
Access Regions:

Toward a Powerful Parallelizing Compiler �

Yunheung Paek, Jay Hoeinger, David Padua

Department of Computer Science

University of Illinois at Urbana-Champaign,

1304 West Spring�eld Avenue,

Urbana, IL 61801, USA
fpaek,hoefling,paduag@csrd.uiuc.edu

Keywords: Compilers, Aggregation, Parallelization, Privatization, Run-time test, Region Analysis.

Abstract

The bulk of the work within a scienti�c program involves processing data stored in arrays. We
present a general and e�cient means of representing the region of an array accessed by a section of a
program. We introduce a notation for access regions, and a set of region operations for manipulating
them. We show how a region processor which implements our region operations can form the basis for
a parallelizer which handles array privatization, run-time parallelization, communication generation,
and interprocedural analysis.

1 Introduction

Existing compiler techniques depend heavily on the analysis of array subscripting patterns. Dependence

analysis [5] is one example for parallelizing compilers, but access region analysis is also crucial for array

privatization [4], communication optimization for Non-Uniform Memory Access (NUMA) multiproces-

sors [2, 3], locality enhancement [8], and interprocedural summarization [9].

Compiler modules implementing such techniques must represent the array accesses in some standard

fashion. For instance, Tu and Padua [4] approximated access regions for array privatization with the

triplet notation. The same notation was used in papers by Tseng [10] and Chatterjee, Gilbert and

Long [11] for message generation. Blume and Eigenmann [5] excluded the stride from the triplet notation

in their dependence test for simplicity, but at the expense of accuracy. Convex regions [14, 17] express

the geometrical shape of array accesses. They can be used with Fourier-Motzkin-based dependence

tests [21, 22]. Balasundaram and Kennedy [15] simpli�ed the convex region to detect task parallelism.

Such representations are designed to strike a balance between the e�ciency of using the representation

and its expressiveness. Generally, design decisions leading to these forms have come down on the side

of reducing expressiveness, or limiting expressiveness to that needed for a speci�c compiler module, in

order to increase e�ciency. But limited expressiveness can prevent compiler transformations. We have

�The research described is supported by Army contract #DABT63-95-C-0097. This work is not necessarily representa-

tive of the positions or policies of the Army or the Government.

1

found that compiler techniques based on traditional access region representations are limited in some

important cases, to the point of being unable to carry out the technique.

Based on our experience with the Perfect [28] and SPEC benchmarks, and several full scienti�c

codes [1], we have developed a region access representation which takes advantage of the clear structure

inherent in the array accesses of most scienti�c programs. Our design attempts to allow maximum

expressiveness without sacri�cing e�ciency. We are implementing this representation in Polaris [1],

which is the parallelizing compiler being developed by the authors and others at Illinois.

2 Motivation

The Polaris parallelizer uses a triplet notation for array access patterns in modules such as the priva-

tizer [4] and the dependence analyzer [6]. Polaris has been successfully obtaining speedups for many

scienti�c applications on a variety of shared-memory multiprocessors, but we have seen that Polaris still

fails to obtain good speedups for some applications. We carefully studied these programs, and found one

of the reasons is that Polaris was unable to handle several common access patterns occurring in these

programs due to the limited expressiveness of the triplet notation, and thus fails to parallelize loops in

these programs. For instance, the programs commonly contain complex access patterns such as those

involving multiple strides and diagonal access patterns. Also, these access patterns typically depend on

many symbolic values in the program, often unknown at compile time. Consider a loop INTRAF do1000,

one of the major loops in the MDG benchmark, in Figure 1:

do I=1,M,N

� � �
FX(I)=FX(I)*FHM

FX(I+2)=FX(I+2)*FHM

FX(I+1)=FX(I+1)*FOM

� � �
enddo

Figure 1: Code example from MDG, after being simpli�ed

Polaris was not able to parallelize this loop due to the unknown value N. Even without knowing N,

it is easy to see that the loop is parallelizable as long as N > 2. In order to handle this case, we need a

representation which can handle multiple strides, with conditions, and some mechanism to manipulate

them to generate predicates for run-time tests. The triplet notation used by Polaris cannot support

this manipulation, and so Polaris simply serializes the loop. Without this mechanism, we might have to

employ expensive run-time techniques [7, 13], in order to parallelize this loop.

As another example, consider the loop in Figure 2, which can be found in FFT programs such as the

TFFT2 benchmark. It is the most important loop in TFFT2 and contains several complications:

� both the K and J loops are triangular loops,

� the subscripting patterns for X is non-a�ne, and

� the access pattern for X has multiple varying strides: 1 and 2L�1.

2

do I = 0, 2**M-1

do L = 1, (1+M)/2

do J = 0, 2**(1+M-L)-1

do K = 1, 2**(L-2)

� � �
X(K+J*2**(L-1)) = � � �
X(K+J*2**(L-1)+2**(L-2)) = � � �
� � �

enddo

enddo

do J = 0, 2**(M-L)-1

do K = 1, 2**(L-1)

� � �
� � � = X(K+J*2**(L-1))

� � � = X(K+J*2**(L-1)+2**M/2)

� � �
enddo

enddo

enddo

enddo

Figure 2: Code example from TFFT2, after inlining and induction variable substitution

The portion of the array X which is used in this loop is privatizable since the part of the array which

is read is completely covered by the part that is written. However, any representation which cannot

handle non-a�ne expressions cannot represent this access region. Although the Polaris dependence

analyzer [4, 5] can handle non-a�ne expressions, it still fails to privatize X and parallelize this loop

because of the other complexities involved in these access patterns.

In addition, our work on developing compilation techniques [2, 3] for NUMA multiprocessor systems

such as the Cray T3D and the Convex Exemplar showed a need for gathering even more precise array

access information for supporting e�cient data movement and copying between distributed memories.

For instance, for data movement in these systems, the communication analyzer often needs to selectively

decide between small exact(MUST) regions and a large approximate(MAY) region in order to reduce

remote memory latency. To meet this requirement, an access region representation must support the

notion of accuracy.

In our quest for a better access pattern representation, we considered the convex regions, but forms

which represent access patterns by sets of constraints typically must use a more general dependence

test [22], which cannot handle non-a�ne expressions [5, 6]. Forms which use the triplet notation cannot

handle such complicated access patterns as discussed earlier, but lend themselves to more e�cient ma-

nipulation in many parts of a compiler. So, we decided to develop a new representation by combining the

expressiveness of convex regions with the e�ciency of triplet notation, plus information about accuracy.

3 Description of Access Regions

In our approach, we attempt to keep the exact region access pattern as long as possible. Sometimes, we

can't avoid losing accuracy and when we do, we mark that the access information is approximate. In

the following sections, we will describe this form, de�ne operations on the representation, and discuss

3

the module being implemented in Polaris to process these representations.

3.1 Components of Access Regions

Within a program section such as a loop or a procedure, a reference to an array X is represented by

X(s(I)) where s(I) is the subscript function de�ned on the set of indices I = fi1; i2; � � � ; img in which

each index ik varies from lk to uk with stride sk, denoted as [lk:uk:sk], within the program section. s(I)

needs not be a�ne. If X is multi-dimensional, then the subscript expression is linearized [24] to generate

s(I). The array region R accessed by the array reference is represented by the four-tuple

R = (Access Descriptor, Accuracy, Access Type, Predicates)

where the access descriptor is represented by two parts, the access function and index ranges:

(f(I))[i1 = l1 : u1 : s1][i2 = l2 : u2 : s2] � � � [im = lm : um : sm]:

The accuracy is MUST if R is accurate. Otherwise, it is MAY. The access type is READ or WRITE,

depending on whetherR is read or written by the corresponding reference(s). The predicate is a condition

under which R is valid.

The access function f(I) is the same as s(I), as long as s(I) is a monotonic function [6, 25] within

the index ranges. Although many subscript functions encountered in scienti�c programs may not be

a�ne, most are monotonic [5], and those few which are not monotonic may be converted to a mono-

tonic function with a possible accuracy loss. For instance, in Figure 3, the access region for IV is

((J-2)[J=1:N:1],MUST,READ,Ty), since J-2 is clearly monotonic. However, for the access region for

V, ((IV(J-2))[J=1:N:1],MUST,READ,T), we cannot determine whether IV(J-2) is monotonic unless

we have knowledge about the contents of IV. In this case, we may convert the access region for V to

((J)[J=VLOW:VHIGH:1],MAY,� � �) with monotonic function J, if the accuracy loss is tolerable [3].

Predicates add precision to R. In Figure 3, even when the compiler cannot determine the value of P,

the access region for Q can be represented by ((3I)[I=1:N:1],MUST,WRITE,P). Alternatively, for ow-

insensitive analysis, we may represent this as ((3I)[I=1:N:1],MAY,WRITE,T). Also, when we linearize

the subscript expression of the multi-dimensional array W in the �gure, we might lose the original array

dimension information. In order to avoid that, we can extract predicates from the array dimension

information to produce the region

((2J+(I-1)M)[J=1:N:1][I=1:J:1],MUST,WRITE,1� 2J �M):

In the operations in Section 3.5, this extra predicate will be used through the range dictionary [1, 6]

combined with various symbolic manipulation modules to supply accurate symbolic range information.

3.2 Abstract Access Form

We have seen that, for the most part, within limited sections of a program, the access regions of interest

have a regularity of structure. Furthermore, quite often, related access regions have a similarity of

y
T represents TRUE, which means that there is no constraint on this region

4

subroutine foo(X,Y,Z,W,M)

real V(VLOW:VHIGH),W(M,*),X(*),Y(M,*),Z(*) � � �
� � �

do J = 1, N

do I= 1 ,J

W(2*J,I) = V(IV(J-2))

enddo

if (P) then

Q(3*I) = � � �
endif

enddo

� � �
do I = 1, N, 1

do J = 1, N, 1

do K = 1, 4*J, 2

X(I+5*J+K) = Z(N*J+I)

enddo

Z(J+N*I) = Y(C,D) + Y(I+1,I)

enddo

enddo

Figure 3: Code example

structure. This is true because several references to a single array within a loop nest are generally

accessed using the same loop indices and with similar subscript expressions. Experimental evidence

for the regularity and similarity of array subscripting may be gleaned from the work of Blume and

Eigenmann [5, 6], who note that their dependence test, built to analyze regular access patterns, is

essentially as successful as the Omega Test [22], which was built to handle more general patterns.

In attempting to capture the properties of regularity and similarity in our representation, we �rst

de�ne the span of the monotonic access function f(I) due to ik 2 I to be the maximumdistance moved

by varying only ik:

�ik = jf(i1; � � � ; ik�1; uk; ik+1; � � � ; im)� f(i1; � � � ; ik�1; lk; ik+1; � � � ; im)j

and the stride of the access due to ik to be

�ik = jf(i1; � � � ; ik�1; ik + sk; ik+1; � � � ; im)� f(i1; � � � ; ik�1; ik; ik+1; � � � ; im)j :

Using the characteristics of span and stride, the access region R can be represented by another form,

which we call the abstract access form, as follows:

R = (A
�i1 ;�i2 ;���;�im
�i1 ;�i2 ;���;�im

+ l;Accuracy, Access Type, Predicates)

where l is the lower bound in R. In this form, the access descriptor is represented by a list of the spans

and strides where we de�ne (�ik ; �ik) to be the k-th stride/span pair of R.

Converting the access region to the abstract form helps us to identify the similarity between access

patterns. We say that stride/span pairs (�0x; �
0
x) and (�00y ; �

00
y) from two di�erent access regions R0 and

R00 match if �0x = �00y and �0x = �00y . We de�ne regions R0 and R00 to be isomorphicy if the numbers of

ystructurally the same

5

stride/span pairs in the two regions are the same and each stride/span pair in R0 has a unique matching

stride/span pair in R00. For instance, in Figure 3, the abstract access form

(AN;1
N2�N;N�1 +N + 1,MUST,READ,T)

is for the access region of Z(N*J+I), ((NJ+I)[J=1:N:1][I=1:N:1],MUST,READ,T). Similarly, the form

(A1;N
N�1;N2�N + N + 1,MUST,WRITE,T)

is for the access region of Z(J+N*I), ((J+NI)[J=1:N:1][I=1:N:1],MUST,WRITE,T). Since we can �nd

corresponding matching stride/span pairs, the two regions are isomorphic. Also, they have the same

lower bound N + 1, so we can prove that the WRITE region of Z(J+N*I) is exactly covered by the

READ region of Z(N*J+I).

This abstract access form is not limited by the original array dimensionality. By linearization,

for instance, we can represent access patterns for multi-dimensional arrays. In Figure 3, the array

Y is accessed along a diagonal. We apply linearization to the subscript expression and represent it

accurately as AM+1
(N�1)(M+1)+2. Traditional triplet notation would express such a diagonal access pattern

as Y(2:N+1:1,1:N:1), which is inaccurate. The abstract form here makes it obvious that the access is

regular, with a single stride. Also, notice that the access region for the single element Y(C,D) can be

represented by A��

0 + C+ (D � 1)M where �� can be any integer number.

Sometimes, a span or stride may not be a constant, varying on the values of indices in I. Figure 4

shows the simpli�ed version of code from Figure 2 for clarity.

do I = 1, N, 1

do J = 1, 2**I, 1

X(2**I+J) = � � �
enddo

enddo

Figure 4: Simpli�ed code example from TFFT2 in SPEC 95 benchmarks

The access region for X(2**I+J) is ((2I+J)[I=1:N:1][J=1:2I:1],MUST,WRITE,T), and its corresponding

abstract form is (A2I ;1
N;2I�1+3,� � �), subject to the index range [I=1:N:1]. Here, �I and �J vary depending

on the value of index I, while �J and �I are a constant or a symbolic constant. This case typically

happens in triangular loops or when the subscript functions are non-a�ne.

We say an index i 2 I is region-dependent on index j 2 I if either �i or �i is an expression containing

j. In the example above, J is region-dependent on I because �J contains I, and I is also region-dependent

on itself. As another example in Figure 5, J is region-dependent on I because �J (=I-1) contains I.

do I = 1, N, 1

do J = 1, I, 1

X(I*(I-1)/2+J) = � � �
enddo

enddo

Figure 5: Simpli�ed code example from TRFD in Perfect Benchmarks

In order to apply the region operation techniques discussed in Section 3.5, we need to handle the

region-dependent indices in R so that all strides and spans in the access descriptor are constant. In

6

the next section, we describe how we could handle the region-dependent indices when we generate the

abstract access form.

3.3 Generating Abstract Access Form

Although many access regions encountered in scienti�c applications are made by multiple indices, the

aggregated access regions are usually seamless. That is the case where the references to an array make

a series of contiguous accesses with one index and jump over those accesses with another index to start

a new section of accesses. As an example, let's look at the loop from the SDOT routine in the BLAS

library:

do 50 I = M,N,5

STEMP = STEMP + SX(I)*SY(I) + SX(I+1)*SY(I+1) +

* SX(I+2)*SY(I+2) + SX(I+3)*SY(I+3) + SX(I+4)*SY(I+4)

50 continue

The references to both arrays SX and SY access �ve contiguous elements with stride 1 and jump the

elements with stride 5 to the next section, resulting in seamless access to the arrays from M-th element to

(N+4)-th element. Similar access patterns also can be commonly found in full scienti�c programs [1]. In

these cases of contiguous access, we found that the access pattern made by several indices with various

strides can be represented by an access pattern with a single index. For instance, the access region

representation ((I+J)[I=1:N:4][J=0:2:2],� � �) has two indices with strides 2 and 4. Here, the index I

is redundant because we can still represent the same access region only with index J, after combining

the index ranges: that is, ((J)[J=1:N+2:2],� � �). Coalescing is a technique for simplifying the region

representation by eliminating these redundant indices as described in Figure 6.

coalesce region(R, ij, ik) f
if (�ij divides �ik and �ik � �ij + �ij) f

remove redundant index ik from R
if (ij is region-dependent on ik)

�ij = �ij (uk) + �ik

else

�ij = �ij + �ik

g
g

Figure 6: Algorithm for coalescing region: the form �ij (uk) refers to the value of the expression �ij with
uk substituted for ik

In the algorithm, the access region R is of the abstract access form, and indices ij and ik are de�ned in

R, with index ranges [lj:uj:sj] and [lk:uk:sk], respectively. coalesce region determines whether ik is

redundant. If so, it removes ik and combines the original index ranges to generate the new range for ij . In

order to determine whether ik is redundant, the stride of ik and stride/span pair of ij must be examined

to test if ij can represent the same access region without ik, by adjusting the span �ij . For example in

Figure 3, the access region for Z(N*J+I) is (AN;1
N2�N;N�1 + N + 1,� � �). coalesce region converts the

region to a simpler form (A1
N2�1 + N + 1,� � �), since �I(= 1) divides �J (= N), and �J � �I + �I(= N).

Similarily, we obtain the same coalesced region for Z(J+N*I) in the example.

7

When we gather array region information from the program and convert the information to an

abstract form, we apply coalescing to eliminate unnecessary indices from R. To completely remove all

unnecessary indices, we need at most O(m2) coalescings for a region with m stride/span pairs.

According to our study, coalescing in many cases [6] helps us to remove non-constant strides or spans

from the access descriptor in the abstract form. For example, the region (A2I;1
N;2I�1+ 3,� � �) from TFFT2

in Figure 4 can be coalesced to (A1
2(N+1)�1

+3,� � �) removing the index I, and thus the resulting abstract

form contains only constant strides and spans. Similarly, the original region (A1;I
N2

�N
2 �1;I�1

+3,� � �) from

TRFD in Figure 5 can be coalesced to (A1
N2+N

2 �1
+ 3,� � �).

In some cases where coalescing could not remove those indices from the access descriptor, we may

convert the original access region to a MAY region in order to eliminate them. For instance, if j is

region-dependent on a set of indices ix; � � � ; iz, then the new stride for j is de�ned to 1, and the new

span is de�ned to be the maximum value of �j subject to the index ranges [ix=lx:ux:sx]� � �[iz=lz:uz:sz].

Consider the following triangular loop as an example:

real X(M,*)

� � �
do I = 1, N, 1

do J = 1, I, 1

X(J,I) = � � �
enddo

enddo

The access region for X ia (A1;M
I�1;(N�1)M +1,MUST,� � �) after linearization. coalesce region cannot re-

move the index I in the access descriptor, and thus we convert the region to (A1;M
N�1;(N�1)M+1,MAY,� � �)

since max(I � 1) = N � 1 on the range [I=1:N:1]. Although we may lose accuracy of region informa-

tion here, we have found that, in many ow-insentive analyses including communication analysis, this

approximate information can still be useful.

3.4 Region Processor

Many components of a parallelizer rely on the analysis of array access regions. Dependence analysis

checks whether the access patterns of arrays overlap. Array privatization, one of the most important

dependence-elimination techniques, is based on region intersection and subtraction operations. Precisely

combining regions of access is important for generating the data communication needed for NUMA ma-

chines. In this section we describe a region processor, which is the module we are implementing in Polaris

for supporting the basic Access Region manipulation operations, which are described in Section 3.5.

Since the access regions being operated on will often involve unknown values, the Region Processor is

designed to proceed with the operations by making favorable assumptions, and to return the expressions

representing those assumptions as conditions under which the result is correct. The condition expressions

could be evaluated at runtime, when perfect information is available, to choose between alternative

transformations.

The work of the Region Processor is supported by two important features of the Polaris compiler.

First, the program is represented in Gated Single Assignment (GSA) form [4]. The GSA form makes it

easy to determine which de�nition of a variable is used at any point in the program, and the conditions

8

under which a certain de�nition is used. Second, the symbolic manipulation modules in Polaris, such as

range propagation and the range dictionary [1, 6], make the value ranges for variables available at any

point in the program. These features provide a mechanism which can determine relationships between

variables even when their exact values are unknown. This rich environment was crucial to the success

of the Range Test [5], and can enable many of the symbolic operations of the Region Processor.

The predicate for an access region R may be thought of as the pertinent information found in

the gating information from the GSA and in the value range constraints. These conditions and values

provide the symbolic manipulation context for making decisions within the region processor. So, implicit

in the following operation descriptions is the use of the predicates, which provide the ability to reason

symbolically about the relationships between variables.

3.5 Basic operations on Access Regions

Each region operation within the Region Processor is structured as a decision tree as shown in Figure 7.

Each decision is a simple one, such as \is the lower bound value of R1 larger than the upper bound value

of R2". The decision tree structure is also easily extensible by a compiler implementor for improved

accuracy by simply adding more branches to the tree.

...

...Regions

Decision Tree for Operation

Regions + Predicates

Predicates + Symbolic Range Information

Figure 7: Region Processing

We decided to design the region operations for regions with similar structures. However, if the regions

do not meet the similarity constraints, our representation allows us to simplify the regions and still use

our operations, or else choose di�erent techniques which might be a better �t [21, 22].

Due to the strict word limit and the intrinsic complexity of the operations, we cannot discuss

all the algorithms in this abstract, even though we will include them in the full paper. Therefore,

in this section, we focus on one important operation, subtraction, and we will briey mention the

remaining operations.

3.5.1 Subtraction

For the purposes of describing the subtraction algorithm, we will �rst describe how it works when

subtracting single-stride regions, then show how to extend it to multi-stride regions.

Consider the single-stride regions R1 and R2 with lower bounds l1 and l2, and upper bounds u1 and

u2, respectively. We de�ne the distance between the two regions to be l2 � l1. By comparing the lower

and upper bounds, we can determine the area of R1 which does not overlap R2. This area must be part

of the result. If there is an area of overlap, then we must calculate the elements which are accessed by

both regions, and remove them fromR1. The unremoved elements in R1 also must be part of the result.

The subtract regions function converts any two single-stride regions to sets of regions with the

same stride by �nding their complementary regions with the appropriate stride. Any single-stride

region R with stride � can be represented equivalently by n regions, each with stride n�. We de�ne

9

these n regions to be n-complementary regions of R. For example, let R be represented by the access

descriptor A2
16 + 1. This access pattern can be represented by two complementary regions with forms

A4
16 + 1 and A4

12 + 3. Similarily, four regions, with forms A8
16 + 1, A8

8 + 3, A8
8 + 5, and A8

8 + 7, are

4-complementary regions of R.

subtract regions �nds a stride �lcm which is the least common multiple (LCM) of the strides of

both R1 and R2, then it forms a set of complementary regions with that stride for each original region.

Next, it must �nd which of the complementary regions in those sets access the same elements within the

overlapping area. This is done by �nding a pair of complementary regions, one from each set, which are

separated by a distance equal to a multiple of �lcm. We say that two such regions are synchronized.

For instance, AM
�� + 5 and AM

�+ + 2M +5 are synchronized, since (2M + 5)� 5 is a multiple of M , where

�� and �+ are any numbers.

The �nal result consists of all those complementary regions of R1 which were not synchronized with

any complementary regions of R2, plus the parts of R1 from the non-overlapping areas, which were

calculated earlier.

after distance 3before distance 3

6 + 8A
6 2

16A + 16
2A 2

6 + 6A
6

before distance 16 after distance 16A 6 + 46

+ 0

A2
18 + 0

A3
12 + 3

(A2
18 + 0)� (A3

12 + 3)

Figure 8: (A2
18 + 0)� (A3

12 + 3) =) A2
2 + 0;A6

6 + 4;A6
6 + 8;A2

2 + 16

We illustrate the subtraction of two single-stride regions with the example in Figure 8. The task is

to subtract R2 = A3
12 + 3 from R1 = A2

18 + 0. First we �nd the non-overlapping area in R1, which is

Snon�overlap = fA2
b (3�1)2 c�2

;A2
b (18�(12+3))2 c�2

+ 12 + 3 + 1g:

Next, we �nd the LCM (2; 3), which is 6. Then, we compute the 3-complementary regions of R1,

which are

S1 = fA6
�� + 0;A6

�� + 2;A6
�� + 4g

where �� is a span not yet computed. Similarly, we �nd the 2-complementary regions of R2, which are

S2 = fA6
�� + 3;A6

�� + 6g:

Comparing S1 and S2, and identifying that A6
�� + 0 from R1 and A

6
�� +6 from R2 are synchronized, we

remove A6
�� + 0 from S1 to produce

Soverlap = S1 � fA6
�� + 0g = fA6

�� + 2;A6
�� + 4g:

The region A6
��+2 has a lower bound less than 3, placing it outside the overlapped area, so we recompute

its lower bound to place it inside the overlapped area, with the result A6
�� + 8. Now, we compute the

new spans for the regions in Soverlap:

A6
b 12+3�46 c�6

+ 8 = A6
6 + 8 and A6

b 12+3�86 c�6
+ 4 = A6

6 + 4:

10

They are included to make the complete result

Sresult = Snon�overlap [Soverlap = fA6
6 + 8;A6

6 + 4;A2
2 + 0;A2

2 + 16g:

It is very di�cult to obtain the exact solution for the general problem of subtraction between

arbitrarily-shaped multi-stride access regions. The algorithm to deal with this problem would be too

complicated or sometimes even intractable. However, in real cases, the regions of interest are usually

regular and have similar shapes, excluding the need for complex algorithms. This leads us to enforce

some constraints on the strides and spans of the input regions to simplify the algorithm. For the cases

which are too complicated, we can simplify the regions to satisfy the constraints by converting to MAY

regions if the application modules (such as those discussed in Section 4) allow a loss of accuracy. If this

is not allowed, then we could convert the region to a form which a di�erent technique [22] can handle,

since we retain all necessary information in our representation.

Subtraction generalizes in a very natural way to the operation R1�R2 for multi-stride regions. The

non-overlapping parts of R1 appear in the output just as before, retaining the original shape of R1. To

perform subtraction in the overlapping area for multi-stride access regions, we extend the ideas used to

process the single-stride case, such as complementary regions, and synchronized regions. To illustrate

the multi-stride case, consider the following loop from the ARC2D benchmark:

real X(P,Q,R)

� � �
do J = 1, N, 1

do K = 1, M, 1

X(J,K,2) = � � �
X(J,K,1) = � � �

enddo

� � � X(J,M,1) � � �
� � � X(J,M,2) � � �

enddo

Figure 9: Simpli�ed code example from ARC2D in Perfect Benchmarks

Let Rinner be the access region made by the references X(J,K,1) and X(J,K,2), and Router be the one

made by the references X(J,M,1) and X(J,M,2). In order to calculate Rinner�Router, the subscripting

expressions are �rst linearized and aggregated, to produce the abstract regions

Rinner = (A1;P;PQ
N�1;(M�1)P;PQ + 1,� � �) and Router = (A1;P;PQ

N�1;0;PQ + (M � 1)P ,� � �):

Notice that, in this example, the stride/span pairs are the same between the two regions except for the

middle one in each region. By ignoring the other pairs, therefore, we can reduce the multi-stride problem

to a single-stride problem, which is R0
inner �R0

outer where

R0
inner = (AP

(M�1)P + 1,� � �) and R0
outer = (AP

0 + (M � 1)P ,� � �):

The subtract regions function calculates this reduced problem to generate the result

S0
result = S0

non�overlap [S
0
overlap = fAP

(M�2)P + 1g:

By expanding S0
result for the original multi-stride problem, we have the �nal result

Sresult = fA1;P;PQ
N�1;(M�2)P;PQ + 1g:

11

3.5.2 Aggregation

Taking a list of regions as input, the aggregate regions function identi�es the access patterns of input

regions and combines regions with similar structure. The �rst step is to partition the regions into groups

based on the similarity of their strides and spans.

The notion of the similarity of regions is embodied in various terms, such as complementary regions

(described in Section 3.5.1), conjunctive regions and subregions. Two regions are conjunctive if their

structures are compatible, but shifted by a constant factor, allowing their spans to be combined. An

example of conjunctive regions is shown in Figure 10 where the two regions, represented by access

descriptors A5
15 + 1 and A1;5

2;15 + 2, are conjunctive because they are shifted by one element and have

compatible structure. The aggregated region can be represented by A1;5
3;15 + 1. We say that R1 is

a subregion of R2 if the elements accessed by R1 are a proper subset of the elements accessed by

R2. The aggregate regions function determines whether given regions are compatible by comparing

stride/span pairs and lower bounds.

subroutine foo(X)

� � �
do I = 1, 4

� � � = X(5*I-4)

do J = 1, 3

� � � = X(5*I+J-4)

� � � = X(5*I+J-3)

enddo

enddo

� � �
do K = 1, 5

� � � = X(4*K)

� � � = X(4*K-2)

enddo

� � �

)

X(1)X(6) X(11) X(16) X(20)
A5
15 + 1

A1;5
2;15 + 2

A1;5
2;15 + 3

A4
16 + 2

A4
16 + 4

Figure 10: Aggregation of READ accesses for X within foo

To illustrate the aggregation operation, consider the subroutine foo in Figure 10. The access patterns

for X within foo and their corresponding abstract forms are shown in the �gure. Given these regions,

aggregate regions produces a single aggregated region A1
19 + 1 for the summarized MUST READ

region for X in foo, following the procedure:

1. Three conjunctive regions A1;5
0;15 + 1, A1;5

2;15 + 2 and A1;5
2;15 + 3 are aggregated to A1;5

4;15 + 1.

2. A1;5
4;15 + 1 is coalesced to A1

19 + 1 by the algorithm coalesce region.

3. Two complementary regions A4
16 + 2 and A4

16 + 4 are aggregated to A2
18 + 2 because they are

2-complementary to it.

4. A2
18 + 2 and A1

19 + 1 are aggregated to A1
19 + 1 since A2

18 + 2 is the subregion of A1
19 + 1.

3.5.3 Intersection

The intersection algorithm for two access regions can return either the exact region(s) of intersection, or

a YES/NO answer by checking whether the exact result is empty. The algorithm intersect regions is

12

a slightly modi�ed version of the subtract regions algorithm. The basic operation is the same, except

we produce the synchronized complementary regions as the result.

For example, in Figure 8, suppose we are to perform intersection instead of subtraction on the input

regions ((A2
18+0)

T
(A3

12+3)). We form the complementary regions for A2
18+0 and (A3

12+3), as before,

then intersect them as before. This gives the result fA6
6 + 6g.

3.5.4 Uniqueness Test

The uniqueness test determines whether any location is referred to more than once due to the access

pattern of the region. The basic mechanism of this test is to check whether all inner spans are within

the next-outermost stride. In order to do this, it must be possible to symbolically sort the stride/span

pairs according to the stride. Inner spans are those whose strides are smaller. As an example of the

uniqueness algorithm, consider the abstract form fA1;5
2;15+ 2g displayed as part of Figure 10. Since the

inner span is less than the outer stride, we say that the region has the uniqueness property. It is clear

from the �gure that no location is repeated in that access region.

4 Applications of Access Regions

The array privatizer, dependence analyzer, and communications generation modules can all make use of

the Region Processor. The advantages of this are many. First, it should greatly simplify each of these

modules, removing all region-handling code from them, letting them concentrate on strategies for using

the results of the region processing and the conditions produced by it. Second, it promotes a demand-

driven style of compilation, as opposed to a pass-based style. The use of a consistent region representation

and framework makes it possible to pass Access Regions between several compiler modules, which are

called as they are needed. Third, the conditions generated by the Region Processor make it possible to

parallelize loops at run-time instead of serializing them for lack of information.

Each compiler module uses the aggregate regions function to combine the array accesses of interest

in a program section. The program section could be a loop-nest, a subroutine or any part of the input

program. The module then can use the Region Processor to perform any of the other operations on the

aggregated regions. If the Region Processor lacks the information it needs to perform the operation, it

returns a condition under which the result is correct.

R2

R1A(i+j)...

A(3*k)...
Summarize

Summarize

Region

Processor
Output

GSA program

Operation

Decision Made

Figure 11: Use of Region Processor

This framework could also be used as a basis for interprocedural analysis. The regions of each array

13

which are accessed in a subroutine could be summarized in the form of an Access Region, then used in

the analysis just like any other Access Region.

4.1 Dependence Analysis

The Access Region representation allows us to solve the problems which we presented in Section 2. For

the loop from TFFT2, shown in Figure 2, we can employ coalesce region to summarize the regions

accessed at each loop level. The region of X written in the �rst J loop may be calculated by �rst

aggregating the writes, then coalescing the regions, to produce the abstract form:

(A1
2M + 1,MUST,WRITE,T).

Similarly, the region of X read in the second J loop becomes:

(A1
2M + 1,MUST,READ,T).

So, by subtracting the WRITE region from the READ region, we get an empty region, showing that the

array X is privatizable in the I loop.

For the example in Figure 1, we need the condition extraction function of the Region Processor. The

Region Processor can easily extract the predicate needed in the course of using the uniqueness function

to test for output dependences in the loop. In the example, the aggregated write region for FX in the

loop is

(A1;N
2;2(M�1) + 1,MUST,WRITE,T).

The uniqueness test checks whether the inner span 2 is less than the outer stride N. Since it can't know

that in this case, the Region Processor would report that it is unique under the predicate \N > 2". The

region test can then produce code which will check the predicate at run time, choosing between a parallel

version of the loop and a serial version.

4.2 Communication Analysis

Single-sided communication protocols [18, 19, 23, 27] in the form of PUT/GET primitives have been

rapidly gaining wide acceptance. A great advantage of PUT/GET primitives is that their use of asyn-

chronous data communication works well with the shared-memory programming paradigm, which is also

assumed by Polaris.

PUT/GETs are useful for removing anti and output dependences as illustrated in [16]. By using

coalesce region and aggregate regions, in the loop shown in Figure 12, the Region Processor calcu-

lates the region of upwards exposed uses [20] of array V as

A1
MN+N�((t�1)N+1) + (t� 1)N + 1

for each iteration I = t. The write region for the same iteration is

A1
N�1 + (t� 1)N + 1:

The write region for all the following iterations from I = t+ 1 to M is

A1
MN+N�(tN+1) + tN + 1:

14

The intersect regions function would report an overlap between A1
MN+N�((t�1)N+1) + (t � 1)N + 1

and A1
MN+N�(tN+1) + tN + 1, implying an anti dependence. To make the loop nest parallel, we can

eliminate the dependence by privatizing the array V and generating a GET for the upwards exposed use

region.

do I=1,M

do K=1,N

do L=I,1+M-I

� � � = V(K+(I-1)*N+L*N)

enddo

V(K+(I-1)*N) = V(K+(I-1)*N) � � �
enddo

enddo

Figure 12: Code example from MDG, with the induction variables substituted

We also use PUT/GETs to implement the data copying scheme [2, 3] in SPMD parallel codes for

NUMA multiprocessors. In the scheme, we use shared memory as a repository of values for use in private

memory. Before a parallel loop starts, the processors copy all data that is used in the loop from shared

memory into private memory. After the loop execution completes, the processors copy the results back

to shared memory so that all the processors have access to the results. By doing so, we can localize most

of the data that are used by the processors in the computations.

In the data copying scheme, gathering precise array access information into a exible representation is

essential for supporting e�cient copy(PUT/GET) operations. Our recent experiments with benchmarks

showed that our implementation of the scheme, based on our new representation, has been successful,

as shown in Figure 13.

� � SWIM-without data copying
� � SWIM-with data copying
� � TOMCATV-without data copying
� � TOMCATV-with data copying

 MDG-without data copying
� � MDG-optimized

|
1

|
2

|
4

|
8

|
16

|
32

|
64

|0.5

|1.0

|2.0

|4.0

|8.0

|16.0

|32.0

|64.0

 Number of Processors

 S
pe

ed
 u

p

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 13: Performance comparisons of automatic parallelization with and without the data copying
scheme on the Cray T3D

15

5 Conclusion

We have presented a new way to represent the access patterns of arrays within a program which is more

precise than traditional triplet notation. We have de�ned operations for manipulating this representation

which are suitable for supporting the region processing needs of several compiler modules.

We discussed using a general facility for processing this representation as a basis for privatization

analysis, dependence analysis, communication generation, and interprocedural analysis within a paral-

lelizing compiler. We discussed techniques which allow such a processor to return conditions under which

the result of the region operation is correct.

References

[1] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeinger, T. Lawrence, J. Lee, D. Padua, Y. Paek,
W. Pottenger, L. Rauchwerger, P. Tu, Advanced Program Restructuring for High-Performance Computers
with Polaris, To appear in IEEE Computer, Dec. 1996, OR. Technical Report 1473, Univ. of Illinois at
Urbana-Champaign, Cntr. for Supercomputing Res. & Dev., Jan. 1996

[2] Y. Paek, D. Padua, Automatic Parallelization for Non-cache Coherent Multiprocessors, Proceedings of 9th
Workshop on Language and Compilers for Parallel Computing, OR. To appear in Lecture Notes in Computer

Science, Spring-Verlag, NY, Aug. 1996

[3] Y. Paek, D. Padua, Compiling for Scalable Multiprocessors with Polaris, To appear in Parallel Processing

Letters, World Scienti�c Publishing, UK, 1997

[4] P. Tu, D. Padua. Gated SSA-Based Demand-Driven Symbolic Analysis for Parallelizing Compilers. Pro-
ceedings of the 9th ACM International Conference on Supercomputing, Barcelona, Spain, July 1995

[5] W. Blume, R. Eigenmann, The Range Test: A Dependence Test for Symbolic Non-linear Expression,
SuperComputing '94 Proceedings, Nov. 1994, pp. 643-656

[6] W. Blume, Symbolic Analysis techniques for E�ective Automatic Parallelization, PhD Thesis, University
of Illinois at Urbana-Champaign, June 1995

[7] L. Rauchwerger, D. Padua, The LRPD Test: Speculative Run-Time Parallelization of Loops with Pri-
vatization and Reduction Parallelization, Proceedings of ACM SIGPLAN'95 Conference on Programming

Language Design and Implementation, Jun. 1995

[8] F. Bodin, E. Granston, T. Montaut, Loop Transformations to Prevent False Sharing, International Journal
of Parallel Programming.

[9] D. Callahan, K. Kennedy, Analysis of Interprocedural Side E�ects in a Parallel Programming Environment

[10] C. Tseng, An Optimizing Fortran D Compiler for MIMD Distributed-Memory Machines, PhD Thesis, Rice
University, Jan. 1993

[11] S. Chatterjee, J. Gilbert, F. Long, Generating Local Address and Communication Sets for Data-Parallel
Programs, Proceedings of ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming, San
Diego, May 1993, pp. 149-158

[12] V. Balasundaram, K. Kennedy, A Techniques for Summarizing Data Access and its Use in Parallelism En-
hancing Transformations, Proceedings of ACM SIGPLAN'89 Conference on Programming Language Design

and Implementation, Jun. 1989

[13] J. Saitz, R. Mirchandaney, K Crowley, Run-time Parallelization and Scheduling of Loops, IEEE Trans.
Computers, Vol 40, May 1991

16

[14] R. Triolet, F. Irigoin, P. Feautrier, Direct Parallelization of CALL Statements, Proceedings of ACM SIG-

PLAN '86 Symposium on Compiler Construction, Palo Alto, CA, July 1986, pp. 176-185

[15] V. Balasundaram, K. Kennedy, A Technique for Summerizing Data Access and its Use in Parallelism-
Enhancing Transformation, Proceedings of ACM SIGPLAN '89 Conf. on Programming Language and Design

and Implementation, Portland, OR, June 1989

[16] R. Cytron, J. Ferrante, What's in a Name?, Proceedings of the 1987 International Conference on Parallel

Processing, Aug. 1987, pp. 19-27

[17] B. Creusillet, F. Irigoin, Exact vs. Approximate Array Region Analyses, Proceedings of 9th Workshop on

Language and Compilers for Parallel Computing, Aug. 1996.

[18] MPI-2: Extensions to the Message-Passing Interface, Message Passing Interface Forum, Jan. 12, 1996

[19] J. Nielocha, R. Harrison, R. Little�eld, Global Arrays: A Portable Shared-Memory Programming Model
for Distributed Memory Computers, Supercomputing '94 Proceedings, 1994, pp.340-349

[20] A. Aho, R. Sethi, J. Ullman, Compilers Principles, Techniques, and Tools, Addison-Wesley, CA, 1986

[21] P. Tang, Exact Side E�ects for Interprocedural Dependence Analysis, Communications of the ACM, Vol.
35, No. 8, Aug. 1992, pp. 102-114.

[22] W. Pugh, A Practical Algorithm for Exact Array Dependence Analysis, Communications of the ACM, Vol.
35, No. 8, Aug. 1992

[23] D. Culler, et al., Parallel Programming in Split-C,Supercomputing '93 Proceedings, 1993

[24] M. Burke, R. Cytron, Interprocedural Dedependence Analysis and Parallelization, Proceedings of ACM

SGIPLAN '86 Symposium on Compiler Construction, Palo Alto, CA, July 1986, pp 162-175

[25] H. Zima, B. Chapman, Supercompilers for Parallel and Vector Computers, ACM Press, 1992

[26] CRAY T3D System Architecture Overview, Cray Research, 1993

[27] SHMEM Technical Note for Fortran, Cray Research, Oct. 1994

[28] M. Berry, D. Chen, P. Koss, D. Kuck, L. Pointer, S. Lo, Y. Pang, R. Rolo�, A. Sameh, E. Clementi, S.
Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl,
O. Johnson, G. Swanson, R. Goodrum, J. Martin, The Perfect Club Benchmarks: E�ective Performance
Evalution of Supercomputers, Int'l. Journal of Supercomputer Applications, Fall 1989, Vol. 3, No. 3, Fall
1989, pp. 5-40

17

