Region-based Parallelization Using the Region Test

Jay Hoeflinger, Yunheung Paek, David Padua
Department of Computer Science
University of Illinois at Urbana-Champaign,

1304 West Springfield Avenue, Urbana, IL 61801, USA
{hoefling,paek,padua}@cs.uiuc.edu

Abstract

*In this paper, we discuss the advantages of using array
access region summaries to parallelize programs. We refor-
mulate the definition of the types of dependence in terms
of array regions, and present a dependence test called the
Region Test to use the definitions. The Region Test is de-
signed to detect dependence between arbitrary regions of a
program, including loop nests and whole subroutines. This
allows us to exploit task parallelism, as well as loop paral-
lelism. The Region Test also facilitates the generation of
run-time dependence tests in situations where insufficient
information exists at compile time to carry out the depen-
dence test.

Keywords: Compilers, Dependence Test, Parallelization

1 Introduction

Detection of parallelism in sequential codes is the key in-
gredient in successful automatic parallelization for all types
of modern multiprocessors. The increasing use of comput-
ers with large numbers of fast processors is making it ever
more important for compilers to find large amounts paral-
lelism within a program. In order to do that, compilers must
have an efficient and flexible way of representing and using
summarized access patterns [1].

For this purpose, a compiler typically uses a standard
representation, such as triplet notation (also called regular
section descriptor) [4, 5, 8], or convez regions [11, 12, 14].
These representations are based on a standard, simple ac-
cess pattern, for purposes of efficiency. Through our analysis
of the Perfect [24] and SPEC [26] benchmarks, and several
full scientific codes from the National Center for Supercom-
puting Applications(NCSA), we found that these represen-
tations sometimes must discard critical information. This
prevents the parallelization of certain loops.

This motivated us to develop a new representation called
the Access Region, a generalization of triplet notation. In

*The research described is supported by Army contract
#DABT63-95-C-0097. This work is not necessarily representative of
the positions or policies of the Army or the Government.

this representation, we attempt to retain maximum preci-
sion without sacrificing efficiency. This representation can
be manipulated in a self-contained, abstract form, which has
the desirable effect of allowing summarization and compar-
ison of the access patterns of arrays in arbitrary program
sections. In a previous paper [1], we focused on the descrip-
tion of the Access Region form.

The focus of this paper is a new dependence test, called
the Region Test, which builds upon the Access Region rep-
resentation. We are implementing the Region Test in the
Polaris compiler [2]. In Section 2, we first characterize the
Region Test in comparison with other dependence tests. In
Section 3, we formally describe the Access Region represen-
tation and operations on it. In Section 4, we describe how
the Region Test deals with the dependence problem at the
loop, interprocedural and task levels, and how it generates
runtime dependence tests.

2 Related Work

Two of the earliest dependence testing techniques were the
GCD Test and the Banerjee Test [18]. In practice, these were
simple, efficient, and successful at determining dependence,
since most subscript expressions occuring in real scientific
programs are very simple. However, the simplicity of the
tests results in some limitations. For instance, they are not
effective for determining dependence for multidimensional
arrays with coupled subscripts, as stated in [13]. Several
multiple-subscript tests have been developed to overcome
this limitation: the multidimensional GCD Test [19], the
Power Test [25], the A-test [21], and the Delta Test [13].

The above tests are exact in commonly occuring spe-
cial cases, but in some cases are still too conservative. The
Omega Test [16] provides a more general method, based on
sets of constraints representing a convex region, capable of
handling dependence problems in terms of integer program-
ming problems. Although integer programming techniques
use worst-case exponential time algorithms, the Omega Test
has proven to be efficient and successful for solving depen-
dence problems.

All of the preceding tests have the common draw-back
that they cannot handle subscript expressions which are
non-affine. Non-affine expressions sometimes occur in the
original form of programs, and are often exposed during
compiler transformations, due to the closed form expressions
for induction variables, or the forward propagation of expres-
sions. To solve this problem, the Range Test [5] was built
to handle non-affine subscript expressions, through strong
symbolic range analysis. The Range Test, the most powerful



test used by Polaris, has shown good results in parallelizing
many loops in real programs, but is not a multiple-subscript
test, so is not effective for handling coupled-subscripts.

All of these tests were designed to exploit loop paral-
lelism. They build a dependence graph to represent the
dependence relationship between pairs of array references
within a loop. To do this, they compare all pairs of ar-
ray references which may contribute to a dependence within
loops. So, we say that they are point-to-point tests. The
dependence graph is very useful for parallelization and en-
ables sophisticated loop transformations [15]. But, point-
to-point methods may need O(nz) comparisons where n is
the number of array references in the loop. This can be
very expensive if the loop contains many references. Also,
these techniques are not appropriate to analyze dependence
between arbitrary program sections, such as loop nests and
subroutine calls. A common way to address these problems
is to summarize the array accesses within program sections,
then intersect them to determine dependence between the
sections. To implement such summaries, several previous
works [12, 14] used a set of constraints representing a con-
vex region.

The Region Test endeavors to combine the flexibility and
efficiency of these summarization techniques with the sym-
bolic strength of the Range Test. The Region Test has sev-
eral advantages over other tests. First, capitalizing on the
expressiveness of the Access Region representation, and the
powerful manipulation routines defined for Access Regions,
the Region Test is able to parallelize loops with very complex
access patterns. It tests all dimensions of an array simulta-
neously, so it can handle coupled-subscripts. The test also
uses some of the ideas from the Range Test and can therefore
handle non-affine expressions.

Secondly, since this summarization can be performed
over arbitrary sections of the program, this allows us to deal
with task' parallelism as well as loop parallelism. This pro-
vides a tool for doing interprocedural dependence analysis
without subroutine inlining [2, 22].

Thirdly, the Region Test helps us to move closer to the
ideal, which is to use remnaming to remove all anti and out-
put dependences. This has been possible in only a limited
way in the past, since precise region analysis has not been
available. With the Access Region representation, we can
more accurately represent the region of an array involved in
a dependence, which is crucial to eliminating it.

Finally, it incorporates array privatization [4] and run-
time dependence testing under a uniform framework.

3 Access Regions

The key to the precision and usefulness of the Region Test
is the Access Region representation of array access patterns.
In this section we describe the representation and the oper-
ations defined for manipulating the representation.

3.1 Description of Access Regions

Despite the apparent complexities of many data access pat-
terns, our hand analysis and some experimental evidence [5]
reveal that, quite often, the access regions of interest have
a regularity of structure. By this we mean that the accesses
seldom happen in random or chaotic ways. They are actu-
ally very structured, by design. Furthermore, related access
regions often have a similarity of structure. This is true be-
cause several references to a single array within a loop nest

Thetween loop nests or subroutines invocations

are generally accessed using the same loop indices and with
similar subscript expressions.

We try to capture the properties of regularity and sim-
ilarity in our region access representation, in terms of two
important characteristics: strides and spans. A regular ac-
cess region R for an array is composed of a finite number
of discrete array elements, arranged in a region according
to regular strides. The collection of elements separated by
the same stride stretches for a finite distance which we call
a span. For example, in Figure 1, the access region for
U(2*J+K+I) in the outermost loop has three strides: 1, 2
and 4, which are due to the indices involved in the access:
I, J and K, respectively. By varying only I from 1 to I, N-1
is the span, that is, the difference between the maximum
and minimum of the range in R. Similarly, 2% (M-1) and L
are the spans corresponding to J and K, respectively.

real V(N,N), Y(W,N), Z(-M:M) ...

doI =1, I, 1
doJ =1, M, 1
Y(I,J) = Vv(J+1,J) + Z(II(J))
do K=0, 1L, 4
V(K+1,K+2) = U(2*J+K+I)
enddo
enddo

if (M<H) then
V(I,I) = W(I+10) * U(C)
endif
enddo

Figure 1: Code example
For the formal description of R, we first define X (f(ZI))

to be a reference to an array X within a program section
such as a loop or a procedure. The subscript function f(I)
is defined on a set of indices T = (41,42, ,im) in which
each index ¢, varies within the program section. If X is
multi-dimensional, then we linearize* the subscript expres-
sion to generate f(I), similar to what was done by Burke
and Cytron [17]. The Access Region R for X(f(I)) is a
structured, symbolic set of subscript values of X, in the
sense that, given a set of constants for all the variables in-
volved, one could generate the precise set of array subscripts
involved in the access pattern. R is represented by the four-
tuple

R = (Access Descriptor, Accuracy, Access Type, Predicates)

The access descriptor is represented by a list of the strides
03y 1Tig O

and spans of R: A;*’; ™ + o where 0, and §;, are
1

EENTLLN
the stride and span, respectively, due to the index i, and o
is the offset from zero of the first element in R. In Figure 1,

‘A}\}z'i,z(M—l),L + 3 is the access descriptor for U(2*J+K+I)

with regard to T = (I,J,K). The multidimensional ar-
ray reference Y(I,J) would be linearized using the expres-
sion I+(J-1)*N, to generate the abstract access descriptor

A}\}IL,N( M-1) + 1. Similarly, we accurately represent the

diagonal access of V(I,I) as ijil + 1. Traditional triplet
notation would express such a diagonal access pattern as
V(1:N:1,1:N:1), which is inaccurate. The access descriptor
here makes it obvious that the access is regular, with a sin-
gle stride. The access descriptor for the single element U(C)
can be represented by Ag* + C where ¢ can be any integer

*Instead of using m expressions to denote access within an m-
dimensional array, a single expression is formed with the dimension-
ality factors made plain. For example, for the array X, declared
X(10,20), the subscript (I,J) is linearized to become (I+10%(J-1)).
Linearization allows the Region Test to deal with coupled subscripts
in its dependence testing.



number. In the Access Region, a zero span indicates a sin-
gle element region, and a negative span indicates an empty
region.

The accuracy is MUST if the access descriptor of R ac-
curately represents the set of elements accessed in the code,
and otherwise, MAY. The access type is READ or WRITE
depending on whether R is read or written by the corre-
sponding reference(s). The predicate is a condition under
which R is valid. Predicates add accuracy to R. For exam-
ple, in Figure 1, even when the compiler cannot determine
if M<N is true, the access region for W can be represented
accurately by (A} _; +11,MUST,READ M<N). Alternatively,
if we can afford to lose accuracy, we can represent this as
(AlN_;+11,MAY,WRITE,T) where T represents TRUE, which
means that there is no constraint on this region.

An array subscript expression need not be affine, but
it is required to be a monotonic function [18] within the in-
dex ranges. Fortunately, most subscript expressions encoun-
tered in scientific programs are monotonic [5] (at least over
the index ranges involved), and those few which are non-
monotonic may be converted to a monotonic function with
a possible accuracy loss. For instance in Figure 1, the sub-
script function for Z is II(J). We cannot determine whether
II(J) is monotonic unless we have knowledge about the con-
tents of II. When we do not have such knowledge, we may
convert the subscript function for Z into a monotonic func-
tion J' such that J' is an artificial index ranging from -M to M,
covering all elements of Z. Based on the new index, we could
generate the approximate region (Aj},; — M ,MAY,READ,T).
In [1], we detailed many other issues relating to the genera-
tion of Access Regions for array references in a program.

3.2 Operations on Access Regions

Some of the basic operations [1] defined for Access Regions
may be described briefly as follows:

aggregation is a set union operation. All references to
an array of the appropriate type (READ or WRITE)
within a certain section of code are collected and rep-
resented as one or more Access Regions.

subtraction is a set subtraction operation. All elements in
one Access Region are removed from another Access
Region.

intersection is a set intersection operation. After the oper-
ation, only elements which are common to both Access
Regions remain in the result.

coalescing is a technique for simplifying the structure of
the region representation by reducing the number of
strides and spans in the Access Region.

To assist with the understanding of coalescing, consider the
region R with the access descriptor Ai:go . Here, we can find
that R can be equivalently represented by using another
descriptor Aj,, yet the latter is simpler because it has only
one pair of stride and span. In this case, coalescing would
replace the original descriptor by the simpler one in order
to simplify the region representation for R.

We are implementing the Access Region operations in a
module which we call the Region Processor. Since the access
regions being operated on will often involve unknown values,
the Region Processor is designed to proceed with its opera-
tions by making assumptions, and returning the expressions
representing those assumptions as conditions under which
the result is correct. The condition expressions could be

evaluated at runtime, when totally accurate information is
available, to choose between alternative transformations.

The work of the Region Processor is supported by two
crucial features of Polaris. First, the program is represented
in Gated Single Assignment(GSA) form [4]. The GSA form
makes it easy to determine which definition of a variable is
used at any point in the program, and the conditions un-
der which the definition is used. Second, Polaris has a rich
symbolic expression environment [5], consisting of expres-
sion simplification, range propagation and the range dictio-
nary, which makes the value ranges for variables available at
any point in the program. These features provide a mech-
anism which can determine relationships between variables
even when their exact values are unknown.

4 The Region Test

The Access Region representation and the Region Processor
support the work of the Region Test. In this section we
will show how to reformulate the definition of dependences
in terms of regions, and how to use that reformulation to
parallelize programs.

4.1 Dependences

There are three types of dependence generally considered
between array references inside a loop: flow, anti and out-
put [18]. Each of these can exist between two different it-
erations of the loop (cross-iteration), or within a particular
iteration of the loop (intra-iteration).

A cross-iteration flow dependence occurs when an array
element is written on one iteration, then the same element
is read on a later iteration. A cross-iteration anti depen-
dence occurs when an array element is read on one iteration
and written on a later iteration. A cross-iteration output
dependence occurs when the same element is written on
two different iterations. Cross-iteration dependences pre-
vent parallelization if nothing is done to remove them.

The Region Test, as presented here, determines the ex-
istence of these types of dependence in cross-iteration form.
It has variable granularity, in that it can test for loop-based
dependence between individual array references, dependence
for whole loops, or dependence between arbitrarily large
code sections for a particular array.

4.2 Intraprocedural Loop-Based Dependence Analysis

In the following discussion, we will assume a loop
do I =1,u,s
- XCF(T)) -
enddo
whose index starts at the value ! and strides in steps of s to
an upper bound of u.

The definitions given in Section 4.1 for the various types
of cross-iteration dependences may be reformulated in terms
of array regions. The basis for the reformulation is that a
cross-iteration dependence exists if and only if the portion
of an array accessed prior to an arbitrary iteration, call it
iteration ¢, and the portion accessed in iteration ¢ and later
will overlap. From now on, we will refer to the iterations
from ! to t — s as the prior iterations, and the iterations
from ¢t to u as the later iterations.

We write the region-based definition of a cross-iteration
flow dependence for an array X in such a loop as follows:

FLOW : [W(X)l:t—s:s n R(X)t:u:s]tzl-l-s:u:s-



detect-loop-dependences (L)
foreach variable V in L do
compute-dependences(V,L,FLOW,ANTI,0UTPUT)
if (FLOW # @)
return ‘L is serial’ 'has flow dependences
if (ANTI # @V OUTPUT # 0)
eliminate-dependences (ANTI,0UTPUT,V,L)
if (ANTI # @V OUTPUT # 0)

return ‘L is serial’ !can’t eliminate all dependences
endfor
return ‘L is parallel’ 'mo variable causes dependences

end
compute-dependences(V,L,FLOW,ANTI,0UTPUT)
W (V)i .., — aggregate(L,V,WRITE,l:{— 5:3)
R(V).;_,., < aggregate(L,V,READ,l:{—s:3s)
< aggregate(L,V,WRITE,t: u: 5)
tss & 2ggTegate(L,V,READ,t:u: 3)
FLOW « [W(v)l:t—s:s n I{‘(V)t:u.:.s]l‘a:H'-!"‘-:-s
ANTI « [R(v)l:t—s:s n VV(V).‘,:u.:.s:|l‘a=l‘|'-!"":-s
OUTPUT <« [W(v)l:t—s:s n VV(V).‘,:u.:.s:|l‘a=l‘|'-!”l-:-s
end

tiu:s

Figure 2: Dependence detection for a loop nest £

This refers to aggregating the write (W) accesses to the ar-
ray over the prior iterations, then intersecting that region
with the aggregated read (R) accesses of X in the later it-
erations. ¢ can be any iteration in the range from I + s to
u. No flow dependence exists if the intersection is empty,
otherwise, a flow dependence exists.

We can define an anti dependence in a similar way. In
this case, the read comes first, so we denote it as

ANTI : [R(X)l:t—s:s n W(X)t:u:s]t:l-l-.s:u:s-
Similarly, for output dependence, we calculate
OUTPUT : [W(X)l:t—s:s n W(X)t:u:s]t:l-l- siuise

The compute-dependences algorithm in Figure 2 finds
the cross-iteration dependences due to variable V in the loop
L. This algorithm first aggregates the read and write ac-
cesses to the variable Vin L for the prior and later iterations.
It uses these aggregated regions to compute cross-iteration
dependences within the loop by intersecting those regions in
the ways described above.

Using the results from compute-dependences, the rou-
tine detect-loop-dependences determines whether £ can
be made parallel or must be serial. eliminate-dependences
is used to eliminate anti and output dependences based on
the ideas discussed by Cytron and Ferrante [10], for all vari-
ables proven to have them. If £ is eventually proven to be
free of dependence, then it is identified as parallel.

eliminate-dependences is composed of two parts: array
privatization and copy-in/out operations. Our array priva-
tization algorithm is based on the algorithm developed by
Tu [4]. One main difference is that we use the Access Region
representation, instead of the triplet notation, to summarize
the array access patterns, giving us more opportunities to
accurately capture the access patterns. This increased accu-
racy enables us to utilize copy-in/out operations to eliminate
anti and output dependences, as shown in [3].

As an example, consider again the loop in Figure 1. Let
the I-loop be a loop L that we are interested in. To de-
termine the dependences carried by L, notice that the only
references which could cause a cross-iteration dependence
are to V and Y. The access of Y is trivially independent. For
V, we aggregate the read and write regions according to the
algorithm. For the first write reference, V(K+1,K+2), we get

Wi(Vie—1a = Wi(V)ena
= (AN$', 4+ N +1,MUST, WRITE,T).

These regions are the same, so their intersection is non-
empty, proving a self-output dependence. In contrast, the
second write reference, to V(I,I), varies with iterations of
L, so we get:

W (V1e-1a = (AG 3y w41) + 1, MUST, WRITE,T) and

WZ (V)t:N:l = (AN+1

M esnyve1) HE(V+1)—N,MUST, WRITE,T).

Intersecting these two regions gives an empty result, proving
no self-output dependence exists for this reference. Finally,
for the read regions in £, we get:

R(V)1t-11 = R(V)eva = (ANS!, +2,MUST,READ,T).

It is easy to see that no anti or flow dependence exists be-
tween the read reference and the first write reference, since
the strides are the same, with only the starting point being
different. The stride (N 4 1) does not divide the difference
between the starting points (N — 1), so no overlap between
these regions is possible. The same argument can be applied
to a comparison between the read reference and the second
write reference, or the first and second write references.

As a result of this process, the only dependence found
is the self-output dependence caused by the write due to
V(K+1,K+2). To remove this, we can privatize the region of
V written in this reference, then copy the downwards exposed
uses [4] out of the loop to the original array. This allows us
to fully parallelize this loop.

The Region Test can parallelize loops with very complex
access patterns. It accomplishes this by summarizing ac-
cesses at a high level, which removes some of the low-level
complexity of the access pattern. For example, the loop nest
in Figure 3 has several complications. First, the K-loop is
triangular. Also, the subscripting patterns for Y have non-
affine subscript expressions and multiple strides (1 and ZJ).

doI =1, M
doJ =0, 1
do K = 0, 2%%J-1
Y(RK+2%*J) = .-
enddo
enddo
do J =0, W-1
do K = 0, 2%%J-1
= Y(K+2%%J)
= Y(K+2#xJ+2%+I1) )
enddo
enddo
enddo

Figure 3: Code example for dependence elimination

Here, the summarized writes into Y within the I-loop are
1,27
W(Y)prior = W(Y)later = (AZJ—I,ZN—I + 17 . )

The reads from Y are summarized as the union of read re-
gions

1,27 1,27 N
‘Az-’—l,zN—l—l +1U ‘Az-’—l,zN—l—l +27 +1,

. . J
resulting in R(Y)prier = R(Y)1ater = (A;}z_l'zn_l +1,--0).
The operation coalescing discussed in Section 3.2 simpli-

fies both the read and write regions to the same region,



A;N+1_2 + 1, which proves that the read region is equal
to the write region regardless of the value of t. This im-
plies that there exist anti and output dependences in the
I-loop. As discussed earlier, eliminate-dependences can
remove these dependences by privatizing Y. Since Y has no
cross-iteration flow dependence in the I-loop, it no longer
blocks the loop from being parallelized.

None of the current dependence tests in Polaris (GCD
Test, Range Test, and Omega Test) could parallelize the I-
loop of Figure 3. This is mainly because of the complex
exponential subscript expressions of Y within the multiply-
nested loop. We found that the operations of aggregation
and coalescing on the Access Region representations greatly
simplify the complex exponential expressions to help the
Region Test identify the I-loop as parallel.

The original loop from which the loop in Figure 3 was
derived can be found in TFFT?2 from the SPEC benchmarks.
In fact, this loop is the most important in TFFT2. There-
fore, without parallelizing this loop, good speedups are not
possible. To measure the effectiveness of the Region Test,
we tested the performance of the TFFT2 benchmark on the
Cray T3D [20] both with and without application of the Re-
gion Test, and the results, shown in Table 1, demonstrate
that the Region Test allows us to significantly reduce the
parallel execution times.

PEs || No Region Test | Region Test Speedup
(sec) (sec) improvement
4 764 188 4.06
8 634 114 5.56
16 563 69.0 8.16
32 540 47.0 11.5
64 522 36.0 14.5

Table 1: Comparison of parallel execution times

4.3 Interprocedural Dependence Analysis

In order to parallelize a loop containing subroutine calls,
Polaris currently inlines the subroutines due to its lack of
ability to summarize access patterns in arbitrary code sec-
tions within a program. Inlining often increases the program
size significantly. For instance, although Polaris can paral-
lelize the most important loops in the fully-inlined TURB3D
code from the SPEC benchmarks, full-inlining introduces
an increase of the code size from 1400 lines to 6100 lines,
along with other complexities that did not exist in the orig-
inal code. This parallelization comes at a price - the inlined
code requires a compilation time of about 20 hours, running
on an SGI Challenge system with a 256 MB main memory
and 200 MHz MIPS 4400 processors.

Using the Access Region representation, we are able to
summarize access patterns in order to avoid inlining for par-
allelization in a loop with subroutine calls. Figure 4 shows a
code example similar to some loops in TURB3D. The array
U undergoes reshaping as it is passed to the subroutine, but
this is not a problem since all array references are linearized
by the Access Region representation anyway.

The access descriptor for the region accessed in the sub-
routine foo is A}\}sz'l(L_l)NM
pens regardless of the argument passed to the subroutine,
making this a useful summary of the access. Arguments
passed to the subroutine supply different starting points for
that access pattern. In the Figure, the I-loop containing the
call to foo produces an additional stride (N) for the access
pattern, making the write accesses for prior iterations of the
outer loop

1,NM,N
W(U)1=t—1 = (‘AN—l,(L—l)NM,(t—Z)N +1,-- ')’

+ 1. This same pattern hap-

subroutine simplified
common U(N,M,L)

doI =1, H

call foo(U(1,I,1))
enddo

subroutine foo(X)
common X ()

do J =0, L-1

do K=1, 1
X(J*W*M+K) = ---
enddo
enddo
return

Figure 4: Simplified code example from TURB3D program

and the write accesses for later iterations

1,NM,N
W(U)ems = (‘AN—l,(L—l)NM,(M—t+1)N +

(t—1)N+1,--4).
Since W (U)1:4—1 MW (U)w:ns is empty, there is no dependence
in the I-loop, thus we make the loop parallel.

Interprocedural access summarization often involves un-
derstanding of how variables change with arbitrary control
flow in a section of code. When a subscript expression con-
tains a variable whose value cannot be expressed in terms of
the loop indices, we must resort to using its symbolic range,
obtained by something like interprocedural value propaga-
tion [5] (IPVP) and range propagation [7]. These techniques
use abstract interpretation on the program to discover the
range of values which a given variable may take on.

For example, consider the loop in Figure 5. The vari-
able PROP cannot be expressed in terms of any loop variable,
yet range propagation can determine that its value has the
range [1:M:1]. This fact can be used to show that the ac-
cess descriptor for that loop is A}\'JI\EI'(N_I)M +M+1=

ANar—1 + M + 1. We depend on this range analysis to help
us summarize arbitrary regions of a program.

PROP = M
100 doI =1, 1
X (I*M+PROP) = ---
enddo

PROP = PROP-1
if (PROP>0) goto 100

Figure 5: Summarization using IPVP

4.4 Inter-Task Dependence Analysis

Parallelism need not be confined to loop nests. For tra-
ditional point-to-point dependence tests, the dependence
problem has been conveniently cast into an equation-solving
problem involving loop indices. But when we take the ap-
proach of casting the dependence problem into an access
region handling problem, we can just as easily summarize
access regions in a loop as in an arbitrary code section. This
leads naturally to a more general approach to parallelizing
programs, one able to take advantage of parallelism wher-
ever it is found in a program.

For task parallelization, we try to determine whether
there is any access region of an array, say V, overlapped
between two arbitrary program sections C and D. For this
purpose, we compute the three types of dependences much
as we did in Section 4.2. Figure 6 shows the algorithm that
computes the dependence between section C and section D.
In the algorithm, the access regions of all variables used in



detect-task-dependences(C,D)
foreach variable V used in both C and D do
compute-dependences(V,C,D,FLOW,ANTI,0UTPUT)
if (FLOW # @)
return ‘C and D has dependence’
if (ANTI # @V OUTPUT # 0)
eliminate-dependences (ANTI,0UTPUT,V,L)
if (ANTI # @V OUTPUT # 0)
return ‘C and D has dependence’
endfor
return ‘C and D have NO dependence’
end
compute-dependences(V,C,D,FLOW,ANTI,OUTPUT)
W (V) < aggregate(C,V,WRITE)
R(V), « aggregate(C,V,READ)
W(V)p « aggregate(D,V,WRITE)
R(V), < aggregate(D,V,READ)
FLOW + W (V). N R(V)p
ANTI  R(V)o nW(V),
OUTPUT « W (V). N W (V)
end

Figure 6: Dependence detection between program sections

each section are first summarized, then compared between
the program sections. Since each program section usually
contains multiple references to a certain variable, this sum-
marization of the access region will help us avoid many of
the tests that a point-to-point test would have to make.

subroutine corr
common V(N ,M) ,W(N,M)

cdir$ parbegin
cdir$ task 1

e call goo(10,S)
call goo(10,8) cdir$ task 2

call goo(11,8) call goo(11,8)

subroutine corr
common V(N ,M) ,W(N,M)

call goo(17,S) cdir$ task 8
. call goo(17,S)
: cdir$ parend
subroutine goo(I,S)
common V(N ,M) ,W(N,M) .
subroutine goo(I,S)

doJ =1, H common V(I ,M) ,W(N,H)
W(I,J)=V(I,J)*S
enddo cdir$ parallel (J)
doJ =1, N
return W(I,I=v(I,J)*S
enddo
return

Figure 8: Task and loop

Figure 7: Simplified code
parallelism in Figure 7

from SU2COR benchmark

To illustrate task parallelism, consider the code section in
Figure 7. Although the J-loop inside goo is parallel, we can
still increase parallelism by using task parallelism. Notice
that the subroutine goo is invoked consecutively eight times.
Using access summarization for the global arrays V and W,
we can easily determine that each invocation of goo accesses
a disjoint region of the arrays. So, in this case, we divide
the processors into eight different subgroups and cause each
subgroup to execute an invocation of goo, running the J-
loop in parallel. By doing so, we can increase parallelism
8-fold. Figure 8 shows the result after being parallelized
and annotated with parallel section directives to direct pro-
cessors to execute the program in parallel. Here, we use the
parbegin/parend construct as suggested by Dijkstra [23].

For task parallelization, we build a task dependence graph,
similar to that proposed in the paper by Balasundaram and
Kennedy [14]. The main difference between our technique

and theirs is that we use Access Regions to summarize the
array access of a given program section, so we can handle
non-unit stride accesses efficiently.

Figure 9 shows the task dependence graph built for the
program in Figure 7. Each node i correponds to the i-th call
to goo in the program. Following the control flow, each node
in the graph is initially connected by a directed edge which
represents potential dependence between the nodes. To each
pair of nodes connected by an edge, we apply the routine
detect-task-dependences. In principle, we need at most
O(pz) applications of the routine for p program sections.
If detect-task-dependences finds no dependence between
the nodes, it eliminates the edge, which means there are no
contraints on the order of excution of the two nodes. As
discussed above, since there is no dependence between the
calls to goo in Figure 9, all edges will be eliminated from
the task graph, resulting in eight parallel tasks.

O— @ - —O@

Figure 9: Initial task dependence graph for Figure 7

We have found that task parallelization increases parallelism
in many benchmarks, such as HYDRO2D, and OCEAN.

4.5 Conditional Parallelization

Many compilers give up when confronted with unknown val-
ues. Run-time parallelization techniques have been pro-
posed [6, 9] for these cases, but until now, these have re-
quired the potentially high overhead involved in checking
individual array accesses for dependence at run-time. We
suggest a different approach, where the conditions, which
we call safe conditions, can be extracted from the code to
test at run-time. Safe conditions are those under which it is
safe to parallelize a section of code.

Given a loop with safe conditions, we can produce a two-
version loop, which will check the safe condition at run time,
choosing between a parallel version of the loop and a serial
version as follows:

if (safe-conditions) then
parallelized loop
else
sertalized loop
endif
The use of predicates of the Access Region inside the Region
Processor gives the Region Test a way to extract the safe
conditions from the code. The original algorithms described
in Figures 2 and 6 can be augmented to include conditional
parallelization by simply collecting the predicates from the
Access Regions FLOW, ANTI, and OUTPUT. Unlike the origi-
nal algorithms, the augmented algorithm checks if each non-
empty Access Region result has any predicate other than the
trivial condition T, and collects all non-trivial conditions as
safe conditions. For instance, consider the loop

do I =1,25
if (P) --- = X(3%I)
if (Q) X(2*I) = ---
enddo

We have two access regions for X: (A},+3,MUST,READ,P)
and (A3 +2,MUST,WRITE,Q). When the two regions are in-
tersected to calculate a cross-iteration flow dependence of
the loop as discussed in Section 4.2, the result will be

FLOW : (A3, + 6, MUST, ,P A Q),

which means that when the predicate P A Q is true, the re-
gion of intersection is A%, + 6. Otherwise, the intersection



is empty. The symbol * represents the access can be both
read and write. Taking this result as input, the original rou-
tine detect-loop-dependences would identify this loop as
serial since FLOW is non-empty. But, the augmented algo-
rithm checks if the predicate is trivially true or false before
determining whether this loop is parallel or serial. So, as
long as we can prove that P A Q is false, we can still paral-
lelize the loop even though FLOW is non-empty. If the value
of the predicate cannot be determined at compile-time, the
predicate becomes a safe condition for a run-time test.

Similarly, predicates can be used in subtraction. When
subtracting Ri1 — Ra2, the result is correct as long as the
predicate on R implies the predicate on R2. Subtraction is
involved in array privatization, since we must show that the
region written for a variable V completely covers the region
read in an iteration, so we do the subtraction R(V):—W (V).
and check whether the result is empty. For instance, in the
loop

doI = :--
if (C>5) then
do J = O,M
X(J) =
enddo
endif
if (C>6) then
do J = O,
- = XD
enddo
endif
enddo

the access regions for X are Ry = (A}y,MUST,READ,C>6)
and Ry = (A}, MUST,WRITE,C>5). So, when subtracting
R1 — Ra2, the result is (A}V—(M+1) + M + 1,MUST,*T) since
C>6 implies C>5. This region is empty when the span (N —
(M + 1)) is negative, meaning N < M + 1. This gives us a
safe condition for the privatization of X, which could allow
parallelization of the loop.

Another example of making a safe condition involves the
following loop

do K=L,U
Y(S*K) = -+
Y(S*xK+1) = ...
enddo
The aggregated access region for Y is Ai:Z(U_L) + SL. In
order to determine the dependences involved, we must show
that the second stride (S) is greater than the first span (1),
which allows the access to Y on each iteration to stride be-
yond the array elements accessed on the previous iteration.
Since S is unknown, the Region Processor would generate
the condition S > 1 as a safe condition.

We have observed that this simple run-time test with
predicates is useful for various programs, such as MDG, and
OCEAN, from the Perfect benchmarks. Figure 10 shows the
multiprocessor speedups of MDG on the Cray T3D. First,
we used only the Range Test and other tranditional tests
such as GCD test without expensive interprocedural con-
stant propagations [7], but these tests failed to parallelize
the loops similar to the ones explained above. Although
the remaining serial loops are not important on fewer than
8 processors, they become important on larger number of
processors in the spirit of Amdahl’s law, which causes the
speedup drops on more than 32 processors due mainly to in-
creased communication overhead, as indicated in the figure.

5 Conclusion

We have presented a new dependence test called the Region
Test, which is built upon the Access Regions representation.

Speedups
B
S
o

01+ --- Linear-Speedups !
s—2» MDG-without-region-test /

ol ' MDG-with-region-test /

| |
1 2 4 8 16 32 64
Number of Processors

0.0 | | | |

Figure 10: Parallel Speedups of MDG on the T3D

We have shown that it combines the strengths of several
existing dependence tests. We have argued that since the
Access Region representation uses an abstraction of the pro-
gram text, it can summarize the effect of arbitrary program
sections, and therefore can be used for interprocedural sum-
marization and dependence testing, as well as for loop-based
parallelization.

We presented a reformulation of the dependence prob-
lem in terms of regions, and showed how a combination of
high-level summarization, strong symbolic region manipu-
lation routines and a precise representation can allow the
parallelization of program sections which no other existing
technique can. We also showed that a by-product of our re-
liance on symbolic manipulation is the ability to extract the
safe conditions for parallelization and to generate run-time
dependence tests for some loops from real programs.

References

[1] Y. Paek, J. Hoeflinger, D. Padua, Access Regions: Towards
a Powerful Parallelizing Compiler, Tech. Report, Univ. of
Illinois at Urbana-Champaign, Cntr. for Supercomputing R
& D, 1996, CSRD Report

[2] W.Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger,
T. Lawrence, J. Lee, D. Padua, Y. Paek, W. Pottenger,
L. Rauchwerger, P. Tu, Advanced Program Restructuring
for High-Performance Computers with Polaris, JEEE Com-
puter, Dec. 1996

[3] Y. Paek, D. Padua, Automatic Parallelization Techniques
for Distributed Memory Multiprocessors, Tech. Report,
Univ. of Illinois at Urbana-Champaign, Cntr. for Supercom-

puting R & D, 1996, CSRD Report

[4] P. Tu, Automatic Array Privatization and Demand-Driven
Symbolic Analysis, PhD Thesis, University of Illinois at
Urbana-Champaign, 1995

[6] W. Blume, Symbolic Analysis techniques for Effective Au-
tomatic Parallelization, PhD Thesis, University of Illinois at
Urbana-Champaign, 1995

[6] L. Rauchwerger, D. Padua, The LRPD Test: Specula-

tive Run-Time Parallelization of Loops with Privatization



(€]

(10]

(11]

(12]

(13]

(14]

(18]

(16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

and Reduction Parallelization, Proceedings of ACM SIG-
PLAN’95 Conference on Programming Language Design
and Implementation, Jun. 1995

W. Blume, R. Eigenmann, Demand-driven, Symbolic Range
Propagation, Proceedings of the Eighth Workshop on Lan-
guages and Compilers for Parallel Computing, Aug. 1995

S. Chatterjee, J. Gilbert, F. Long, Generating Local Ad-
dress and Communication Sets for Data-Parallel Programs,
Proceedings of ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programmaing, San Diego, May 1993

J. Saitz, R. Mirchandaney, K Crowley, Run-time Paralleliza-
tion and Scheduling of Loops, IEEE Trans. Computers, Vol
40, May 1991

R. Cytron, J. Ferrante, What’s in a Name?, Proceedings of
the 1987 International Conference on Parallel Processing,
Aug. 1987

B. Creusillet, F. Irigoin, Exact vs. Approximate Array Re-
gion Analyses, 9th Workshop on Language and Compilers
for Parallel Computing, Lecture Notes in Computer Science,
Spring-Verlag, 1996

P. Tang, Exact Side Effects for Interprocedural Dependence
Analysis, Communications of the ACM, Vol. 35, No. 8, Aug.
1992

G. Goff, K. Kennedy, C. Tseng, Practical Dependence Test-
ing, Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Toronto,
Ontario, Canada, June 26-28, 1991

V. Balasundaram, K. Kennedy, A Techniques for Summa-
rizing Data Access and its Use in Parallelism Enhancing
Transformations, Proceedings of ACM SIGPLAN’89 Con-
ference on Programming Language Design and Implemen-
tation, Jun. 1989

K. Kennedy, K. McKinley, Maximizing Loop Parallelism and
Improving Data Locality via Loop Fusion and Distribution,
Proc. 6th Workshop on Languages and Compilers for Paral-
lel Computing, Lecture Notes in Computer Science, Spring-
Verlag, NY, Aug. 1993

W. Pugh, A Practical Algorithm for Exact Array Depen-
dence Analysis, Communications of the ACM, Vol. 35, No.
8, Aug. 1992

M. Burke, R. Cytron, Interprocedural Dedependence Anal-
ysis and Parallelization, Proceedings of ACM SGIPLAN ’86
Symposium on Compiler Construction, Palo Alto, CA, July
1986, pp 162-175

H. Zima, B. Chapman, Supercompilers for Parallel and Vec-
tor Computers, ACM Press, 1992

U. Utpal, Loop Transformations for Restructuring Compil-
ers: The Foundations, Kluwer Academic Publishers, 1993

CRAY T3D System Architecture Overview, Cray Research,
1993

Z. Li, P. Yew, and C. Zhu, Data Dependence Analysis
on Multi-dimensional Array References, Proceedings of the
1989 ACM International Conference on Supercomputing,
Crete, Greece, June, 1989

J. Grout, Inline Expansion for the Polaris Research
Compiler, Master’s thesis, Univ. of Illinois at Urbana-
Champaign, Cntr. for Supercomputing Res. & Dev., May
1995

E. Dijkstra, Cooperating Sequential Processes, Program-
ming Languages, Academic Press, NY, 1968

[24] M. Berry, et. al, The Perfect Club Benchmarks: Effective

Performance Evalution of Supercomputers, Int’'l Journal of
Supercomputer Applications, Vol. 3, No. 3, Fall 1989

[25] M. Wolfe, C. Tseng, The Power Test for Data Dependence,

IEEE Transactions on Parallel and Distributed Systems,
Sep. 1992

[26] J. Reilly, SPEC95 Products And Benchmarks, SPEC

Newsletter, Sep. 1995



