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Abstract

Data dependence analysis has become one of the most important constituents of loop-level
parallelizing compilers. The information gathered from the analysis is needed to determine
both the potential concurrency of loop nests and the legality of loop transformations con-
cerning loop parallelization. The analysis is based on data dependence tests such as the
constant test and the GCD test. Once the analysis is complete, the dependence information
for the input program is stored for later demand. Since this dependence information is stored
in memory, recalculation of the information in following passes is unnecessary, reducing the
whole parallelizing compiler execution time. However because this information often requires
so much memory space, sometimes up to thousands of Mbytes without strict memory man-
agement, it can run out of heap storage, and cause another problem: how do we store the
information e�ciently? Besides memory space, the time to fetch the necessary information is
also another criterion of concern because faster access generally requires more memory space.
In this paper, we design an e�cient method of dealing with data dependence information in
Polaris in terms of memory space and access time. In this method, we use a compromise
between the two criteria to get better performance.

1 Introduction

The main purpose of a loop-level parallelizing compiler is to �nd as many parallelizable loops as possible
because, with more parallel loops, the compiler can performmore time and space e�cient loop scheduling
on the machine. In parallel loops, iterations can be assigned to any available processor without any
constraint on the order of loop execution. The executions of these arbitrary orders do not alter the �nal
output, which is identical to that of a sequential execution(if the discrepancy due to round-o� error of
the hardware is disregarded). This congruency can always be ensured by the attribute that there is no
data ow crossing iterations in parallel loops, that is, any statement of one iteration never uses the value
of a variable that was de�ned by a statement(both are not necessarily distinct) in the previous iteration.

We can identify parallelizable loops with the assistance of data dependence analysis. Each depen-
dence test that is applied in the analysis �rst collects all the static information obtainable such as constant
values, the number of loop iterations, the loop variants and so on, and calls its data dependence decision
routine to determine if a given loop is parallelizable. Except for special restricted cases, most of these
tests give only necessary conditions for dependence. Since the tests can not give su�cient conditions, the
declared dependencies can not always be proved, that is, each test can prove the dependence of speci�c
con�ned cases only. Because of the lack of an exact test to handle every case, we usually need to apply
more than one dependence test. Some tests are much more powerful than others, but also take much
more time to run. The constant, the single-subscript GCD and the single-subscript Banerjee test[?][?]
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are known as the fastest tests, running in linear time. On the other hand, there are exponential time
algorithms, such as the Omega test[?] and the range test[?]. They are potentially extremely expensive
tests but they have been shown to run in moderate time range on the average because they mostly
handle cases with simple and regular access patterns. These complex tests usually cover broader cases.
There also exist several other dependence tests[?][?][?] that have di�erent classes of time complexity.
The prominent reason that all these tests fail is that there are unknown values at compile time. So, if
all these static tests fail because of unknown values, dynamic dependence tests[?] sould be the last test
we can resort to at the cost of run time overhead. It is still undecided whether or not these run time
tests can o�set their cost with signi�cant gain from successful parallelization.

An optimal sequence of the selected dependence tests as not yet known, but by rules of thumb fast
and simple tests generally should run before the complex ones. In Polaris[?], a parallelizing compiler
currently being developed by our group, we apply static data dependence tests in the order of simple
Delta test[?], constant test, GCD test, Banerjee test and range test. However, this order is subject to
vary in the future.

During the data dependence analysis, two statements are chosen and are given as input to the
dependence tests. After going though all the tests, the dependence between the statements is determined.
Once the dependence is assumed or proved, more speci�c information about the dependence is computed,
including the dependence direction and the dependence type. Before performing the dependence test
on another pair of statements, we store the newly generated information for later demand, and thus
after the analysis is completed, the entire dependence information for the input program is stored into
the memory. The problem with storing the whole information is that this information often requires
so much memory space, sometimes up to thousands of Mbytes without careful memory management,
that it runs out of heap storage. In our system, we bit-pack data dependence information to maximize
memory utilization. When the information is stored into memory, it is encrypted to a series of bits and
packed in memory.

The problem with the bit-packed storage management is that the time to retrieve and to update
the encrypted information takes too long. So far, we have not been concerned with the compilation
time but only application running time. But, as loop transformation techniques grow in number and
in complexity, the compile time becomes more important(We sometimes need several hours to �nish
compilation). In order to curtail this time delay, we take advantage of the 2-level hierarchy structure
for storing dependence information : active and inactive. If some information was not recently accessed
or if it is not being used actively, it is called inactive. Active information is any informtion that is
not inactive. Inactive information is stored in bit-packed storage e�cient memory blocks and active
information is unpacked copy of the inactive information in the form of linked lists. Unlike the inactive
structure, the active structure obviously uses much more space to allocate pointers but provides fast
retrieval and update time. This structure is based on our observation that compared to the size of the
entire dependence information, only a small portion of the information is likely to be retrieved frequently
for a short period of time. So, our hierarchy structure is grounded on a concept similar to that of memory
hierarchy: locality.

In Section ??, we briey take a look at the Polaris project. In Section ??, the basic idea of data
dependence and its abstract representation is illustrated, and its physical representation in the form of
hierarchy structure is also presented. Finally, we discuss the user interface through which the user can
access the data dependence information in Section ??.

2 Polaris

Since most of current parallelizing compilers have so far focused on several speci�c patterns of codes to
parallelize them, it is not surprising to know that they succeed on small kernels but often fail on large
applications. Polaris is a new type of parallelizing compiler that will overcome these limitations. The
basic idea here is that such a large application is to be automatically parallelized by current compilers
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with a few new techniques. The new techniques that have been included in Polaris are inlining, array
privatization[?], symbolic dependence analysis, induction and reduction recognition and elimination,
and run-time dependence analysis. The performance of Polaris has been tested on Perfect Benchmarks
program suite[?] and quite promising so far.

Polaris has a powerful basic infrastructure, called Internal Representation[?], for manipulating For-
tran77 codes on which all those new techniques are based. IR consists of several functional layers in
which the lower layers provides the higher layers with a high-level abstract view of its functionality, hid-
ing all the complex details of its operations. At the lowest layer, IR has the form of an abstract syntax
tree that contains the necessary information for a given program, and going up to the higher layers, it
adds more sophisticated and higher-level functionality to provide methods for program transformations.
With the support of the object oriented language C++, IR provides structural exibility and powerful
data-abstraction mechanism so that the development time for new optimization techniques inside Po-
laris. In Polaris, the C++ class, ProgramUnit, contains the whole information for a subroutine or a
function such as a statement list, a symbol table and so on. Each table or list inside the ProgramUnit
class also expressed in the form of a C++ class object. For example, StmtList is for a statement list,
Statement for a statement and Expression for an expression. A complex expression is recursively
de�ned by its subexpressions and thus Its structure resembles a tree of the Expression class objects.

Since Polaris has succeeded in gaining the major performance achievement on the Perfect Bench-
marks, we will move on to some remaining issues: the representativeness of our program suite and the
performance on real machines. We are now working on expanding the set of benchmarks to cover broader
range of the patterns of real programs. We also works on the postpasses of Polaris that generate from
the Polaris output the real codes executable on real machines such as SGI power challenge, Convex C3
and so on. When we deal with real performance, the parallelization is not only issue anymore, but other
optimization issues, the locality on parallel execution for instance, are also to be considered. Currently,
Polaris output is suited to global shared memory machines.

3 Data Dependence Graph and DDgraph

3.1 Data Dependence Graph

If a statement S1 uses a value of the variable de�ned by other statement S2, S1 is data-dependent on
S2. We can represent these dependence relations between statements graphically: a data dependence

graph, where nodes of the graph usually stand for statements in the program and directed arcs stand
for dependence relations. In the graph, we can also represent additional information belonging to the
dependence relations, such as the types, and the directions or the distances[?][?]. Here is a simple
example of data dependence graph in Figure ??. The plain arc, the arc with a small segment of line
on, and the arc with an small circle on represent ow, anti, and output dependence, respectively. More
details about these notions and the use of data dependence graphs are discussed in [?].

3.2 DDgraph

The granularity of a data dependence graph may be varied. The nodes might represent either larger
elements or smaller ones. In Figure ??, the nodes correspond to statements, and each arc represents the
dependence between them. But, this information is sometimes so coarse that we can not handle e�ectively
the dependence relations in the program. In that �gure, the source and the target of ow dependence
between S1 and S2, and those of the anti dependence between them are di�erent expressions, but we
can't tell the di�erence from the graph. In our scheme, a node stands for an expression. We believe
this expression-level dependence graph is powerful and detail enough to provide most of dependence
information that the users want to get for code optimization.

Now, a new problem has risen: how can we a�ord the size of a dependence graph? One assignment
statement contains at least 2 expressions, and if the expressions consist of several subexpressions, the
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S1: X = Y + Z
S2: X = X / Z
S3: Y = Z * 4

S3

S1

S2

Figure 1: Data Dependence Graph

total number of expressions in a statement might reach up to more than 10. In the last �gure, S1 has
4 expressions, that is, X, Y+2 and its subexpressions Y and Z. The characteristics of recursiveness of
expressions enable a data dependence graph to become bigger. There are also several loop transforma-
tion techniques that makes the graph denser and bigger. For example, loop normalization[?] mostly
transforms subscript functions more complex, and inlining[?] increases the size of a program primarily
by adding to that of the loops. So, if we just simply assign a pointer variable to each arc and assign
a character or an integer to each �eld of information, the dependence information for only one state-
ment will even require more than 100 bytes on average. The straightforward way to reduce the memory
requirement of a dependence graph is to tighten up the graph into a series of bits. But the reckless
condensing raises other problems; long latency time to access and the functional expandability. Under
this condensed structure, it takes too long to insert, delete and even retrieve some part of the graph.
And it is also hard to implement new high-level functions or operations upon the structure. So, while
still keeping the graph size small, we need a method which supports a fast access to the graph and the
future expandability of graph access operations.

3.3 Arcs in memory

In order to address this problem, we propose the 2-level hierarchy storage structure for a dependence
graph. At the lower layer, arcs are stored in bit-packed storage e�cient memory blocks that are intelli-
gently and e�ciently managed. The upper layer actually contains the unfolded version of the arcs stored
at the lower layer. It usually keeps only a small number of arcs which are currently accessed in a active
manner. The upper layer provides an interface between the lower layer and the users(the lower layer is
invisible to them). The user does not have to worry about all the chores concerning low-level memory
management since this hierarchy structure handles them in a uniform and clean way, including packing
and unpacking of dependence arcs. The user can, therefore, take a high-level and abstract view of the
dependence graph without losing performance in terms of space and time. This hierarchy structure is
based on our observation that compared to the size of the whole dependence information, only a small
portion of the information is likely to be accessed frequently for a short period of time. Since data
dependence information is clustered by a loop-nest basis and loop transformation is performed loop-nest
by loop-nest, it is mostly likely for the user to access a small part of arcs in a dependence graph for the
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time being.
A C++ class, DDgraph, take control of all these data and the access operations against them. One

DDgraph class object is assigned to the ProgramUnit class in Polaris, and thus each DDgraph contains
data dependence information for the whole subroutine or function. The arcs, called inactive, are stored
in bit-packed memory blocks, Arc type. Every inactive arc comprises the following �elds: a pointer
to the target statement of this arc, a pointer to target expression, a pointer to the next Arc type and
a data �eld. The data �eld is a series of several dependence direction vectors, involving the following
�elds:

� Active(1 bit) - status of this arc, active/inactive.

� Dependence Decision(1 bit) - assumed/proved dependence.

� Arc Direction(1 bit) - normal/reverse.

� Dependence Type(2 bits) - ow/anti/input/output dependence.

� Direction Vectors(3 bits a direction) - <;>;=; 6=;�;�, *, delimiter.

The Arc types with the same source expression are singly linked all together and the source expres-
sion points to the head of the list. If two arcs has the same pair of expressions but with the di�erent
arc direction, that is, the source of this arc is the target of that arc, then they can be merged into a
Arc type list with an additional bit, Arc Direction. The DDgraph class prevents the user from directly
accessing these inactive arcs. All the detail about the operations on these is hidden inside the DDgraph
class.There already exist some compilers that try to optimize the memory usage of the dependence graph
by packing the direction vectors invariably into one 32-bit word. The drawback of this structure is that
we can only analyze loops nested at most 10 deep. As another problem with this, it must always allocate
a word to store a direction vector even if we only need 3 bits for loops nested 1 deep. These problems
are signi�cant because in real application programs most of the loops are nested less than 3 to 4 and
occasionally nested more than 10 deep. Since the Arc type is not con�ned in �xed size, it always �ts
to optimal size without wasting memory space and also without any size restrictions. The overhead of
expanding and shrinking the Arc Type is e�ectively reduced by the upper layer structure that will be
discussed below.

3.4 Active Arcs

.....direction

direction

.....

ElementDV list

src-expr

next-arcprev-arc

src-stmt tgt-stmt

tgt-expr

Original copy

of DV_field_list

Common data:

references valid dep. deci from_stmt to_stmt from_expr to_expr dep type DV next ..... ..........

Working_DV_field_list

this-arc

Figure 2: Active Arc structure
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Unlike the inactive arcs, the purpose of the active arc is di�erent; a fast and exible access. For this
purpose, we provide another class, Active Arc. In Figure ??, the data structure of Active Arc is shown.
When the user tries to access some arc and the arc is currently inactive, the DDgraph unfolds the inactive
arc and creates a new Active Arc object to copy the unfolded information. The newly created Active Arc
is inserted into a Active Arc list in the DDgraph. Each Active Arc initially contains two copies of the
corresponding Arc type, that is, Original DV �eld list and Working DV �eld list. One is for the
original archive, and the other is for the user access. If the user �nishes all the operations on the arc
and thus the active arc is no longer needed, then both the copies are compared. If both are di�erent
because the user changes the active arc information somewhere, then the original inactive arc is updated
by the contents of the Working DV �eld list. This Active Arc structure is similar to that of a cache in
the memory hierarchy system. The Active Arc list in the DDgraph corresponds to a cache itself, and
each Active Arc corresponds to a cache line. We do not yet quantify the performance improvement due
to this Active Arc structure, but we speculate we reduce the overall time to access dependence graphs
with this. The overall structure about the DDgraph and the other classes in Polaris is illustrated in
Figure ??.

arcs

ProgramUnit

DDgraphStmtList

stmt

stmt

stmt

Interface

User

method1

methodN

Inactive

arcs
Active

Figure 3: Overall structure of DDgraph

4 Assistance tools for DDgraph

4.1 DDiterator for DDgraph

Even though the Active Arc class supports easier access, it still contains the complicated and physically
detailed �elds such as a Valid bit and a Reference counter. The user needs furthermore high-level view of
a dependence graph. We have another class, DDiterator, to assuage this requirement. The DDiterator
does not only provide high-level abstract operations, but also has a lot of exibility about which subset
of the arcs the user wants to look at, along with not requiring much overhead. The subset can be a pair
set of arcs of lists of statements in a program, expressions or their combination. Each DDiterator object
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represents one subset and methods to access the dependence information for the subset. since the order
in which the subset of the arcs is iterated over is automatically decided by the DDiterator, the user is
simply requred to ask the direction of movements, that is, move to the previous or to the next. The
major operations the user can use are as follows:

� modify(new arc) - substitute new arc for the current arc.

� del() - delete the current arc.

� grab() - delete the current arc and return the pointer to it.

� next(), prev() - move to the previous/next arc of the current arc.

� reset(), set to last() - set the current arc to the �rst/the last arc.

� valid(), end(), current valid(), current invalid() - check the validity of the current arc.

� current() - return a reference to the current arc.

4.2 Merging direction vectors

To abate excessive memory requisite for a data dependence graph, we use the two- level storage structure
as described above, but we found more storage optimization is possible for redundant direction informa-
tion. The DDgraph itself does not generate its arcs and other information, but instead in behalf of the
user e�ciently manage them once the user feed them into the DDgraph. Since the user might collect
dependence information in several places, the directions collected by the user often contain redundant
directions which can be merged into more general ones, resulting in memory waste. With a few number
of directions, the merging job is simple and straightforward, but with a larger number of directions, the
merging is not simple anymore and even the result can not be guaranteed to be correct. So, we provide
a function mergeDVs that is called by the user with direction vectorss as input and that returns the
merged and possibly less number of directions. The naive algorithm for merging the arbitrary number of
directions has exponential time bound, but mergeDVs is a polynomial time algorithm. This polynomial
time is enabled by bottom-up approach to derive more general directions from the subdirections. A
simple example of merging direction vectors is illustrated in Figure ??.

(<,*,*)

(<,>,*) (=,<,*) (<,<=,=) (<,=,*) (<,<=,<>) (<=,*,=)

(<,<=,*)

merged directions

absorbed

merged

Figure 4: Direction merging
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5 Future Direction

We still have room for improvement of the DDgraph and its functionality. First, we need other types
of searching tools on the top of the DDiterator. For instance, currently, if the user wants to access the
dependence information of some subset of the DDgraph, he must name all the statements belonging to
the subset. Since we quite often perform a loop-base search, it is useful and convenient to provide some
interface by which the user designates the outermost loop instead of enumerating all the statements inside
of it. Second, We need distance information. Distance information obviously enables us to drive more
aggressive and accurate parallelization. But, since the storage schemes for both types of information(a
3-bit pattern for a direction and an integer for a direction) are di�erent, it is questionable how well
the storage structure is organized to make both coexist e�ciently in terms of access time and space
usage. The DDgraph representation transparently allows you to intermix distance vectors with direction
vectors. A bit in the inactive arc can tell us which is stored.

We do not yet compare the performance of our scheme to other ones such as the one with �xed
sized inactive arcs and the one without active arc structure. We will evaluate how much space is needed
and how fast the time is for every scheme to characterize data dependence graph usage in parallelizing
compilers.

6 Conclusion

Data dependence information represented by a data dependence graph is essential through all the loop
transformation passes in a parallelizing compiler. As we go through the passes, the requirement for the
necessary information keeps changing pass by pass, and also the information must often be re�ned by
the earlier passes for the use of the following ones. To support this, we need to store a data dependence
graph in memory instead of generating it each time we need. This helps the compiler run faster. But, the
new problems that arise here are how to organize the graph e�ciently in memory, because most of the
application programs need very big dependence graphs. The simple-minded storage scheme might save
us signi�cant space, but this is not the solution either. We need fast and feasible access to the stored
information since the graph would be read and written back frequently by the user. So, besides a static
structure which manage the whole graph in the very compact form, we also need a dynamic structure
which provids fast and easy interface to the static structure. We here proposed two-level hierarchy
storage scheme for this purpose. Since the dynamic structure is always kept as small as possible, we do
not need much more memory for the additional structure. Dynamic structure guarantees the fast and
easy access by using small-sized fully linked list structure, and asked by caching the dynamic(or active)
arcs recently used, we can quickly respond to the reuse request for them which is most likely to occur
by locality.

The usage of data dependence graph is broad. Loop vectorization, loop parallelization and loop
distribution need this for checking < or = dependence directions in a loop. Loop interchange also
capitalizes upon this to see if there is any dependence (<;>) or (>;<) in a loop. The DDgraph also
generates input dependence that is not necessary in most of the loop transformation but very useful for
locality enhancement techniques. In this case, the distance information is more useful than the direction
only. These broad and various requirements for the data dependence graph account for the need for
e�cient parallelizing compilers.
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