the scheme, shared memory is used as a repository

of values for private memory, as shown in Figure 3.8. In current distributed memory systems,

the shared memory is usually a logical collection of the shared address portions of all local

memories.
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Figure 3.8: Conceptual view of the shared data copying scheme for four processors

In order to apply the scheme, we �rst change references to shared arrays to the corresponding

private arrays in each loop. Before a loop starts, the processors copy all portions of shared

arrays that are read in the loop into private memory. After the loop execution completes, the

processors copy the updated results back to shared arrays so that all the processors have access

to the new results. By doing so, most of the work is done on private data objects. This scheme

brings us the following bene�ts:

1. We can take advantage of prefetching and poststoring strategies. Unlike cache memory,

the data copied into private memory is fully software controllable; that is, the data would

never be ushed out until explicitly done so by the program. Hence, as long as the local

memory space is available, a processor can prefetch data anytime before it is needed and

poststore it sometime after the computation.

2. We can reduce communication overhead by copying data blocks instead of single data

items. This scheme is particularly useful when the data distribution requirements of a

program are dynamic, as in the case of array X in Figure 1.3. Instead of total data

redistribution of the elements of X, the processors can prefetch and poststore the exact

portions of X that they access in each loop.
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3. Similar to data privatization, the scheme provides a bene�t of helping processors to better

utilize caches in non-cache coherent machines [23, 25].

In order to bring about all these bene�ts, this scheme should carry out e�cient copying opera-

tions based on a very precise access region analysis. In Chapter 2, we discussed the access region

analysis used in our code transformation algorithm. Using access region analysis, we identify

the array regions to be copied and direct where, in a loop, these regions are to be copied using

PUT/GETs. For example, in Figure 3.7, access region analysis would help us identify that the

region V(ILOW:IHIGH) is written. This region would be represented by access descriptor

A1
IHIGH�ILOW

+ ILOW

in the Access Region representation. This region information is used to generate the appropriate

PUT/GET primitives. Our primitives are speci�ed as follows:

polaris put/get(shared-address, private-address, shared-stride, private-stride, length)

where the routine polaris put transfers length words of data from private-address in private

memory space to shared-address in shared memory space. The shared-stride and private-stride

are, respectively, the strides of the shared and private arrays being transfered. The routine

polaris get works the same way as polaris put except that the source and destination of

data movement are reversed.

Figure 3.9 shows the code that results after applying the scheme to the subroutine foo in

Figure 3.7. In the subroutine, the non-privatized array V is declared as shared with BLOCK

distribution. Our experience with scienti�c codes reveals the following facts:

1. Block distribution generally works well with the data copying scheme because many loops

access arrays in a contiguous way.
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subroutine foo(V,L)

real W(LEN/P,2), V(*), v(*) � � �
cdir$ private TEMP, W, I, ILOW, IHIGH, v

cdir$ shared V(BLOCK)

� � �
call goo(V,W,L)

� � �
ILOW = L/P*my pid+1
IHIGH = L/P*(my pid+1)

call alloc(v(1:IHIGH-ILOW+1))

do I = ILOW, IHIGH

TEMP = W(I-ILOW+1,1) + W(I-ILOW+1,2)

v(I-ILOW+1) = TEMP � � �
enddo

call polaris put(V(ILOW),v(1), 1, 1, IHIGH-ILOW+1)

call dealloc(v)

� � �

Figure 3.9: Subroutine foo in Figure 3.7 after data localization

2. Data access patterns of real programs are often dynamic and, consequently, it is imprac-

tical to �nd a single data distribution for those access patterns.

3. Block distribution facilitates the calculation of the target location of the data to be copied

within calls to either the routine polaris put or polaris get. Block distribution always

guarantees no more than P PUT/GET calls per data copy for a P-processor partition.

These observations support our choice of the block distribution policy for shared arrays in our

code transformation.

The array region accessed by the reference V(I) within the I-loop shown in Figure 3.6 is

represented by access descriptor A1
IHIGH�ILOW

+ILOW, as discussed in Chapter 2. Using the access

region information for array V, the shared data copying scheme generates a polaris put call

with shared address V(ILOW) and private address v(1), where v is a private array for the shared

array V, as shown in Figure 3.9.
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In our transformation, private arrays are dynamically allocated and deallocated with the

functions alloc and dealloc. When they are allocated, their lower bounds are normalized to

one; thus, array reference v(1) indicates the �rst address of the private array v in Figure 3.9.

The strides and the length of data for transfer in this polaris put call are derived from the

stride/span pair in access descriptor A1
IHIGH�ILOW

+ ILOW. Notice here that the I-loop no longer

contains remote memory access.

cdir$ private x, � � �
cdir$ shared X(BLOCK), � � �

� � �
call alloc(x(1:(M-ILOW+2)*N))

call polaris get(X(1+(ILOW-1)*N),x(1), 1, 1, (M-ILOW+2)*N)

do I = ILOW, IHIGH

do K = 1, N

do L = 1, 1+M-I

� � � = x(K+(I-ILOW)*N+L*N)

enddo

x(K+(I-ILOW)*N) = x(K+(I-ILOW)*N) � � �
enddo

enddo

call polaris put(X(1+(ILOW-1)*N),x(1), 1, 1, (IHIGH-ILOW+1)*N)

call dealloc(x)

� � �

Figure 3.10: Loop from Figure 3.5, parallelized after anti dependence has been removed

Figure 3.10 shows the parallelized version for the loop PREDIC do1000 from Figure 3.5 which

contains anti dependence. As discussed in Section 3.2.3, the PUT/GET primitives also are of use

to eliminate anti and output dependences. As mentioned earlier, generating polaris put/get

calls requires access region information about array X within the I-loop in Figure 3.5. For this

purpose, we compute the access descriptor

A1
(M�ILOW+2)N�1 + 1 + (ILOW� 1)N y

yThis corresponds to X(1+(ILOW-1)*N : N+M*N : 1) in triplet notation.
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to represent the upwards exposed region of array X in the I-loop, and the access descriptor

A1
(IHIGH�ILOW+1)N�1 + 1 + (ILOW� 1)Nz

to represent the downwards exposed region of X. In the parallelized loop from Figure 3.10,

the processors that execute the block-scheduled loop iterations from ILOW to IHIGH get the

upwards exposed region and put the downwards exposed region between the shared array X and

the privately-owned array x, in a similar way shown in the example with Figure 3.9.

One important issue in the shared data copying scheme is to avoid consuming an excessive

amount of space for private data. Consider, for example, the loop in Figure 3.11.

real X(100,100)

� � �
 � copy-level 1

do K = 1, L
 � copy-level 2

do J = 1, N

 � copy-level 3
do I = 1, M

� � � = X(I,J)

enddo

enddo

enddo

Figure 3.11: Choices of copy-levels for a GET operation on X

In the example, the copy-level is a loop nest level at which the elements of the array X

are copied by using the Polaris PUT/GET primitives. In the example, if we perform GET

operations at copy-level 1 or 2, we have to allocate O(N �M) words on each processor. We

can save more private memory space by placing the GET primitive at copy-level 3 since each

processor now needs only O(M) words. If we are concerned only with memory space, copy-level

3 seems to be a better place for the copying. However, there is an obvious trade-o� between

zThis corresponds to X(1+(ILOW-1)*N : IHIGH*N : 1) in triplet notation.
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time and space. Copying at copy-level 1 may reduce communication costs because a processor

needs to make only O(1) polaris get calls for a large data block; on the opposite side, copying

at copy-level 3 requires a processor to make O(L �N) polaris get calls for smaller fragments

of the block.

To handle the issue of determining the copy-level in our transformation, we employ a heuris-

tic algorithm presented in Figure 3.12.

De�nition 3.1 The dimension of access region R is the number of stride/span pairs of R.

In the algorithm, dim(R) denotes the dimension of the region R. For instance, if region

R has access descriptor Aa;b;c
d;e;f , then dim(R) is three. The parameter P is a program which

is generated by the data privatization module described in Section 3.2.3. The current Polaris

PUT/GET generation strategy is applied only to parallel loops. The purpose of the routine

gather copy levels is to return a list, called copylevel-list, each element of which is a pair of

a loop and an array; here, the loop corresponds to the copy-level for the array.

To collect the pair [copy-level,array] in the list copylevel-list, all the parallel loops in P are

searched for arrays read or written in them. If array X is written in a parallel loop nest L,

then L is the copy-level for X and, thus, a polaris put call for the array is placed right after

the loop. If X is also read in L, then a polaris get call is placed right before L in addition

to the polaris out call. As can be seen, if an array is written in a parallel loop nest, then,

whether it is read or not, the outermost loop L of the loop nest will become the copy-level of

the array. This is because the access region of an array, written in a Polaris parallel loop, is

disjoint between iterations of the loop, making the total access region in a partitioned parallel

loop for each processor always smaller than the whole access region of the original array.
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||||||||||||||||||||||||||||||{

gather copy levels(program P)
copylevel-list  ;
for each parallel loop nest L in P do

for each array X used in L do

determine copy level(L, X, copylevel-list)
return copylevel-list

end

determine copy level(loop L, array X, copylevel-list)
compute access region R for X in L
if R is read-only then

if dim(R) � D or L has no inner loops then

copylevel-list  [L;X ]
else

for each inner loop L0 of L do

determine copy level(L0, X, copylevel-list)
endif

else // R is write-only or read-write

copylevel-list  [L;X ]
endif

end

||||||||||||||||||||||||||||||{

Figure 3.12: Heuristic algorithm for the polaris put/get generation
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If an array is read only in a loop nest, then we choose as the copy-level for the array the

loop(s) in which the dimension of access region for the array is less than or equal to D, a given

constant. The value of D is determined when Polaris starts the code transformation. In our

experiments, D was set to 1 or 2. However, we generally prefer D to be 1 because it usually

allows block copying of consecutive data with a single stride without increasing the private

memory space required for the data copying scheme. Note that the algorithm traverses the

loop nest L working from the outermost loop inward, to search for the copy-level for array

X . This strategy has been found to be very useful in many cases because it often removes

redundant copying in a natural way. For instance, consider the loop nest in Figure 3.11. If the

loop nest is parallel, then the subroutine call

determine copy level(loop K, array X, copylevel-list)

will be invoked. The access region for array X in the K-loop will be computed �rst and, if X(I,J)

is the only reference in the loop, the result will be A1;100
M�1;(N�1)100.

Suppose D is set to 2. Then, D is equal to dim(R), the dimension of the access region

of X in loop K, thereby making the algorithm stop searching other loops inside L and return

copy-level 1 as the copy-level for array X. In fact, when D is 2, the dimension of the access

region of X in the inner loop J is also equal to D because the array reference X(I,J) is invariant

in loop K. Thus, copy-level 2 also can be the copy-level for X. For D = 2, however, copy-level

1 is obviously a better choice than copy-level 2 because both copy-levels consume the same

amount of private memory space, yet copy-level 1 needs only O(1) GET operations while copy-

level 2 needs O(L) operations which are redundant. By searching the loop nest inward from

the outermost loop K, we could choose copy-level 1 instead of copy-level 2, and thereby avoid

redundant copy operations in this case.
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Now, suppose that D is set to 1. The dimensions of the access region of X in both loops K

and J are larger than D and, therefore, the subroutine determine copy level would be called

with regard to the innermost loop I for testing. The access region for X in loop I di�ers from

those for the outer loops: A1
M�1. Finally, the dimension of this region is equal to D. Thus, the

I-loop will be identi�ed as the copy-level for X, which corresponds to copy-level 3 in Figure 3.11.

As a consequence, the pair [loop I, X] will be added to the list copylevel-list.

Once the routine gather copy levels returns, the Polaris PUT/GET generator will be

invoked to place polaris put/get calls in the program P , according to the information stored

in the list copylevel-list.

Although we used this naive algorithm to determine the copy-level in our experiments

reported in Chapter 4, this algorithm can be improved by using several factors, such as the

dimension of the array X, and the value of N and M in Figure 3.11. For instance, given D = 1,

whereas the current Polaris implementation chooses copy-level 3 for array X in Figure 3.11, the

decision may be changed depending on the value of M . In general, copy-level 3 is useful only

when M is large. Therefore, the original algorithm may be modi�ed to choose copy-level 1 if

M is found to be too small, thereby reducing copying overhead without signi�cantly consuming

private memory.

Another factor a�ecting the determination of the copy-level is whether the data pipelin-

ing technique [68, 35] can be exploited in data copying operations. If the implementation of

polaris put/get routines is non-blocking, then we may exploit data pipelining. Thus, we

choose copy-level 1 in this example regardless of the value of M because data pipelining, by

overlapping data copying with loop computation, can o�set the data copying overhead necessary

to initiate a copying operation.
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However, in order to apply data pipelining, the compiler transformation algorithms become

more complicated and error-prone. Due to this technical problem, in real cases, we may want

to perform copy operations at outer copy levels. In principle, this strategy may consume more

space for private data; however in practice, there are several advantages to copying at the

outermost levels. First, it is generally possible to stripmine the outermost loop iteration space

in a parallel loop nest and to distribute it to processors, thereby linearly decreasing the amount

of private memory needed for each processor as the number of processors increases. Also, in

order to apply this methodology to distributed memory multiprocessors with high memory

latencies, the minimization of communication times becomes very critical. And, the trends in

multiprocessor systems indicate that processor speed will grow much faster than memory access

and network speeds. Thus, remote access times could be an important runtime factor that

needs to be taken into account. On the other hand, because the cost of memory is dramatically

reduced, saving space is less important than optimizing time in general cases. Generally, the

memory required to allocate private data can be managed using dynamic allocation functions,

such as alloc and dealloc/free. Thus, as soon as the data has been updated in the shared

area (e.g., the array access area for X in Figure 3.11), this private memory area can be liberated.
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CHAPTER 4

EXPERIMENTS AND

PERFORMANCE ANALYSIS

To measure the e�ectiveness of our transformation techniques, the Polaris code generators

have been implemented for various types of distributed memory systems, such as the Convex

Exemplar [33], and networks of workstations. In this section, we present our recent experiments

on one of these systems: the Cray T3D [23].

Section 4.1 will �rst briey describe the T3D. Section 4.2 will present several machine-

dependent issues addressed by the Polaris code transformation for the T3D. Section 4.3 will

briey discuss the characteristics of the benchmark programs used in our experiments. Sec-

tion 4.4 will present the results of the preliminary experiments conducted in this work. In

the experiments, we used a few basic code transformation algorithms only. This section will

describe how we analyzed the parallel performance based on the basic techniques to identify

several optimization techniques which would improve the preliminary performance. Section 4.5
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will show how much our optimization techniques could improve the results of the preliminary

experiments and analyze the parallel performance of the techniques.

4.1 The Cray T3D

In this section, we very briey describe the hardware characteristics of the Cray T3D and

parallel programming models supported in the machine. More detailed descriptions of the

machine can be found in other documents[22, 23, 24, 50].

4.1.1 Hardware Characteristics

While the lack of cache coherence in the Cray T3D helps to make the machine a�ordable and

scalable, it also introduces some di�culties in the development of e�cient programs [10]. The

experimental results presented in this chapter give us hope that these programming di�culties

can be overcome with the e�ective compiler techniques introduced in Chapter 3.

The Cray T3D was designed mainly for large-scale parallel scienti�c applications. It consists

of up to 1024 processing nodes, each containing 2 processing elements(PE) and a local memory.

The PEs are 150 MHz DEC Alpha 21064 microprocessors. The interconnection network is a

3-D torus network with high throughput and low latency. Remote memory latency on the T3D

ranges from 90 to 130 cycles [5]. Local memory latency is 22 cycles.

The local memory is logically partitioned into private and shared address spaces. The shared

memory in the T3D is no more than the collection of the shared address portions of all local

memories. Every shared memory access is manipulated by o�-chip components before sending

the request to the appropriate module. This o�-chip manipulation requires 20-30 cycles. The
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T3D has a �rst level on-chip cache which is used for data only in the private address space of

the local memory.

The T3D also contains a special tree-like network for global barrier synchronization. We

use the T3D barrier to enforce synchronization in the master/slave model, as described in

Section 3.1. Barriers do not have a signi�cant impact on overall program execution time in the

T3D due to this e�cient hardware implementation of barriers in the machine. Table 4.1 shows

the performance of the T3D barrier.

PEs Barrier Time (�sec)

2 1.73
4 1.73
8 1.76
16 1.80
32 1.81
64 1.86
128 1.88
256 1.90

Table 4.1: Barrier performance on the T3D: times are the average of 5000 executions

Furthermore, in our experiments, barriers are executed infrequently. The execution time

increases by less than 1% due to barriers in all the programs we studied. For instance, in FLO52

from the Perfect benchmarks, the dynamic counts of barrier calls are about 50,000. The total

overhead due to barriers is approximately 0.1 sec on a 64-processor partition, which is less than

0.2 % of the overall execution time of FLO52.

Various communication primitives, including single-sided communication primitives, are

supported in the T3D hardware. Therefore, the T3D can compensate for its lack of hardware

cache coherence through its hardware mechanisms that facilitate e�cient software control of

local memory coherency and PUT/GET operations through library primitives [24].
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4.1.2 Shared Memory Programming

Like most other distributed memorymachines, the Cray T3D supports the message-passing pro-

gramming models through libraries, such as MPI and PVM. However, the hardware features

discussed in the previous subsection di�erentiate the T3D from other true message passing ma-

chines by e�ciently supporting shared memory programming on top of its physically distributed

memory structures.

Users may develop their parallel programs in a shared memory programming paradigm using

the Cray Fortran, called CRAFT, which is an extension to Fortran 77 that includes several

data parallel programming features from Fortran 90 as well as directives to control parallelism

and data placement. CRAFT provides all the necessary characteristics that we described in

Section 3.1. It supports the SPMD model operating on a shared address space, and provides a

direct interface to the PUT/GET library primitives as well as to several explicit synchronization

mechanisms.

In our experiments, each CRAFT process was allocated to a separate physical processor.

Data objects can be declared as shared or private. Shared data can be distributed across

memory using directives similar to those made popular by High Performance Fortran, Vienna

Fortran, and other similar languages [19, 64, 68]. CRAFT uses `:block' for block distribution

and `:block(N)' for block-cyclic distribution where N is an integer.

The do shared directive of CRAFT is used to mark parallel loops. To illustrate its seman-

tics, consider the loop in Figure 4.1. Its i-th iteration is executed by the PE that owns A(i)

in its local memory. Since the elements of A are local to the PE accessing them, the compiler

enables the caching of A. The elements of B, on the other hand, are not cached because some of

them may be accessed remotely. Therefore, due to the on clause shown in Figure 4.1, CRAFT

87



users can partition the computation according to the data distribution and thereby enable the

caching of some shared data structures.

cdir$ shared A(:block(1)), B(:block)

cdir$ do shared (I) on A(I)

do I = 1, N

A(I) = B(I)

enddo

Figure 4.1: Code example with a parallel loop in CRAFT

In this example, the computation happens to be distributed according to the owner computes

rule, as is done in HPF; however, other distributions also could have been used. Table 4.2

summarizes the di�erences between CRAFT and HPF, as discussed in [50].

CRAFT HPF

Memory Classes shared/private implicitly all shared

Data Distribution W:block(N) block/cyclic/align

Computation Distribution programmer-controlled owner-computes rule

Redistribute statement NO YES

Explicit Communication YES NO
and Synchronization

Table 4.2: Comparison of CRAFT and HPF

Although the machine-supported shared memory model facilitates programming on the

T3D, ine�ciencies could arise for the following reasons if the program is not carefully designed:

� Unlike cache coherent machines, a remote memory access to a single array element does

not take advantage of spatial locality.

� Shared data objects are not cached, even when they are accessed from local memory.

Therefore, shared data objects have to be fetched from the remote location every time

the program references them. This signi�cantly increases average memory latency and

network contention.
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To avoid these ine�ciencies, we found it necessary to explicitly control caching and data trans-

fer. For this, we have implemented the shared data copying scheme, which was described in

Section 3.2.4, based on the PUT/GET library of the T3D. As built on very low level hard-

ware primitives, Since this PUT/GET library in the T3D is built on very low level hardware

primitives, it is implemented to be more e�cient than other message-passing models currently

implemented in the machine. In fact, in experiments conducted on a 16-processor partition [44],

the latency of a PUT operation in the T3D was measured at 2 �sec and the peak throughput

was measured at 116.8 MB/s, while the equivalent �gures for PVM send/receive operations are

63 �sec and 26 MB/s, respectively.

4.2 Code Transformation for the Cray T3D

The code transformation algorithms for the T3D are almost identical to that shown in Figure 1.4

except that there are several additional algorithms to address machine-dependent problems

occurring in the code transformation for the T3D.

MPP Fortran extensions, such as CRAFT and HPF[64], help the user attain high perfor-

mance through distribution of data, while maintaining compatibility with conventional Fortran

77 or Fortran 90. However, it is very di�cult to achieve total compatibility. Therefore, CRAFT

diverts from several conventional language features in the name of performance. Although there

are numerous restrictions imposed by CRAFT, some of them include:

� Fortran's sequence and storage association rules [2] do not apply to shared data.

� Shared data may not be in EQUIVALENCE or blank COMMON.

� Shared data may not be of type CHARACTER.
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� Shared data may not be used as �le speci�ers.

� The dimension size of shared arrays must be a power of twoy.

� Shared formal parameters may not be associated with private actual parameters, and

their size and shape must match those of the corresponding actual parameters.

� Shared data cannot be passed as parameters directly to PUT/GET primitives provided

by the T3D PUT/GET library [24].

We have developed translation algorithms to resolve the semantical incompatibilities be-

tween CRAFT and Fortran 77 which occur when we translate Fortran to CRAFT as a result

of all these restrictions. In the code transformation procedure shown in Figure 1.4, we did not

explicitly mention these algorithms. This is because the incompatibility problems are inter-

spersed throughout the whole procedure and, thus, they are not dealt with in any single phase

within the procedure.

Of these algorithms, we will discuss several important ones in subsequent subsections al-

though there are additional algorithms actually implemented in Polaris to address the incom-

patibility problems.

We could eliminate many important incompatibility problems using these algorithms, but

not all of the problems. We sometimes could not generate correct programs for a few programs

due to some incompatiblities or to some T3D hardware problems. For example:

� Too frequently invoked barrier operations sometimes resulted in the failure to guarantee

the integrity of shared data.

yIn the Cray T3E, this restriction is no longer imposed.
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� The processor memory is sometimes too small to accommodate the program.

These problems are often unavoidable unless we change the algorithms of the input pro-

grams themselves or develop more powerful techniques to eliminate the restrictions causing

incompatibility problems.

4.2.1 Renaming

Aliasing always has been an important issue in program analysis in general, and in automatic

parallelization in particular [74]. Aliasing also is one of the most di�cult problems in automatic

parallelization for the T3D. Consider, for example, the following segment extracted from one of

the SPEC95fp benchmarks in Figure 4.2. CRAFT cannot distribute a shared data object if it

is aliased to other objects of di�erent shapes or types. In the code above, the shared variables

within SCRA cannot be distributed because of the aliasing of A and I.

subroutine X1

real A, B, C, D, E, F

common /SCRA/ A, B, C, D, E, F
...

subroutine X2

real G(5)

integer I

common /SCRA/ I, G
...

Figure 4.2: Aliasing in the simpli�ed code from HYDRO2D

In order to address this problem, we interprocedurally check the lifetimes associated with

each variable and apply renaming. In the previous example, it can be proven that the lifetime

of the values of SCRA in X1 and in X2 are disjoint. As a result, we could rename either occurrence

of the common block without a�ecting the outcome of the program.
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4.2.2 Linearization

Variable linearization and renaming are the most common techniques used to solve problems

related to storage association rules. For example, linearization is needed to inline a subroutine

call when an actual parameter di�ers in shape from the corresponding formal parameter.

We use linearization to deal with array equivalences because of the restriction that the size

of all shared array dimensions must be a power of 2. When two arrays of di�erent shapes are

equivalenced, we linearize the array before dimension expansion. Linearization also helps to save

memory. For example, a shared array A(9,9,9) is expanded to A(16,16,16) without lineariza-

tion, and A(1024) with linearization. Linearization, in this case, saves 3K words. However, we

do not want to apply linearization to all multidimensional arrays because linearization makes

the program less readable and program analysis more di�cult due to the complex subscript

expressions.

4.2.3 Array Reshaping and Procedure Cloning

Figure 4.3 shows the code, where we assume that A and B are shared arrays, to illustrate one

important di�erence between Fortran 77 and CRAFT. In this code, if interpreted as Fortran

77, B(2,2) is aliased with A(6,7); but, if interpreted as CRAFT, it is aliased with A(2,8).

This is because, in CRAFT, aliasing between shared arrays takes place at the submatrix level

whereas, in Fortran, a linear storage sequence is often assumed for parameter aliasing. Many

real Fortran codes rely on such association rules.

We address this problem by changing the subscript expressions within the subroutine to

conform to the CRAFT semantics. Procedure cloning is applied whenever the same routine is
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real A(8,8)

call foo(A(1,7))
...

subroutine foo(B)

real B(4,4)

... B(2,2)
...

Figure 4.3: Sequence and storage association rules for the dummy array B

called with di�erent submatrices as actual parameters. To illustrate this, suppose we are given

a code in Figure 4.4, a generalized version of the code shown in Figure 4.3.

program main

real A(L1 : U1,...,Ln : Un)

call foo(A(f1,...,fn))
...

subroutine foo(B)

real B(L0
1 : U

0
1,...,L

0
m : U 0

m)

... B(g1,...,gm)
...

Figure 4.4: Code before procedure cloning

Figure 4.5 shows the results after procedure cloning is applied to the code in Figure 4.4.

Notice that in the resulting code the origin of the parameter array is passed to the subroutine

rather than to the address of one of its elements. The actual and formal parameter arrays are

forced to have the same size and shape. Let X be the o�set of A(f1,...,fn) from the �rst

address of A, and X 0 be that of B(g1,...,gm). Then, the array index hk is de�ned as hk = Xk

mod Nk + Lk where Nk = Uk + Lk + 1, X1 = X +X 0 and Xi = bXi�1=Ni�1c for i > 1.

Our experiments show that cloning does not increase the size of the original programs by

more than a factor of 2. This is the case because actual and formal parameters usually have

the same shape, size, and dimension.
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program main

real A(L1 : U1,...,Ln : Un)

call foo clone(A)
...

subroutine foo clone(B)

real B(L1 : U1,...,Ln : Un)

... B(h1,...,hn)
...

Figure 4.5: Code after procedure cloning

4.3 Benchmark Programs

Table 4.3 briey describes eleven programs that were used in our experiments. These programs

come from either the SPEC95fp or the Perfect benchmarks. Detailed documents on these

programs are available in [11, 62]. The table also shows the sequential execution times of each

program on the Cray T3D.

We used all these programs in the preliminary experiments presented in Section 4.4. How-

ever, in the following experiments with advanced techniques, presented in Section 4.5, we used

only six of them (BDNA, MDG, TRFD, SWIM, TFFT2, and TOMCATV) to produce the

results. One reason for using only these six is that three of the other �ve programs not in-

cluded (ARC2D,APPSP,FLO52) are not suitable for large-scale parallel machines like the T3D

mainly because their data set sizes are too small, thereby limiting the loop-level parallelism

that Polaris can utilize. One solution would be to increase the data sizes; however, this was

not permitted in the experiments with these benchmarks. Another solution would be to exploit

more parallelism at levels other than loops by enhancing Polaris. This was beyond the scope

of this thesis. For the remaining two programs (HYDRO2D,SU2COR), we found that Polaris'

current implementation of the techniques is not e�ective enough to obtain successful speedups.

This is because we have not yet fully implemented all of the techniques presented in Chapter 3.
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Program Brief Benchmark Code Execution
Name Description Source Lines (sec)

ARC2D Implicit �nite-di�erence Perfect 4694 243
code for uid ow

BDNA Molecular dynamics Perfect 4887 82
simulation of biomolecules

FLO52 2-D analysis of transonic Perfect 2368 54
ow past an airfoil

MDG Molecular dynamics model Perfect 1430 287
for water molecules

TRFD Kernel for quantum Perfect 634 35
mechanics calculations

APPSP Gaussian elimination SPEC 4439 1436
system solver

HYDRO2D Navier Strokes solver SPEC 4289 1377
to simulate galactical jets

SU2COR Quantum mechanics SPEC 2333 989
with Monte Carlo simulation

SWIM Finite Di�erence solver SPEC 429 2377
of shallow water equations

TFFT2 Collection of FFT SPEC 642 433
routines from NASA codes

TOMCATV generator of 2-D meshes SPEC 190 1633
around geometric domains

Table 4.3: Benchmark programs used in the experiments

In addition, we tried to include some other programs, not listed in Table 4.3, for our ex-

perminets. These failed because some of the problems discussed in Section 4.2 made Polaris

unable to generate correct parallel programs for them.

4.4 Preliminary Experiments

Generating a correct CRAFT parallel program from an ordinary sequential program is a very

complex task itself, even without considering the common optimization issues that exist for

many other distributed memory machines, such as data distribution, data movement, and

parallelism detection. This is primarily because of the restrictions imposed by CRAFT, as
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discussed in Section 4.2. For this reason, in the beginning of our work, we focused on only the

development of the basic compiler algorithms to generate correct SPMD parallel programs that

may be validated when running on the T3D.

Therefore, the experiments using the parallel programs produced by the basic algorithms

were preliminary because we handled few optimization issues in the code transformation based

on these algorithms. As a consequence, the preliminary experimental results were unsatisfactory

for most of the benchmarks. However, the performance analysis on the results helped identify

several advanced techniques that would improve the original code quality. We will �rst discuss

the preliminary experiments in this section, and continue our discussion with the experiments

based on those advanced techniques in Section 4.5.

4.4.1 Code Transformation with Basic Techniques

Figure 4.6 shows the basic code transformation procedure to generate SPMD parallel code for

the preliminary experiments. This procedure di�ers from that in Figure 1.4 primarily in that

the data localization phase is not included here. Another di�erence is that the parallelism

detection phase in this procedure does not use the Region Test to �nd parallel loops in a given

program.

Parallelism
Detection

Work
Partitioning

Data
Privatization

Data
Distribution

- - -

Sequential Fortran 77 Code Target Parallel Code
B
BBN �

���

Figure 4.6: Basic code transformation for the T3D in Polaris
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Figure 4.7: Results of the preliminary experiments with 11 benchmarks
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4.4.2 Experimental Results

Figure 4.7 presents the speedups obtained by Polaris on the T3D for �ve programs from the

Perfect benchmarks, and six programs from the SPEC95fp collection. We report speedups for

processor numbers that are powers of two between 1 and 64. During the sequential execution

of an original program, we measured the percentage of overall running time of the program for

each loop, and added the percentages of each parallelizable loop to obtain the total sum. We

call this total sum parallel coverage [15]. Two dotted lines in Figure 4.7 plot the ideal speedups

for programs with parallel coverage of 99% and 90% respectively. The ideal speedup, S, is

calculated using Amdahl's equality: S =
1

c
P+1� c

, where P is the number of processors and c

is the parallel coverage.

After all eleven analyzed programs were transformed by Polaris, their parallel coverage was

between 90 and 99%. Therefore, the speedup curves for these programs should, under ideal

conditions, lie between the two dotted lines. Real program speedups are much lower than the

ideal for several reasons, including synchronization and scheduling overhead, communication

costs, and usage of shared data that are not cached in the non-cache coherent machines like the

T3D. These speedups should improve once we implement in Polaris optimizations to deal with

these issues.

The e�ect of using shared data that are not cached, which we call the cache bypassing

penalty, is reected in the speedups for one PE, where the speedup is below one in all cases, as

shown in Figure 4.7. The largest values are 0.9 for BDNA and 0.8 for MDG. This occurs because

important arrays in both programs are privatized by the reduction recognition technique [59, 61]

and, thus, have very few accesses to shared data. In contrast, FLO52 and TRFD have the lowest

speedups for one PE because they repeatedly access large sections of shared arrays in the loops.
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In addition to the cache bypassing penalty, as we increase the number of processors, other

factors become signi�cant, such as communication, the amount of parallelism, and the number

of iterations of parallel loops. Such factors tend to decrease the e�ciency as the number of

processors grows. In this paper, e�ciency is de�ned as the ratio between speedup and the ideal

speedup made possible by the parallel coverage of the program. For example, the e�ciency

of TRFD, whose parallel coverage is 90%, goes from 0.23 to 0.13 as the number of processors

grows from 1 to 64.

4.4.3 Performance Analysis

In this section, we analyze the behavior of three of the eleven programs presented in Figure 4.7:

SWIM, MDG, and TRFD.

SWIM is a �nite di�erence solver of the shallow water equation on a 512x512 grid. Its serial

execution time on the T3D is 2378 seconds. SWIM performs most of its operations

on fourteen 513x513 arrays. In the parallelized version, these arrays are expanded to

1024x1024 shared arrays because of the CRAFT restrictions discussed in Section 4.2.

Fortunately, for 64 processors, the total amount of extra memory required is relatively

small: 0.1M words per processor.

SWIM shows the best speedups in Figure 4.7. The main reason for these speedups

is that Polaris parallelizes all the outermost loops, which results in a parallel coverage

of almost 100%. Most parallel loops in SWIM are doubly-nested loops with 512x512

iterations. This is large enough to saturate 64 processors. Furthermore, each processor

accesses di�erent regions of the shared arrays in parallel loops, resulting in few memory

access collisions during the execution of the parallel loops. Above all, our simple block

99



distribution policy happens to match computation distribution in SWIM, thus reducing

a large amount of remote memory access overhead. As a result, we see that the speedup

grows with the number of processors.

Despite the good characteristics of SWIM, we notice that the e�ciency for a single

processor is still 0.55. As mentioned earlier, this number mainly reects the impact of

the cache-bypassing penalty in the T3D. In other words, if caching is allowed for shared

data, we would get a speedup of 1.8(= 1=0:55). In Figure 4.8, the upper limits of this

predicted speedup line is plotted. This predicted line of course gives a glimpse of only

the speedups we may achieve by optimizing the cache-bypassing penalty; therefore, the

real speedups can surpass this prediced line by applying other techniques. However, it is

clear that one of the major optimization e�orts in SWIM should focus on increasing the

fraction of cacheable data.
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Figure 4.8: Speedup Analysis for SWIM
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MDG is a molecular dynamics model of water. Its sequential execution time on the T3D is 330

seconds. The most important loop in MDG is INTERF do1000, which accounts for 92%

of the sequential execution time. This loop is parallelized because of several advanced

techniques applied by Polaris, including inlining, array privatization, induction variable

recognition, and histogram reduction recognition. The parallel version of INTERF do1000

has many privatized reduction arrays instead of shared arrays.
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Figure 4.9: Speedup Analysis for MDG

Figure 4.9 shows that the speedup will not grow signi�cantly even after eliminating

all the cache bypassing penalty for the parallel loops. Thus, the cache bypassing penalty

is not as inuential in MDG as it is in SWIM.

The main cause of the drop in speedup is a doubly-nested sequential loop, INTRAF do1000,

which accounts for just 1% of sequential execution time. This loop accesses shared data

and, when the number of processors grows, so does the execution time of this loop, as

shown in Table 4.4. This shows that, in some cases, communication costs in a serial

101



loop grow much faster than the same costs in a parallel loop. Hence, we need to reduce

these costs in sequential loops even when their execution time is relatively small. In fact,

the loop INTRAF do1000 is parallel and, thus, the speedup will improve when Polaris is

extended to parallelize this loop.

PEs INTERF do1000 INTRAF do1000
(sec) (sec)

2 260 4.6
4 140 5.8
8 76 8.4
16 41 14
32 21 26
64 11 59

Table 4.4: INTERF do1000 and INTRAF do1000 on the T3D

TRFD is a small kernel for quantummechanics calculations. It has twomajor loops, OLDA do100

and OLDA do300, both of which correspond to 90% of the sequential execution time. All

the other parallel loops in TRFD take up less than 1% of the sequential execution time.
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Figure 4.10: Speedup Analysis for TRFD
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Judging from the case on a single processor in Figure 4.7, TRFD su�ers from bypassing

the cache for shared data more than SWIM and MDG. Removing such a penalty would

drastically boost the performance by a factor of 4.6, as projected by the ideal speedup

shown in Figure 4.10.

4.5 Experiments with Advanced Techniques

The analysis on the results of the preliminary experiments helps us to identify the main factors

inuencing parallel performance of these programs. These factors are:

1. the parallel coverage;

2. the parallel loop structure in a program;

3. the amount of shared data used in local computations; and,

4. the amount of data being moved in the system.

Based on this performance analysis, we could develop and implement the complete code trans-

formation algorithms with various advanced techniques, which were discussed in Chapter 2

and 3. To increase the parallel coverage, we could use the Region Test, discussed in Sec-

tion 3.2.1. Section 3.2.2 discussed the issues of the parallel loop structure. The Access Region

and the shared data copying scheme are the techniques that handle the issues related to the

last two factors.

Using the algorithms presented in Chapter 3, we transformed the original benchmark pro-

grams again to parallel form, and conducted the experiments by running them on the T3D. In

this section, we discuss these experiments and performance analysis on them.
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4.5.1 Experimental Results and Analysis

Figure 4.11 shows the experimental results. It is usually di�cult to accurately quantify the

e�ects of each compiler technique on the factors presented above because performance results

from the combination of various techniques in most cases. For instance, the speedups in Ta-

ble 2.1 of Section 3.2.1 are not possible without the Region Test's identi�cation of the major

loops in TFFT2 as parallel; yet, the Region Test could not detect those parallel loops without

the Polaris privatizer's removal of anti and output dependences from the loops. The removal of

these anti and output dependences is attributed to the PUT/GET primitives, and, the primi-

tives, in turn, are essential to the shared data copying scheme.

Nevertheless, in Table 4.5, we try to single out the impact of each technique we used in the

transformation. In the table, the rows correspond to the techniques and the columns to the

benchmarks shown in Figure 4.11. If a technique is important for a program, the corresponding

entry is marked.

BDNA MDG TRFD SWIM TOMCATV TFFT2

PD1 � � � � �
PD2 � �
PD3 � � �
LDP � � � �
LT �
DL � � � � � �

Table 4.5: Impact of the techniques on the benchmarks

PD1, PD2, and PD3 stand for the parallelism detection techniques. We assume that PD1

is applied �rst; then, PD2 is applied to loops not parallelized by PD1; and, �nally, PD3 is

applied to the remaining serial loops. PD1 includes the traditional dependence tests, such as

the GCD test and the Range Test. The Polaris implementation of PD1 cannot parallelize a
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Figure 4.11: Improved parallel speedups for 6 benchmarks on the T3D
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loop with I/O operations. But, some programs need to read large �les, causing the I/O time

to take a signi�cant portion of the total execution time. Consequently, we developed a simple

test to parallelize the I/O operations by making each processor read a small portion of the

whole data �le into shared memory space. We call this PD2. PD3 corresponds to the Region

Test. As already mentioned in Section 3.2.1, the Region Test parallelizes the important loops

in TFFT2 that PD1 failed to do, and also enables us to deal with small loops in MDG and

TRFD so that we can obtain good speedups on a larger number of processors. In the cases of

BDNA, SWIM, and TOMCATV, PD1 parallelizes most of the loops, thus leaving few loops to

the Region Test.

LDP stands for the loop data privatization. In the experiments, we used only the loop

privatization technique because we do not yet implement the procedure privatization module.

According to our analysis, there are several benchmarks whose performance depends heavily

on the procedure privatization technique, such as TOMCATV, SU2COR, and HYDRO2D, all

from the SPEC95fp benchmarks. Speci�cally for SU2COR and HYDRO2D, we have found that

we cannot obtain any outstanding speedups until we implement the procedure privatization

module. The superlinear speedups in MDG are ascribed to LDP , which privatizes most of the

important arrays in the program, as well as to PD1 and PD3, which parallelize almost all the

loops in it.

LT stands for the conventional loop transformation techniques, including loop fusion, loop

distribution and loop interchange [40, 73]. These techniques are useful in our approach because

they help neighboring loop nests to reuse data stored in local memory. In TOMCATV, LT

doubles the speedups.
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processors BDNA MDG TRFD SWIM TOMCATV TFFT2

2 1.0 1.3 4.0 2.2 1.7 2.0
8 1.4 1.3 4.6 2.4 1.2 1.8
32 1.5 1.2 5.8 2.1 1.4 1.4

Table 4.6: Performance improvement due to data localization

The entries in Table 4.6 represent the value speedup with DL

speedup without DL
, where DL stands for the

data localization discussed in Section 3.2.4. The values in the table reect the e�ectiveness

of DL for each program. The table indicates that DL is e�ective across all the programs,

especially for TRFD. In the next subsection, we will discuss in more detai the e�ectiveness of

the data localization techniquel with three programs: SWIM, TOMCATV, and MDG.

4.5.2 E�ectiveness of Data Localization

Figure 4.12 shows the speedups for three programs, SWIM, TOMCATV, and MDG, which were

already shown in Figure 4.7. As mentioned earlier, these speedups were obtained after applying

only the basic transformation techniques. As expected, the speedups are low in all cases due to

the two factors discussed above. We can measure the impacts of the cache bypassing penalty

on performance by looking at the speedups for one processor in the �gure. As can be seen, the

speedup is below one in all cases. We see TOMCATV is most heavily a�ected by the cache

bypassing penalty. The dotted lines in the �gure are the predicted speedups for each program,

discussed in Section 4.4.3, that we might achieve after eliminating the penalty.

Figure 4.13 shows the speedups for these programs which were obtained after applying LD1,

the data localization technique, to the results in Figure 4.12. This �gure illustrates how we

improve the speedups to reach the predicted lines by using the data localization technique and

the shared data copying scheme. As can be seen in the �gure, Polaris now automatically gets
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Figure 4.12: Before applying the data copying scheme
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Figure 4.13: After applying the data copying scheme
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rid of most of the cache bypassing penalty by using the shared data copying scheme. The

�gure also shows that the communication cost reduction through block data copying brings

even better performance to the actual speedups than the predicted ones.

Although the greatest improvement in Figure 4.13 came from this data copying scheme, we

also applied several other optimization techniques in the experiments. In MDG, we used the

Region Test to parallelize several loops that the current Polaris frontend identi�es as serial but

that can be automatically parallelized. By doing so, we removed the performance drop in MDG

for more than 32 processors. As discussed in the previous subsection, we applied loop fusion to

remove most of the data copying overhead in TOMCATV. These additional loop transformation

and parallelization techniques are very important for the data copying scheme.
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CHAPTER 5

CONCLUSIONS AND FUTURE

WORK

5.1 Achievements

In this dissertation, we have discussed our e�orts to develop compiling techniques which au-

tomatically transform a sequential program into a shared-memory style parallel program for

distributed memory multiprocessors.

In these e�orts, we �rst tried to understand the fundamental issues related to code generation

for distributed memory multiprocessors. To do so, we studied former work by others who have

attempted to address these issues, which was discussed in Chapter 1. Also, we conducted the

preliminary experiments, shown in Section 4.4, to comprehend the behaviors of real programs

on distributed memory multiprocessors.

In this dissertation, we chose the Cray T3D, a commercial distributed memory machine, as

our target machine for the experiments. The analysis of the experimental results helped us to
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identify several performance factors that heavily a�ect the speedups on the machines. Further-

more, the analysis helped us to determine optimization techniques to handle these performance

factors.

Based on these previous studies, we proposed a new approach for the code transformation

which was presented in Chapters 2 and 3. Our code transformation capitalizes on the traditional

compiler techniques already implemented in Polaris [13, 52]. In addition, it uses several newly

developed techniques for a distributed memory architecture, such as the Access Region, the

Region Test, procedure data privatization, and data localization.

The Access Region is a new way to represent the access patterns of arrays within a program

which is more precise than traditional triplet notation. We have de�ned operations for ma-

nipulating this representation which are suitable for supporting the region processing needs of

several compiler modules. We discussed using a general facility for processing this representa-

tion as a basis for privatization analysis, dependence analysis, communication generation, and

interprocedural analysis within a parallelizing compiler.

The Region Test is a new dependence test built upon the Access Regions representation.

We have shown that it combines the strengths of several existing dependence tests. We have

argued that since the Access Region representation uses an abstraction of the program text, it

can summarize the e�ect of arbitrary program sections and, therefore, can be used for inter-

procedural summarization and dependence testing as well as for loop-based parallelization. We

presented a reformulation of the dependence problem in terms of regions, and showed how a

combination of high-level summarization, strong symbolic region manipulation routines, and a

precise representation can allow the parallelization of program sections that no other existing

technique can. We also showed that a by-product of our reliance on symbolic manipulation is
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the ability to extract the safe conditions for parallelization and to generate run-time dependence

tests for some loops from real programs.

The procedure privatizer is a general version of the traditional loop privatizer. It can

privatize variables used in any code segment within a program, including loops and subroutines,

by �nding parts of a data object written in the previous program section prior to being used

in the current section.

The core technique for data localization is the shared data copying scheme. The scheme

removed most of the communication needed for the access to shared data, thereby reducing

communication overhead. The shared data copying scheme is a main bene�ciary of the Access

Region representation because accurate data access region analysis is the most vital component

to the success of the scheme.

Combining all these new techniques with the traditional complier techniques, we parallelized

sequential codes from the Perfect and SPEC95fp benchmarks, and experimented with the par-

allelized codes on the T3D. The experimental results, shown in Section 4.5, revealed that our

approach is reasonably e�ective on real applications by addressing most of the performance

factors we identi�ed from the preliminary experiments.

5.2 Additional Techniques to Further Improve Performance

So far, we have presented various compiler techniques in Polaris for code transformation on

distributed-memory multiprocessors and the experimental evidence to reveal their e�ectiveness.

However, our work also revealed that there is much room for improvement. In particular, our

current implementation has no advanced techniques to handle the data distribution issues arisen

in the code generation for distributed-memory multiprocessors. In this section, we present our

112



recent study on some strategies to further improve our code transformation, as reported in a

paper by the author and others [47].

5.2.1 Redundant PUT/GET Elimination

One important optimization is the reduction of communication overhead in the shared data

copying scheme, which is achieved by reducing the number of PUT/GET operations. The com-

munication optimization algorithm currently implemented in Polaris is relatively simple and,

as a consequence, the communication overhead is sometimes unnecessarily large and scalability

is hindered.

One way to reduce the communication overhead in our approach is to reduce the number

of GET/PUT operations. For this purpose, we have found that we still need additional cross-

loop analysis. Although our data copying scheme greatly reduces the overall communication

overhead by aggregating data to be copied in the experiment, cross-loop analysis allows us to

eliminate the redundant data copying repeatedly performed between loop nests. One technique

we have already used for this purpose is conventional loop transformation, such as loop fusion,

loop distribution, and loop interchange [40, 73].

Another, yet more general, technique we consider now is redundant PUT/GET elimination.

We illustrate this technique using the example in Figure 5.1. In the example, for the shared

array X, our current scheme generates two private arrays, x0 and x1, and two GET operations

because X is accessed in two di�erent loop nests. However, using access region analysis, we can

identify that the region of X read by the I-loop completely covers the region by the following the

J-loop and, thus, x1 is redundant. In this case, we can eliminate x1 and replace x1((J-L)/2+1)

with x0(J-L+1); as a result, only one GET operation is needed.
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cdir$ private x0, x1, � � �
cdir$ shared X(BLOCK), � � �

� � �
call polaris get(X(L),x0(1), 1, 1, U-L+1)

do I = L, U, 1

� � � = x0(I-L+1)

enddo

� � �
call polaris get(X(L),x1(1), 2, 1, (U-L)/2+1)

do J = L, U, 2

� � � = x1((J-L)/2+1)

enddo

� � �

Figure 5.1: Code example for redundant PUT/GET elimination

We have found that these redundant polaris put and polaris get calls occur fairly fre-

quently in the codes automatically generated by Polaris. The elimination improved the execu-

tion times and the scalability of studied programs.

5.2.2 Access Sensitive Data Distribution

Data distribution is another important issue in the code generation for distributed memory

multiprocessors. As discussed in Chapter 3, the current Polaris data distribution strategy

is access insensitive in that it simply chooses BLOCK distribution regardless of the data access

patterns in a program. This naive distribution policy facilitates the shared data copying scheme

to some extent, as discussed in Section 3.2.4. For very regular programs, however, it has often

been suggested that more sophisticated data distribution policies improve performance [6, 8, 9,

19, 41, 56]. Therefore, we need to apply access sensitive data distribution strategies mainly to

those regular programs. These strategies can be implemented in the data distribution stages

of the transformation procedure discussed in Figure 1.4 to complement data privatization and

localization techniques in Polaris.
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To estimate the importance of the access sensitive data distribution in our current trans-

formation framework, four benchmarks, SWIM, MDG, TRFD and MDG, were recently hand-

optimized with these data distribution issues taken into account. That is, in the hand-optimized

versions, appropriate data distribution policies for shared arrays were carefully chosen based

on the access pattern analysis of the programs.

5.2.3 Manual Experiments with Additional Techniques

Figure 5.2 shows that the application of the techniques produced almost perfect speedups for

the four programs on the Cray T3D. The speedups of the automatic versions were obtained

from Figure 4.11. The speedups of the manual versions were obtained from the experiments

using the hand-optimized parallel codes.

The �gure shows that, in TRFD, access sensitive manual data distribution strategies sub-

stantially minimize the communication overhead resulting from the copying operations. In

MDG, the manual version of MDG shows slightly better scalability in the speedup curves on

more than 32 processors. This is made possible by the techniques for reduction of communica-

tion overhead due to manually chosen access sensitive data distribution strategies.

However, we were unable to develop a manual version for MDG based on conventional data

distribution techniques that outperformed the automatic version. One reason for this is that

the Polaris privatization module privatizes only the most important arrays, thereby eliminating

the need to distribute data. A second reason is that MDG has irregular data access patterns;

that is, it is composed of several di�erent subroutines that have conicting data distribution

requirements for fast execution. Thus, a single static distribution cannot be determined to

satisfy all the data access patterns in the program. Also, there are frequent requirements for
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Figure 5.2: Impact of data distribution strategies on the T3D
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reduction operations (i.e., to get positions for all atoms and to evaluate a processor's total

contribution in the �nal force) which results in the need for expensive global communication.

This global information sharing makes it more di�cult to �nd good data distribution for MDG.

As a result, we conclude that, in MDG, the access sensitive data distribution strategies do not

help much.

The experiment with MDG supports the argument in Section 3.2.4 that the shared data

copying scheme can be a better solution than sophisticated data distribution algorithms for the

codes that need frequent global data sharing or that contain irregular data access patterns.

5.3 Conclusions

There are several requirements for the powerful parallelizing compilers that automatically trans-

form sequential codes into parallel form for a diversity of distributed multiprocessor systems.

One is that the cases occurring in real-world applications usually vary too much to be handled

by any single or a few compiler techniques. As a matter of fact, the compiler that attempts

to be e�ective for many real problems must be equipped with a variety of powerful techniques.

However, exhaustedly applying a series of those techniques to a program would not be advan-

tageous because it would take the compiler too long time to generate parallel code. Thus, the

techniques implemented in the compiler are also required to be e�ciently organized. All these

requirements for powerful parallelizing compilers must be based on a thorough and careful study

of various compiler techniques and the characteristics of a broad range of real applications.

The work presented in this dissertation is based on the Polaris compiler which quite suc-

cessfully satis�es these requirements. Its powerful frontend modules, consisting of parallelism

detection and elimination techniques, have been built upon more than a decade's experience of
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automatic parallelization of Fortran 77 programs. The e�ectiveness and applicability of these

techniques have been strongly proven through experiments on several commercial UMA shared

memory multiprocessors using numerous well-recognized benchmark programs.

Another factor making the Polaris compiler e�ective for versatile programs is the design of

the Polaris backend modules which follows a careful study of the target machines. This machine-

dependent design has resulted in many unique and e�ective code generation techniques for each

target machine.

In the work presented in this dissertation, we have followed the same philosophy as we have

for other types of machines. To obtain excellent multiprocessor speedups, we utilized a diversity

of existing compiler techniques already implemented in Polaris. Also, we developed the T3D-

speci�c code generation backend modules, pro�ting from the fact that the T3D supports fast

barrier and PUT/GET operations based on low latency network. The experimental results

reported in this dissertation proved the e�ectiveness of our approach for at least the T3D.

To extend our transformation techniques to other classes of machines with remote memory

latency higher than the T3D, in Section 5.2, we analyzed the performance shown in Figure 4.11

to identify the importance of the data distribution issue in our code transformation platform.

The manual evaluation has convinced us that better data distribution strategies will help us

to extend the Polaris compiler to parallelize a broader range of programs for other classes of

distributed memory systems.
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