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ABSTRACT

Due to the complexity of programming scalable multiprocessors with phys-
ically distributed memories, it is onerous to manually generate parallel code
for these machines. As a consequence, there has been much research on the
development of compiler techniques to simplify programming, to increase re-
liability, and to reduce development costs. For code generation, a compiler
applies a number of transformations in areas such as data privatization, data
copying and replication, synchronization, and data and work distribution. In
this paper, we discuss our recent work on the development and implemen-
tation of a few compiler techniques for some of these transformations. We
use Polaris, a parallelizing Fortran restructurer developed at Illinois, as the
infrastructure to implement our algorithms. The paper includes experimental
results obtained by applying our techniques to several benchmark codes.
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1 Introduction

Scalable shared memory multiprocessors with physically distributed memories,

such as the Cray T3D and the Convex SPP, provide a scalable and a�ordable solu-

tion for high performance scienti�c computing. Accessing data e�ciently in these

machines often requires somewhat complex program transformations based on ac-

curate analysis of the memory access pattern [1,11]. Some of these distributed

�Research supported in part by Army contract #DABT63-95-C-0097. This work is not neces-
sarily representative of the positions or policies of the Army or the Government.
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memory machines have noncoherent caches [3,16]. This multiplies the di�culty of

programming these machines because, to compensate for the lack of hardware cache

coherence mechanisms, explicit control of cacheability and coherency is critical for

fast execution. This programming work can be done manually; however, automatic

techniques not only facilitate program development, but also allow the source pro-

gram to be more readable without sacri�cing e�ciency. Additionally, more readable

programs are easier to debug and maintain. In this paper, we discuss our work at

Illinois on the development of compiler techniques for scalable shared memory mul-

tiprocessors with noncoherent caches. Speci�cally, we have developed techniques to

translate conventional Fortran programs for e�cient parallel execution on the the

Cray T3D, the only commercial machine of this class available today.

In fact, we have found in this work that multiprocessors with noncoherent caches

have important advantages over their cache coherent counterparts. For example,

non-cache coherent machines are easier to scale and are more economical [3]. To

optimize communication costs in multiprocessors, it is often necessary for software

to have explicit control over data movement. On cache coherent machines, control-

ling data movement can be cumbersome unless the machine includes mechanisms

to override the hardware cache controller. Non-cache coherent machines, by con-

trast, allow the programmer or the compiler to have explicit and direct control over

communications through explicit data movement operations. Having explicit com-

munication control results in other advantages [12], such as a substantial reduction

in communication costs from prefetching, data pipelining, and aggregation [11]. In

this work, we pro�t from the fact that the Cray T3D supports fast single-sided

communication in the form of PUT/GET primitives. The target language of our

translator is CRAFT [6] augmented with libraries that provide single-sided commu-

nication primitives. Our work extends the parallelization techniques implemented

in the Polaris restructurer [4], which was developed by the authors and other re-

searchers at Illinois.

This paper is organized as follows. In Section 2, we briey introduce the Polaris

restructurer. In Section 3, we discuss shared-memory programming in the T3D. In

Section 4, we discuss several basic and advanced transformation techniques. We

applied these techniques to three benchmark programs, the results of which are

presented in Section 5.2. Finally, we conclude our discussion with future research

goals in Section 6.

2 Polaris Restructurer

Parallelizing compilers [1,4,9] have been extensively studied during the past twenty

years or so. Polaris was developed to overcome limitations in the analysis and

transformation techniques implemented in other systems and to be robust enough

to allow serious experimental studies. As shown in Figure 1, Polaris contains two

distinct phases. The frontend, which identi�es implicit parallelism, consists of sev-

eral passes implementing advanced techniques for dependence analysis, induction

variable substitution, reduction recognition, and privatization [8,19,20].

Using the parallelism identi�ed by the frontend, the backend generates parallel
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UMA Shared-memory Machines
(SGI PowerChallenge, Convex C3)

NUMA Shared-memory Machines
(Cray T3D/T3E, Convex Exampler)
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Target-specific Code Transformation
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Parallelism Detection

Generic Parallel Code

Fig. 1: Components of Polaris

programs for a variety of UniformMemory Access(UMA) shared-memory machines.

We have obtained good speedups for these machines by applying in the backend

a relatively simple code generation algorithm that tries to distribute as evenly as

possible the parallel work across the processors [18]. In fact, on an extensive collec-

tion of programs gathered from the Perfect Benchmarks, SPEC, and other sources,

Polaris substantially outperforms the native parallelizer of the SGI [4].

However, as discussed below, for non-cache coherent machines a simple code

generation algorithm is not su�cient to achieve reasonable performance. To achieve

this goal, it is necessary to deal with data distribution, data movement, and other

issues.

3 Shared-memory Programming in the T3D

Like most other distributed-memory machines, the Cray T3D supports the message-

passing programming models through libraries such as MPI and PVM [15]. How-

ever, unlike the true message-passing machines, the T3D also has several powerful

hardware features to e�ciently support shared-memory programming [16] on top of

physically distributed memory structures. The 3-D torus interconnection network

provides high-throughput and low-latency remote memory access. The remote ac-

cess is only �ve to six times slower than the local access. Its prefetch queues are

designed to fetch remote data, especially scalars, and are e�ective at hiding the

memory access latency. A special barrier network is very useful for global synchro-

nization. In order to compensate for its lack of hardware cache coherency, the T3D

has hardware mechanisms to facilitate e�cient software control of local memory

coherency. Thus, its shared memory access library makes data movement across

the system faster than any other software-based implementation [7,14]. In fact, the

bandwidth of data copy operations on the T3D is about 1.5 Mwords/sec.

It is possible to access the special hardware features of the T3D through CRAFT,

an extension to Fortran 77 that includes several data parallel programming features
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from Fortran 90 as well as directives to control parallelism and data placement.

CRAFT follows the Single-Program Multiple-Data(SPMD) model and operates on

a shared address space. In the work reported below, each CRAFT process was

allocated to a physically separate processor. Data objects can be declared as shared

or private. Shared data can be distributed across memory using directives similar to

those made popular by Fortran D and Vienna Fortran [5,11]. CRAFT uses :block

for block distribution and :block(N) for cyclic distribution. CRAFT also includes

several explicit synchronization mechanisms and provides a direct interface to the

SHMEM library containing various global memory operations to control caches and

single-sided data transfer operations using the PUT/GET model. CRAFT allows

the programs to control the hardware very e�ciently.

4 Basic Transformations

The T3D backend module we have implemented in Polaris uses the parallelism

identi�ed by the frontend to transform the source code into parallel form. This

transformation consists of two phases that we call basic and advanced, for lack of

better terms. The basic transformation phase generates SPMD parallel code. Using

rather simple data ow analysis, the basic transformation phase identi�es some data

as private. By default, data not identi�ed as private are assumed to be shared. Also,

many important semantical di�erences between CRAFT and Fortran are resolved

in this phase. Once the �rst phase is complete, several advanced techniques are

applied in the second phase to improve code quality.

In this section we discuss the basic transformations. An earlier version of the

material in this section was presented in [17].

4.1 Shared Subprograms

A shared subprogram is a subroutine or a function whose execution requires all

processors to participate. A shared subprogram contains a parallel construct (e.g., a

doall), an I/O statement with private variables, a call to other shared subprograms,

or any other statements marked with parallel assertions.

As an initialization step of our code transformation, we �rst identify shared sub-

programs by traversing the call tree. Then, we isolate all calls to shared functions;

that is, we place each invocation to each shared function on the right-hand side of

a di�erent assignment statement. We do this for several reasons. Let's take as an

example the following code segment:

X = A(I) + f(A) + g(A).

If X is a shared variable, then this assignment must be executed serially. When f is

a shared subprogram but g is not, we have to isolate the call to f from the original

assignment statement as follows:

tmp = f(A) (parallel)

X = A(I) + tmp + g(A) (sequential).

This helps us to control the execution ow of di�erent processors. Only after f is

isolated is it possible to generate the statements needed to guarantee that only one

processor will execute the serial parts and that all processors will execute f.
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4.2 Parallel Loop Decomposition

We use the same loop decomposition algorithm for the T3D as we use for cache

coherent machines. Thus, parallel loops are given block or cyclic schedules where

the same number of loop iterations are allocated to each processor element(PE). If

several loops are parallel in a multi-nested loop nest, then only one loop in a nest,

usually the outermost parallel loop, is transformed into parallel form. The following

example illustrates block scheduling.

cdir$ parallel (I) b = N/number of PEs

do I = 1, N do I = b*my PE+1, b*(my PE+1)

.

.

. )

.

.

.

enddo enddo

For the case of loops containing reductions, it is necessary to modify the sim-

ple strategy we used for shared-memory machines, as shown in the following code

example:
cdir$ loop preamble

b = M/number of PEs

A0(1:N) = 0.0

cdir$ parallel (J) cdir$ loop body

do J = 1, M do J = b*my PE+1,b*(my PE+1)

do I = 1, N do I =1, N

� � � � � �

A(I) = A(I) + � � � ) A0(I) = A0(I) + � � �

� � � � � �

enddo enddo

enddo enddo

cdir$ loop postamble

call set lock(lock)

A(1:N) = A(1:N)+A0(1:N)

call clear lock(lock)

� � �

In the example, A0 is a private array of the same size and type as shared array A.

The transformed loop consists of three parts: the loop preamble, the loop body,

and the loop postamble. In the preamble, A0 is initialized by all processors before

the loop execution. After the loop body execution completes, the partial results

stored in A0 are gathered into A in the postamble. This parallel version of the loop

generally works well for a few processors, but has the intrinsic drawback that the

postamble is executed serially because it is in a critical section. Table 1 presents

an example illustrating that the overall execution time of the parallelized loop with

reductions is dominated by its serial postamble on a large number of processors.

To address this problem, we use a di�erent strategy in our implementation. In

the previous code example, the private array A0 within each processor is (conceptu-

ally) divided into number of PEs sections. The postamble consists of two phases.

First, for 1 � i � number of PEs, the i-th section of all processors is copied into

the i-th processor. Then all processors add the number of PEs sections copied into

them. As expected, this approach of parallelizing the postamble has an important

impact on performance. This is demonstrated in the example in Table 1.
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PE Preamble Loop Body Serial Postamble Parallel Postamble
(sec) (sec) (sec) (sec)

2 0.014 260 0.39 0.10
64 0.017 11 2.7 0.13

Table 1: Measurements of the execution times of the components of loop INTERF do1000 in MDG

4.3 SPMDization

We implemented a relatively simple method to generate parallel threads for the

T3D, as shown in the example code:
subroutine foo(� � �)

<declarations>

Initialization for all

subroutine foo(� � �) if (slave) goto wait1

<declarations> serial regions

serial regions wait1: call barrier()

a parallel construct ) a parallel construct

serial regions call barrier()

a parallel construct if (slave) goto wait2

serial regions serial regions

� � � wait2: call barrier()

a parallel construct

call barrier()

if (slave) goto � � �

serial regions

� � �

One of the threads, designated as the master, executes all sequential regions. Others,

the slaves, wait at barriers while the master is in a sequential region. When the

master hits a barrier preceding a parallel region, the slaves are released to participate

in the computation. The barriers used to control the ow of execution of masters

and slaves are illustrated in the following code.

Due to the T3D's special hardware for global barrier synchronization, the total

overhead incurred by barriers has little impact on the performance, according to our

experiments [17]. Thus, in this paper, we do not discuss any techniques to reduce

barrier overhead.

4.4 Data Declaration

In CRAFT, a variable must be declared as either shared or private. Based on simple

inter-procedural data ow analysis, we identify as procedure private the variables

that are not used in parallel regions. Also, the privatizer, one of the frontend passes

in Polaris, identi�es loop private data [20]. Both classes of private variables have

to be declared as private in CRAFT, as shown in Figure 2.

Shared arrays must be explicitly distributed by the software. For simplicity, our

current implementation automatically applies block distribution to all dimensions

of all shared arrays. In Section 5, we discuss further how to deal with these issues

to improve performance based on data ow analyses.
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subroutine foo

cdir$ private(procedure private variables)

� � �

X = 3

� � �

do I = L, U

cdir$ private(loop private variables)

� � �

enddo

Fig. 2: Declaration of privatizable variables in Polaris

4.5 Compatibility Problems

MPP Fortran extensions, such as CRAFT and HPF [10], help the user to attain high

performance through distribution of data while maintaining compatibility with con-

ventional Fortran 77 or Fortran 90. It is very di�cult to achieve total compatibility,

however. CRAFT, therefore, diverts from several conventional language features in

the name of performance.

One of the major di�erences is that CRAFT does not follow Fortran's se-

quence/storage association rules for shared data. For instance, suppose a shared

array A is declared as A(N,N). In Fortran, A(N,i) and A(1,i+1) are adjacent in

memory. This is not necessarily true in CRAFT. Another major restriction is that

each dimension size of a shared array in CRAFT must be a power of 2. This implies

that most shared arrays must be expanded by the compiler to the next power of

2 in every dimension. This causes serious compatibility problems, especially for

multidimensional arrays that are aliased.

We have developed translation algorithms to overcome all these restrictions when

we translate Fortran to CRAFT. The algorithms include linearization, renaming,

data replication, array reshaping and procedure cloning. Details of these algorithms

and other compatibility problems are given in [17].

5 Data Copying

The basic transformations try only to generate a correct parallel program and to

apply a few optimizations. Thus, they do not do anything with cache exploitation

and data distribution. To obtain reasonable performance, we have to deal with

these issues.

Although the causes of performance degradation of parallel programs in the

T3D vary depending on the applications, our analyses of several programs from the

Perfect and SPEC benchmarks [17] show that there are two primary factors that

prevent the achievement of maximum theoretical performance. The �rst factor is

that shared data is not cached in the T3D, which results in loss of performance

whenever the computation uses shared data repetitively. We call this the cache

bypassing penalty. The second factor is communication overhead caused by remote

memory accesses. In this section, we discuss the techniques we use to overcome these

two main performance degradation factors and present some performance numbers.
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5.1 Shared Data Copying Scheme

To deal with the cache bypassing penalty, we developed the shared data copying (also

called copy-in/copy-out) scheme that was applied for earlier hierarchical global mem-

ory systems [13]. In the scheme, shared memory is used as a repository of values for

private memory, as shown in Figure 3. Before a parallel loop starts, the processors

copy all that is used in the loop from shared memory into private memory. After the

loop execution completes, the processors copy the results back to shared memory

so that all the processors have access to the results. By doing so, most of the work

is done on private variables.

Private Memory

PE0

Private Memory

PE1

copycopy

Shared Memory

private image private imageshared data

Fig. 3: Shared data copying scheme

Our strategy identi�es the array regions to be copied and collects all array regions

used in a loop. It classi�es the regions into four classes: MUST WRITE, MAY WRITE,

MUST READ, and MAY READ. The description of these regions is appended to the loop

in the form of assertions that direct the generation of data copying operations. The

following example shows how this region information is converted to PUT/GET

operations. In the example, V is a shared array and V0 is the corresponding private

array.
subroutine f(V,N) subroutine f(V,N)

real V(*) � � �

� � � alloc(V0(1:N))

<MUST READ V(1:N)> get(V(1:N),V0(1:N))

doall J = � � � doall J = � � �

do I = 1, N ) do I = 1, N

� � � = V(I) � � � = V0(I)

.

.

.
.
.
.

5.2 Experiments with Data Copying

The shared data copying scheme in the T3D seems to be an e�ective way to deliver

high performance because of the T3D's e�cient hardware mechanisms to support

PUT/GET primitives. In [17], we showed that the hand-coded version of this

scheme works well in most cases, and that it works particularly well when the data

distribution requirements of a program are dynamic. In this section, we report

some of our recent experiments with the version of this scheme we implemented in

Polaris.

5.2.1 Measuring Cache Bypassing Penalty

Figure 4 shows the speedups obtained after applying the basic transformation tech-

niques only. As expected, the speedups are low in all cases due to the two factors

discussed above.
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Fig. 4: Before applying the data copying scheme
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Fig. 5: After applying the data copying scheme
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We can measure the e�ect of the �rst factor, the cache bypassing penalty, by

looking at the speedups for one processor in the �gure. In all cases, the speedup

is below one, and we see that TOMCATV is most a�ected by the cache bypassing

penalty. The dotted lines in the �gure are the predicted speedups that we might

achieve for each program after eliminating the penalty. In the following section, we

show how we improve the speedups to reach the predicted lines.

5.2.2 Applying the Data Copying Scheme

Figure 5 shows the speedups obtained after applying the shared data copying scheme

to the results in Figure 4 with other techniques already applied. It is usually di�-

cult to accurately quantify the e�ects of each compiler technique on the speedups

because performance results from the combination of various techniques in most

cases. For instance, the speedups in Figure 5 for MDG are not possible without the

dependence analysis techniques that identify the major loops in MDG as parallel;

yet, the techniques could not detect those parallel loops without the privatizer's

removal of anti and output dependences from the loops. The removal of these anti

and output dependences is attributed to the copy-in/copy-out operations [20] using

PUT/GET primitives; and, the primitives, in turn, are essential to the shared data

copying scheme. Loop fusion has been found useful to remove most of the com-

munication overhead for PUT/GET operations in TOMCATV. These additional

loop transformation and parallelization techniques are very important for the data

copying scheme.

Nevertheless, we tried to single out the impact of each technique we used in the

transformation, and found that the greatest improvement in Figure 5 came from this

data copying scheme; that is, the improvement of the speedups is mainly ascribed

to the scheme that helps get rid of most of the cache bypassing penalty involved in

the original speedups. Figure 5 also shows that the communication cost reduction

through block data copying brings even better performance to the actual speedups

than the predicted ones in Figure 4.

5.3 Communication Overhead

Although the data copying strategy generally reduces the overall communication

overhead by aggregating data to be moved across the network, the strategy itself

needs communication for data copying. Therefore, the heedless use of the strategy

might not signi�cantly reduce the total communication overhead; in fact, it may

even increase the overhead, especially with a large number of processors.

Our current implementation of the data copying scheme is based only on intra-

loop analysis. In many cases, a naive implementation of our strategy will lead to

copying back and forth almost the same array regions many times between loop

nests. This could slow down the program substantially despite the fast PUT/GET

implementation in the T3D. Therefore, we have found that we need to apply other

techniques to improve our copying scheme in the future. These techniques would

be based on inter-loop data region analysis.

We may further reduce the overhead by using optimization techniques similar
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to those used in message passing models [11]. For instance, we found that several

small data blocks often can be merged into a larger block to reduce the number of

transmitted data blocks. Although there are some technical problems in the current

implementation of CRAFT, we hope to be able to pipeline the data blocks to hide

the latency. Data distribution and work distribution [2] are additional important

issues in this matter.

Other strategies to reduce the increased communication overhead include tra-

ditional loop transformation techniques, such as loop interchange, loop fusion, and

loop distribution. We plan to use each of these in the near future to further improve

the performance.

6 Future Work and Conclusions

We implemented in Polaris a pass to generate code for the T3D and we evalu-

ated its e�ectiveness on three programs from the Perfect and SPEC benchmarks.

The preliminary performance that we reported in [17] was unsatisfactory. But, the

shared data copying scheme removed the most important performance degradation

factors. The experiments presented in Section 5 revealed that this scheme is e�ec-

tive on these applications. However, it also revealed that there is much room for

improvement. Our work is still in progress and this paper presented some of our

early experience of this work. We will pursue research to extend our work to more

general classes of applications.

The data copying scheme requires an accurate data access region analysis. We

currently use the access region information generated by Polaris' frontend passes [20].

However, we need a more accurate data access region analysis to improve our op-

portunity to optimize the communication incurred by the copying scheme.

We do not yet have clear solutions for data and work partitions, which are

among the most important issues for scalable multiprocessor machines. Our work

will focus on solving these tasks. Eventually, all these solutions and methods will

be implemented in Polaris.
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