
Parallelism in Loops Containing Recurrences

Bill Pottenger

June 12, 1996

1 Introduction

Extensive analysis of Grand Challenge codes from NCSA, codes from the SPEC CFP95 Benchmark
Suite, and codes from the Perfect Club Suite, has revealed the presence of a number of loops in
which recurrences prevent DOALL parallelization.

During a recent review of the Polaris restructurer [BDE+96] approximately 500 loops from pro-
grams in the aforementioned test suite were identi�ed as serial. Of these, approximately 35% involve
an explicitly coded recurrence, reduction, or induction for which Polaris was unable to determine a
parallel form. Approximately 70% of the loops in this 35% subset were determined to be partially
or fully parallelizable based on a manual inspection of the codes.

As part of our research in the automatic parallelization of FORTRAN programs, techniques are
being developed for solving these recurrences in DOALL and DOACROSS fashions. In the following
section, several techniques will be presented which have proven e�ective in the parallelization of
loops containing recurrences.

2 Techniques for Parallelizing Recurrences

2.1 Symbolic Computation of Closed Form

[Pot94] includes a survey of symbolic techniques for determining closed forms for recurrences involv-
ing scalar induction variables. The extension of similar symbolic techniques to the solution of linear
recurrences is under investigation.

2.2 Hoisting

There are at least two cases in the SPEC CFP95 benchmark su2cor where recurrences occur in an
explicit form. An example from the routine trngv is portrayed below.

IFIRST=0
IMAX=2147483647
DO 100 N=1,N103

DO 10 I=IFIRST,IFIRST+102
IREG(I+250)=IREG(I+147)-IREG(I)
IF (IREG(I+250).LE.0) IREG(I+250)=IREG(I+250)+IMAX

10 CONTINUE
IFIRST=IFIRST+103

100 CONTINUE

Trngv is called from within several of the major serial loops, including SU2COR do60 and
SWEEP do200. This section of code has an explicit recurrence relation of the form ai = ai�103 +

1



ai�250 mod 231� 1. It is an implementation of a lagged-Fibonacci pseudorandom number generator
with recursion parameters of (103, 250) [PCMR94]. The conditional subtraction performs a modulo
operation which results in an integer in the range [0; 231�2], a member of the representative residue
class [0; 231� 2].

One approach to solving linear homogeneous recurrences of this nature is to symbolically calculate
the closed form of the recurrence during compilation as was discussed briey in the previous section.
However, although the techniques for solving this class of recurrence are well known, in this case
the actual closed form is numerically unstable due to the fact that the computation must be done in
the complex realm. Nonetheless, there are many cases where symbolic techniques such as this have
been successfully employed [PE95].

For this particular recurrence, partial hoisting was employed to break the dependence arcs in two
of the enclosing loops. Simply put, the computation of the pseudorandom numbers was hoisted out
of inner loops and placed in an outer loop. Naturally this transformation required that additional
elements (pseudorandom numbers) be computed and stored for later use in the inner loops. This
was accomplished by extracting the loop-control ow from SWEEP do200/2 (a perfectly nested loop
inside SWEEP do200/1) and pre-computing (in do200/1) the set of pseudorandom numbers that
would later be needed inside do200/2.

However, since our target for DOACROSS parallelization was SWEEP do200/1, there remained
unbroken dependence arcs in this, the outermost loop. These were handled by explicitly synchro-
nizing access to ireg.

2.3 Overlapping Loop Execution using Semi-private Variables

Another interesting transformation involved what we have termed semi-private variables. The priva-
tization of variables often allows dependence arcs to be broken [Tu95]. In SU2COR do60 a pattern
occurs in which a variable is private from a certain program point in a loop to the end of the loop.
Consider the following example:

DO K=1,N
DO I=2,N

DO J=1,N
� � �

� � � = . . . A(J,I-1) . . .
� � �

A(J,I) = � � �

� � �

ENDDO
ENDDO
� � �

DO M=2,N
DO J=1,N

� � � = . . . A(J,M) . . .
ENDDO

ENDDO
ENDDO

Here we have a case where the writes to the variable A in the I loop completely cover the reads
to A in the M loop. Since A is read-only in the M loop, a private copy of A can be made upon
termination of the I loop, allowing the M loop to proceed in tandem with a subsequent invocation
of the I loop. A similar pattern occurs in SU2COR do60 where the I and M loops are actually the
outermost loops of subroutines called from within do60.

2



2.4 Doacross Parallelism

The loop SWEEP do200 in su2cor is a candidate for doacross parallelism for two reasons: one, there
is work done at the head of the loop which does not involve accesses to variables with loop-carried
dependences; and two, since the loop-carried dependences present in this loop are conditional in
nature, it is possible to take advantage of the case(s) where no actual dependences exist.

A doacross loop was implemented for do200/1 using synchronization to enforce the dependence
relationships on sections of the main data structure u. The issue of granularity of synchronization
did arise, but will not be discussed here due to space limitations. Su�ce it to say that the optimum
granularity of synchronization was on a panel of u made up of 4096 32-byte \elements", and the
doacross loop do200/1 accesses four of these panels every iteration.

2.5 Structure Access Pipelining

In order to gain additional parallelism in SWEEP do200/1, a technique termed structure access

pipelining was employed. Akin to vector chaining, structure access pipelining overlaps contiguous
invocations of a parallel loop. For example, consider the following loop:

DO K=1,N
CALL EXAMPLE

ENDDO
SUBROUTINE EXAMPLE

DO I=2,N
DO J=1,N

� � �

� � � = . . . A(J,I-1) . . .
� � �

A(J,I) = � � �

� � �

ENDDO
ENDDO

END

The loop-carried dependences on A serialize the outer I loop in EXAMPLE. However, using
synchronization this loop can be executed as a doacross loop in parallel. Additional parallelism can
be obtained across invocations of the outer I loop (i.e., across subroutine calls) when the control ow
in the caller requires that EXAMPLE be reinvoked (as shown above). This can be accomplished,
for example, by coalescing the K loop in the caller with the I loop in EXAMPLE and running this
new, coalesced loop as a doacross.

This transformation accomplishes two things: one, it mitigates the overhead of spawning a
parallel loop each time EXAMPLE is called; and two, like vector chaining, it hides the latency of
access to A by allowing processors to proceed with the next (logical) iteration of the caller's loop
without waiting for all other processors to �nish the previous iteration. This is precisely the situation
which arises in SU2COR do60, the caller of SWEEP which invokes the loop SWEEP do200.

2.6 Loop Rotation

In the CFP96 code applu several loop-carried dependences exist in the main time-stepping loop in
subroutine SSOR. However, through a technique dubbed loop rotation, the loop-carried dependences
on the array variable rsd can be broken via privatization. The technique is akin to a partial peeling
operation which involves rotating the body of the loop in order to move the write of rsd to the
head of the loop, thereby allowing it to be privatized. The portion of the �rst iteration which was

3



partially peeled is duplicated in a prologue to the loop, and the corresponding portion (partially
peeled from the �nal iteration) is likewise duplicated in an epilogue.

2.7 Min/Max Reductions

An interesting recurrence occurs in the SPEC CFP95 benchmark tomcatv in the loop MAIN do80.
The following portrays this loop:

DO 80 J = 2,N-1
DO 80 I = 2,N-1

RXM(ITER) = MAX(RXM(ITER), ABS(RX(I,J)))
RYM(ITER) = MAX(RYM(ITER), ABS(RY(I,J)))

80 CONTINUE

As can be seen from this example, do80 is a max() reduction on two variables, rx and ry. ITER
is the index of the outermost timestepping loop (MAIN do140).

Polaris has the ability to recognize and transform additive reductions into a parallel form. How-
ever, the current reduction recognition pass does not recognize max or min reductions. Nonetheless,
the transformation is straightforward, and is pictured below based on the technique employing ex-

panded reductions [PE95]:

do j = 1, procs
rxm e(j) = 0.0
rym e(j) = 0.0

enddo
do parallel k = 2, n-1

do i = 2, n-1
rxm e(thread-num()) = max(rxm e(thread-num()),abs(rx(i, k)))
rym e(thread-num()) = max(rym e(thread-num()),abs(ry(i, k)))

enddo
enddo
do m = 1, procs

rxm(iter) = max(rxm(iter),rxm e(m))
rym(iter) = max(rym(iter),rym e(m))

enddo

In the above, rxm e and rym e are expanded versions of the original single address reduction vari-
ables rxm(iter) and rym(iter)1. They are expanded by the number of concurrent threads, initialized
to zero, and indexed by the thread-id of each thread participating in the computation. Following
the parallel reduction in the k loop, the partial results are summed across threads in the �nal m
loop.

2.8 Loop Chaining

The structure access pipelining discussed in section 2.5 has a corresponding application in tomcatv
which we term loop chaining. Consider the following example abstracted from tomcatv:

DO 140 ITER=1,ITACT

1Note that the index iter is invariant in the do80 loop nest

4



� � �

DO 60 J=2,N-1
DO 50 I=2,N-1

� � �

RX(I,J) = A*PXX+B*PYY-C*PXY
RY(I,J) = A*QXX+B*QYY-C*QXY

50 CONTINUE
60 CONTINUE
DO 80 J=2,N-1

DO 80 I=2,N-1
RXM(ITER) = MAX(RXM(ITER), ABS(RX(I,J)))
RYM(ITER) = MAX(RYM(ITER), ABS(RY(I,J)))

80 CONTINUE
� � �

140 CONTINUE

Both the do60 and do80 loops access rx and ry in their entirety during each step of the outermost
loop 140 (index ITER). The dependences on rxm and rym in do140 are not loop-carried - i.e., rxm
and rym are loop-private variables which are written in do80 and read prior to the exit of do140.

As a result, it is possible to overlap the access to rx and ry in do60 and do80 such that these
two loops can be executed concurrently. This is accomplished by synchronizing on columns of rx
and ry as pictured below:

DO 140 ITER=1,ITACT
� � �

process1
DO parallel 60 J=2,N-1

DO 50 I=2,N-1
� � �

RX(I,J) = A*PXX+B*PYY-C*PXY
RX p(I,J) = RX(I,J)
RY(I,J) = A*QXX+B*QYY-C*QXY
RY p(I,J) = RY(I,J)

50 CONTINUE
post(j)

60 CONTINUE
process2

DO 80 J=2,N-1
wait(j)
DO 80 I=2,N-1

RXM(ITER) = MAX(RXM(ITER), ABS(RX p(I,J)))
RYM(ITER) = MAX(RYM(ITER), ABS(RY p(I,J)))

80 CONTINUE
� � �

140 CONTINUE

In this example, loops do60 and do80 are executed as two separate processes which share the
same address space. Loop do60 is a parallel, doall loop, and do80 may be executed either as a
parallel reduction loop or as a serial loop depending on the ratio of the respective execution times
for the loops. The term loop chaining is derived from the nature of the access pattern of the two
loops: do60 executes one iteration (writing one entire column of both RX p and RY p), then posts
to notify do80 that these private variables are available. Loop do80 waits for the post then accesses

5



the same columns of RX p and RY p in turn, with the result that access to the Jth columns of rx
and ry are \chained". In much the same way that vector chaining enhances performance in a vector
processor, loop chaining hides the execution time of the do80 loop in its entirety.

3 Results to Date

In this section performance results will be discussed for two benchmarks from the SPEC CFP95
suite which have been studied and manually transformed. The discussion will be organized on a
loop-by-loop basis for computationally important loops in these two codes.

3.1 su2cor

The computationally key loops in su2cor are delineated in Table 1.

Subroutine Loop Depth % Tseq S/P
SU2COR do60 1 99.9809 S
SWEEP do200 2 63.1459 S
LOOPS do900 2 36.8664 S
SWEEP do220 4 34.3754 P
LOOPS do400 3 29.6517 P

MATMAT do10 5 18.3314 P
SWEEP do310 4 16.1173 S
INT2V do100 6 13.9536 S
SWEEP do311 5 12.7783 P

Table 1: Loops > 10% of Sequential Time

The S/P markings in Table 1 denote whether the given loop is parallel (P) or serial (S). The
Depth column designates the (interprocedural) nesting level of the given loop, and % Tseq is the
percentage of the sequential execution time for the loop (including nested loops).

As these �gures indicate, many time-consuming outer loops are serial in nature. Our task has
been to determine if additional loop-level parallelism is of importance in these loops.

3.1.1 Results

The implementation of the four techniques discussed above in Sections 2.2, 2.3, 2.4, and 2.5 re-
quired sophisticated synchronization, including the implementation of a non-blocking barrier to
allow structure access pipelining. Two additional transformations were necessary as well: the so-
lution of reductions in parallel and the solution of induction variables with discontinuous closed
forms.

The combination of these six transformations yielded an overall program speedup of 3.63 using
between 10 and 12 processors. Runs were made on a 12-processor SGI Challenge in a real-time
scheduling mode.

3.2 tomcatv

The computationally key loops in tomcatv are delineated in Table 2.
The S/P markings in Table 2 denote whether the given loop is parallel (P) or serial (S). The

Depth column designates the (interprocedural) nesting level of the given loop, and % Tseq is the
percentage of the sequential execution time for the loop (including nested loops). As these �gures
indicate, many of the more time-consuming loops in tomcatv are serial in nature.

6



Subroutine Loop Depth % Tseq S/P
MAIN do140 1 98.4012 S
MAIN do60 2 64.5203 P
MAIN do100 2 12.6117 S
MAIN do120 2 8.67711 S
MAIN do130 2 7.24051 P
MAIN do80 2 5.32165 S

Table 2: Loops > 5% of Sequential Time

3.2.1 Results

The initial solution for parallelizing the reduction operations in do80 was straightforward. However,
the resulting performance was very poor due to false-sharing of reduction variables between threads
running on di�erent processors. A second version solved this problem by making each element in
the expanded reduction variables rxm e and rym e the size of a cacheline2. The performance of this
version was quite good, with a speedup of over 7.2 for the loop, and an overall program speedup of
4.29. Table 3 summarizes these results.

Performance results for loop chaining vs. privatized reductions also appear in Table 3. The
speedup for this technique actually exceeds that achieved for the parallel reductions. This result is
partially due to better cache utilization in the loop-chaining version.

Transformation speedup

Polaris 3.49
Polaris (with do80 reduction in parallel) 4.29
Polaris (with loop chaining transformation) 4.96

Table 3: Tomcatv speedups on 8 processors

4 Conclusions

The results for su2cor indicate that signi�cant additional parallelism beyond doall parallelism is
available. A project is underway to determine if the newly uncovered parallelism can be e�ec-
tively combined with the existing doall parallelism on an architecture which supports multi-level
parallelism.

The results for tomcatv are promising in that the loop chaining technique has proven to increase
overall program speedup by a factor of 1.4. It remains to be investigated how often this pattern can
be e�ectively taken advantage of in Fortran programs.

References

[BDE+96] WilliamBlume, RamonDoallo, Rudolf Eigenmann, John Grout, Jay Hoeinger, Thomas
Lawrence, Jaejin Lee, David Padua, Yunheung Paek, William Pottenger, Lawrence
Rauchwerger, and Peng Tu. Advanced Program Restructuring for High-Performance

2128 bytes on the Challenge

7



Computers with Polaris. Univ. of Illinois at Urbana-Champaign, Center for Supercom-
puting Res. & Dev., January 1996.

[PCMR94] D. Pryor, S. Cuccaro, M. Mascagni, and M. Robinson. Implementation of a Portable
and Reproducible Parallel Pseudorandom Number Generator. IEEE, 1994.

[PE95] Bill Pottenger and Rudolf Eigenmann. Idiom Recognition in the Polaris Parallelizing
Compiler. Proceedings of the 9th ACM International Conference on Supercomputing,

Barcelona, Spain, July 1995.

[Pot94] William Morton Pottenger. Induction Variable Substitution and Reduction Recogni-
tion in the Polaris Parallelizing Compiler. Master's thesis, Univ of Illinois at Urbana-
Champaign, Cntr for Supercomputing Res & Dev, December 1994.

[Tu95] Peng Tu. Automatic Array Privatization and Demand-Driven Symbolic Analysis. PhD
thesis, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev.,
May 1995.

8


