
COMPILER TECHNIQUES FOR MATLAB PROGRAMS

BY

LUIZ ANTÔNIO DE ROSE

Bach., Universidade de Bras��lia, 1978
M.Stat., Universidade de Bras��lia, 1982

M.S., University of Illinois at Urbana-Champaign, 1992

THESIS

Submitted in partial full�lment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois

c Copyright by Luiz Antônio De Rose, 1996

COMPILER TECHNIQUES FOR MATLAB PROGRAMS

Luiz Antônio De Rose, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1996
David Padua, Advisor

This thesis addresses the issues of translating an interactive array language, such as

MATLAB1, into a traditional compiled language, such as Fortran, in order to achieve better

performance. It describes the main techniques, developed for our MATLAB-to-Fortran 90

compiler, to extract information from the high-level semantics of MATLAB for the generation

of high-performance code. To perform the translation, an inference mechanism is necessary

to generate the declarations for a typed language, to select the appropriate functions and

operations, and to allocate the necessary space. The inference mechanism developed for

this MATLAB-to-Fortran 90 compiler combines static and dynamic inference methods for

intrinsic type, shape, rank, and structural inference. This inference is enhanced with value

propagation and symbolic-dimension propagation analyses. The experimental results, which

compare compiled generated programs with the corresponding interpreted MATLAB execu-

tion, show that the compiler can generate code that performs more than 1000 times faster

than MATLAB on an SGI Power Challenge, and as fast as the corresponding hand-written

Fortran 90 programs. When compared with the performance of C-MEX �les generated by

the MathWorks MATLAB compiler, we observed that, for our tests, the Fortran 90 pro-

grams ran faster than the corresponding C-MEX programs on an SGI Power Challenge and

on a Sun SPARCstation 10. This better performance is mainly attributed to our enhanced

inference mechanism.

1MATLAB is a trademark of The MathWorks, Inc.

iii

To my wife, Jane

and my children: Pedro, L��gia, and Luiza.

iv

Acknowledgments

I am indebted with the many people that helped me during all these years. First of all I

would like to express my gratitude for my advisor, Professor David Padua. His support,

guidance, assistance, and encouragement were a major factor during the development of this

work. I am also grateful to Professors Gallivan and Gallopoulos, for their insights in many

discussions about the FALCON project. Also, many thanks to the other members of my

prelim and �nal committees, Professors Polychronopoulos, Saied, and Van Dooren; their

suggestions about my research were very helpful.

I was very fortunate in having Bret Marsolf as my o�cemate for most of my years as a

graduate student. I am not sure if I can express here how thankful I am for his friendship

and help during all these years. I am also indebted to Jos�e Moreira for his friendship,

encouragement, and all the technical discussions and suggestions.

I would like to thank Jairo, Moura, Luiz Antônio, and other friends from Brazil that

encouraged and helped me to come to Illinois for my graduate studies. Many thanks also

to Eduardo, Marielza, Creto, Vânia, Joe, Flor, Carlito, Vera, and all other friends from the

Brazilian community here in Urbana-Champaign, for their support and encouragement on

several occasions during all these years.

I wish to thank all the CSRD sta�, especially Sheila for all the paper and thesis reviews,

Donna for her secretarial support, and Bob, Wayne, and Gabriel, for their hardware and soft-

ware support. Thanks to Mei-Qin Chen, Randall Bramley, and Jung Ah Lee, for providing

MATLAB programs that were very helpful for debugging and evaluating the performance

of the compiler, Bill Pottenger for his tips on how to use and measure performance on the

v

SGI, and Carlos Velez for writing the inliner and the untripletizer. I would also like to thank

Alan Durham and Henry Neeman for all those long discussions in our qual study group, and

all my other fellow graduate students and o�cemates for their friendship, help, and support

during all my years as a graduate student.

I am very thankful to David and Ruth Krehbiel for all the family support that they

provided us. This support was very important for me and my family. Also, thanks to all

our friend from CERL and TCBC. They helped my wife and myself to feel at home here in

Urbana-Champaign.

Thanks to my parents and to my wife's parents for their continuous support during all

these years in graduate school, and most important, I would like to express my deepest

gratitude to four special people in my life, my wife Jane, and my children Pedro, L��gia, and

Luiza. My wife for understanding me and giving me encouragement and support, especially

during the di�cult times, and my children for adding joy and happiness to my life.

Thanks to the National Center for Supercomputing Applications for providing some of the

computational environment. Initially my doctoral studies were supported by the Brazilian

National Council of Research and Development (CNPq). This work was supported in part

by the CSRD A�liates under grant from the U.S. National Security Agency, and by Army

contract DABT63-92-C-0033. This work is not necessarily representative of the positions or

policies of the Army or the Government.

vi

Contents

Chapter

1 INTRODUCTION : 1

1.1 High-Level Approach for Software Development for Scienti�c Computation : 2

1.2 Issues on the Utilization of Interactive Array Languages : : : : : : : : : : : : 2

1.3 Compiling MATLAB : 4

1.4 Problem Overview and Thesis Outline : 4

2 RELATED WORK : 7

2.1 Relevant Type Inference Approaches : 8

2.2 Compilation of APL : 9

2.3 Compilation of MATLAB and MATLAB-like Languages : : : : : : : : : : : 10

3 OVERALL STRATEGY : 12

3.1 Restrictions to the MATLAB Language : 12

3.2 Phases of the MATLAB Compiler : 13

3.2.1 Structure of a MATLAB Program : 13

3.2.2 Scanner, Parser, and the Symbol Table Generation : : : : : : : : : : 15

3.2.3 Inlining of M-�les : 16

3.2.4 The Intermediate Representation : 17

3.2.5 Static Analysis : 20

3.2.6 Dynamic Phase : 24

vii

3.2.7 Code Generator : 31

4 INTERNAL REPRESENTATION : 32

4.1 Distinguishing Variables from Functions in MATLAB : : : : : : : : : : : : : 32

4.2 Static Single Assignment : 35

4.2.1 Extensions to the Symbol Table for the SSA Representation : : : : : 35

4.2.2 SSA Representation for Scalar and Full Array Assignments : : : : : : 36

4.2.3 Extension of the SSA Representation to Support Indexed Array As-

signments : 37

5 THE STATIC INFERENCE MECHANISM : 40

5.1 Intrinsic Type Inference : 40

5.1.1 Propagation of Intrinsic Type Information Through ' Functions : : : 42

5.1.2 Propagation of Intrinsic Type Information Through � Functions : : : 44

5.2 Value Propagation : 46

5.3 Shape and Rank Inference : 49

5.3.1 Propagation of Rank and Shape Information Through Both � and '

Functions : 51

5.3.2 Propagation of Rank and Shape Information Through � Functions : : 52

5.4 Functions : 54

5.5 Structural Inference : 55

6 THE DYNAMIC INFERENCE MECHANISM : 61

6.1 Dynamic De�nition of Intrinsic Types : 61

6.2 Dynamic Shape Inference : 64

6.2.1 Symbolic Dimension Propagation : 67

6.2.2 Coverage Analysis : 72

6.2.3 Placement of Dynamic Allocation : 73

viii

7 EXPERIMENTAL RESULTS : 75

7.1 Description of the Test Programs : 75

7.2 Evaluation of the Overall Compiler E�ectiveness : : : : : : : : : : : : : : : : 79

7.2.1 Comparison of Compiled Fortran 90 Programs to MATLAB : : : : : 83

7.2.2 Comparison of Compiler Generated Programs with the Hand-written

Fortran 90 Programs : 83

7.2.3 Comparison with the MathWorks MATLAB Compiler : : : : : : : : : 85

7.3 Evaluation of the Inference Phases : 87

7.4 Scalability Analysis : 91

7.4.1 Analysis of Library-intensive Programs : : : : : : : : : : : : : : : : : 91

7.4.2 Analysis of Elementary-operation Intensive Programs : : : : : : : : : 95

7.4.3 Analysis of Memory-intensive Programs : : : : : : : : : : : : : : : : : 95

8 CONCLUSIONS AND FUTURE DIRECTIONS : 98

8.1 Future Work : 99

BIBLIOGRAPHY : 101

VITA : 107

ix

List of Tables

5.1 Resulting type for the comparison of � or ' functions parameters. : : : : : : 42

5.2 Resulting type for � functions. : 45

5.3 Exact rank and shape inference for the multiplication operator. : : : : : : : 50

5.4 Shape inference for a conformable operator. : : : : : : : : : : : : : : : : : : 51

5.5 Backward inference for a conformable operator. : : : : : : : : : : : : : : : : 51

5.6 Resulting size for the comparison of one dimension of � or ' functions param-

eters. : 52

5.7 Resulting size for the comparison of one dimension of � functions. : : : : : : 53

7.1 Test programs. : 76

7.2 Execution times (in seconds) running on an SGI Power Challenge. : : : : : : 81

7.3 Execution times (in seconds) running on a Sun SPARCstation 10. : : : : : : 81

7.4 Execution times in seconds when inference phases were deactivated. : : : : : 90

x

List of Figures

3.1 Phases of the MATLAB compiler. : 14

3.2 M-�le to compute the mean of a vector using (a) script and (b) function. : : 15

3.3 MATLAB code to compute the average of a vector (a) and its respective SSA

representation (b). : 18

3.4 Dynamic code for X=A�B+C�D, when A and B have unknown type. : : : : : 26

3.5 MATLAB code segment to compute conjugate gradient. : : : : : : : : : : : : 27

3.6 Pseudo-code example where the intrinsic type of the variable changes between

assignments. : 28

3.7 Fortran 90 code for multiple assignments with di�erent intrinsic types to the

same variable. : 28

3.8 Example of shadow variables for shape. : 29

3.9 Fortran 90 code for c=a�b when rank and shape of a and b are unknown. : 30

4.1 MATLAB pseudo-code segment in which the same expression has di�erent

semantics. : 32

4.2 Two MATLAB code segments to compute the cumulative sum of a vector. : 33

4.3 State diagram for di�erentiation between functions and variables. : : : : : : 35

4.4 Symbol table for the SSA representation. : 36

4.5 Example of a variable use and de�nition not in lexicographic order. : : : : : 38

4.6 MATLAB code with indexed array assignment. : : : : : : : : : : : : : : : : 39

4.7 SSA representation for indexed array assignments. : : : : : : : : : : : : : : : 39

5.1 Intrinsic type lattice for ' functions. : 44

xi

5.2 Variable initialization using a lower intrinsic type. : : : : : : : : : : : : : : : 46

5.3 Lattice for static shape inference. : 52

5.4 Lattice for static shape inference. : 53

5.5 MATLAB pseudo-code segment in which there is a full use of variable between

its previous de�nition and an � function. : 54

5.6 Indexed use to solve the array growth problem. : : : : : : : : : : : : : : : : 54

5.7 MATLAB code segment for the solution of a linear system Ax = b. : : : : : 56

5.8 MATLAB function to solve the linear system Ax=b, using the Conjugate

Gradient method with preconditioning. : 57

5.9 Fortran 90 code for c = a � b when rank and shape of a and b are unknown,

but a is known to be a square matrix. : 60

6.1 Indexed assignment requiring intrinsic type change. : : : : : : : : : : : : : : 62

6.2 Update of the complex instance of the variable and corresponding shadow

value. : 63

6.3 SSA representation for the pseudo-code requiring intrinsic type change. : : : 63

6.4 Dynamic test for indexed assignments. : 65

6.5 MATLAB code segment for the generation of a Poisson matrix. : : : : : : : 65

6.6 Fortran 90 allocation test for the MATLAB expression P(k,k)=4. : : : : : : 66

6.7 Extension of a MATLAB code to generate a Poisson matrix. : : : : : : : : : 69

7.1 MATLAB code segment for the Incomplete Cholesky Factorization (IC). : : 80

7.2 Speedup of compiled programs over MATLAB, running on the SGI Power

Challenge. : 82

7.3 Speedup of compiled programs over MATLAB, running on the Sun SPARC-

station 10. : 82

7.4 Speedup of FALCON's compiler over MCC on a SPARCstation 10. : : : : : 86

7.5 Speedup of FALCON's compiler over MCC on an SGI Power Challenge. : : : 86

7.6 Comparison of the inference phases. : 90

xii

7.7 CG speedups on the SGI Power Challenge when increasing the number of

iterations. : 91

7.8 CG Execution time on the SGI Power Challenge with �xed problem size. : : 92

7.9 CG speedups on the SGI Power Challenge when varying the problem size. : : 93

7.10 Mops ratios for the CG program running on the SGI Power Challenge. : : : 93

7.11 FD speedup on the SGI Power Challenge varying the grid size. : : : : : : : : 95

7.12 AQ speedup on the SGI Power Challenge when varying the required number

of subintervals. : 97

7.13 AQ speedup on the Sun SPARCstation 10 when varying the required number

of subintervals. : 97

xiii

Chapter 1

INTRODUCTION

The development of software for scienti�c computation on high-performance computers is a

very di�cult and time-consuming task, requiring not only an understanding of the algorithms

to be implemented, but also a detailed knowledge of the target machine and the software

environment. Several approaches to facilitate the development and maintenance of programs

for high-performance computers are currently under study. One approach is the automatic

translation of conventional programming languages, notably Fortran, into parallel form. Po-

laris [BEF+94] and Parafrase-2 [PGH+89], developed at Illinois, and SUIF [AALL93], a

compiler developed at Stanford, are examples of this �rst approach. Another approach is

to extend conventional languages with simple annotations and parallel constructs. This sec-

ond approach also involves the development of translation techniques for the extensions.

Examples include High Performance Fortran [Hig93] and pC++ [BBG+93]. A third ap-

proach is to accept a very high-level description of the mathematical problem to be solved

and automatically compute the solution in parallel. Examples of this approach are //ELL-

PACK [HRC+90], developed at Purdue, ALPAL [Coo88], developed at Lawrence Livermore

Laboratories, and EXTENT [DGK+94], developed at Ohio State University.

We addressed the problem of development of software for scienti�c computation on high-

performance computers by designing FALCON [DGG+95b, DGG+95a], a development envi-

ronment that combines the three approaches described above.

1

1.1 High-Level Approach for Software Development

for Scienti�c Computation

We believe that the development process should use a very high-level language that should

be as close as possible to the mathematical description of the problem, albeit in the form of

a simple and easy-to-use procedural language. The program written in this very high-level

language is automatically (or semi-automatically) translated into a conventional program-

ming language, such as Fortran, and, with the help of a parallelizer compiler, the program

is �nally translated into parallel form. The use of a very high-level language facilitates the

development process by enhancing the ease of programming and portability of applications.

Furthermore, the high-level semantics of the language can be exploited for the automatic

generation of directives and assertions to help the parallelizer compiler.

FALCON includes capabilities for interactive and automatic transformations at both the

operation-level and the function- or algorithmic-level. This environment supports the devel-

opment of high-performance numerical programs and libraries by combining the transforma-

tion and analysis techniques used in restructuring compilers with the algebraic techniques

used by developers to express and manipulate their algorithms in an intuitively useful man-

ner [DGG+94]. The development process using FALCON starts with a simple prototype

of the algorithm and then continues with a sequence of automatic and interactive transfor-

mations until an e�ective program or routine is obtained. The prototype and intermediate

versions of the code are represented in an interactive array language.

1.2 Issues on the Utilization of Interactive Array Lan-

guages

Interactive array languages, such as APL [GR84, Pom83], and MATLAB [Mat92a] are pow-

erful programming tools for the development of programs for numerical computation. Many

computational scientists consider it easier to prototype algorithms and applications using

2

array languages instead of conventional languages such as Fortran and C. One reason is

the interactive nature of the language, which facilitates debugging and analysis. A second

reason is that interactive array languages are usually contained within problem-solving en-

vironments which include easy-to-use facilities for displaying results both graphically and in

tabular form [GHR94]. Third, in these languages it is not necessary to specify the dimen-

sion, rank, or intrinsic type of elements of arrays. While some researchers may consider that

lack of typing increases the probability of error, in practice programmers �nd that this is

a convenient feature. Finally, these languages also have an extensive set of functions and

higher-level operators, such as array and matrix addition, multiplication, division, matrix

transpose, and vector reductions, that facilitate the development of scienti�c programs.

The downside is that interactive array languages are implemented with interpreters and,

therefore, their execution is sometimes ine�cient. The interpreter spends its time reading

and parsing the program, determining the intrinsic type of the operations, dynamically

allocating storage for the resulting variables, and performing the operations. In fact, a

large fraction of the interpreter's execution time is wasted doing work that could be done

statically by a compiler. For example, the compiler could determine the intrinsic type of

elements and the dimensions and shape of many operands in the program by doing global

ow analysis. In this way, the execution could be made more e�cient by eliminating the

need for some or all of the run-time bookkeeping operations. A study of the e�ectiveness

of this type of approach on APL programs is presented in [Bud88]. When the bulk of the

computations is done by the high-level array functions, the ine�ciency of the interpreter

is less of a problem. This is because these high-level functions are not interpreted and

the bookkeeping operations need to be performed only when the function is invoked and/or

returns. However, for some applications and algorithms, such functions are not su�cient and

the program needs to execute a signi�cant number of loops and scalar operations. In some

experiments we have conducted [DPar], it was observed that interpreting programs executing

mainly loops and scalar operations could be up to three orders of magnitude slower than

3

executing their compiled versions.

1.3 Compiling MATLAB

One important aspect of FALCON's design was the selection of its input language. In order

to shorten the development process by having immediate access to existing support routines,

and to take advantage of existing powerful graphics and other I/O facilities, we chose to use

an existing array language as the source language for the FALCON system. MATLAB was

chosen over other interactive array languages, such as APL, for several reasons, including its

popularity and its simple syntax with exclusive use of structured constructs.

Fortran 90 is the natural choice for output language because of its many features that

facilitate the compilation process, especially for vector computation. Examples of these

constructions are array operations, such as addition and multiplication, that have the same

semantics in Fortran 90, and some vector reductions and matrix operations, such as matrix

multiplication and transposition, that can be directly translated into Fortran 90 functions.

However, the translation process is not always straightforward; there are several idiosyncratic

features in MATLAB that cannot be converted directly into Fortran 90. Examples of these

features are the operators \=" and \n" that are used for division of matrices; the overload of

operators, such as \�", that have di�erent semantics depending on the rank of the variables

being operated, and, most importantly, the lack of intrinsic type de�nitions and speci�cation

of dimensions of variables, and the possibility that any of these variable properties could

change during run-time.

1.4 Problem Overview and Thesis Outline

This thesis addresses the issues of compiling an interactive array language. It describes

the main techniques developed for the compilation of MATLAB programs. Some of the

goals of this MATLAB compiler are: the e�cient extraction of information from the high-

level semantics of MATLAB; the generation of high-performance code for serial and parallel

4

architectures; and the use of the semantic information in order to facilitate the work of a

parallelizing compiler.

As described previously, due to its interactive nature, its extensive set of functions and

higher-level operators, and its lack of requirements for speci�cation of intrinsic type and

dimensions of variables, MATLAB is a very powerful programming tool for prototyping algo-

rithms and applications. This lack of \declarations", however, is one of the major challenges

for the translation. The fact that the language is not typed simpli�es the programmer's job

because every function and operator is polymorphic and, therefore, type casting or function

cloning to accept di�erent input and output types is not necessary.

Consider, for example, the simple computation of a square root function (
p
k). It may

result in an integer, real, or complex output, depending on the value of k. In MAT-

LAB, however, the user does not need to be concerned about the intrinsic type of the input

variable to compute this function; furthermore, the same statement works for any variable,

independent of its intrinsic type, number of dimensions (rank), or size of each dimension

(shape). Moreover, the intrinsic type, rank, and shape of the output variable are not impor-

tant for the correct execution of the program. On the other hand, for a typed language such

as Fortran and C, the user is required to know these properties for all the variables in order

to select the correct method to compute the square root. Therefore, an inference mechanism

is necessary to generate the declarations for a typed language.

The inference mechanism developed for our MATLAB compiler combines static and dy-

namic inference methods, and is enhanced with symbolic and value propagation analyses.

The goal of our inference system is to determine in a MATLAB program the following vari-

able properties:

intrinsic type: (e.g, complex or real);

rank: (e.g., vector, matrix, scalar);

shape: (i.e., size of each dimension); and

5

structure: (e.g., upper triangular, diagonal, square matrix).

This thesis is organized as follows: related work is discussed in Chapter 2; an overall

strategy is presented in Chapter 3; the internal representation of the compiler is presented

in Chapter 4; the algorithms for the static inference mechanism are discussed in Chapter 5;

the dynamic phase and its algorithms are discussed in Chapter 6; experimental results are

presented in Chapter 7; and, �nally, our conclusions are presented in Chapter 8.

6

Chapter 2

RELATED WORK

There are many examples of typeless programming languages, including APL, MATLAB,

ML [GMW79], Haskell [HWA+88], Lisp [MAE+65], and Smalltalk [GR83]. These languages

can be divided in two classes: the statically typed languages (e.g., ML and Haskell) and the

dynamically typed languages (e.g., Lisp, Smalltalk, APL, and MATLAB).

Statically typed languages include type constraints as part of their language de�nition.

Hence, type inference is necessary to ensure that these type constraints are satis�ed. These

type constraints allow compilers to deduce most of the type information, thereby making

run-time type-checking unnecessary. For cases in which the type-checker cannot deduce

the type of a valid expression, the user must provide the type information. Normally in

these languages, the type inference must be accurate enough to satisfy the language's type

constraints. Thus, the type-checker may sometimes �nd a more generic type assignment

than expected.

A classical example is the language ML, a meta-language for theorem proving, where

the main motivation for strict type-checking is to ensure that every computed value of type

theorem is indeed a theorem [GMW79]. To facilitate type inferencing, several restrictions

are imposed to the language. For example, ML does not allow expressions with mixed types.

Thus, a function de�nition

fun successor(n) = n+1;

will be considered a function that takes an integer as argument (n) and returns another

7

integer. The reason for this is that the operator + can only be applied to two operands of the

same type. Therefore, n must have intrinsic type integer because it is being added to the

integer 1. Also, to allow the type to be inferred statically, ML sometimes requires explicit

type information to resolve overloading. in these cases, the lack of this type information will

result in run-time type errors.

Dynamically typed languages do not have type constraints; hence, run-time type-checking

is a necessary part of the system. Due to the lack of type constraints, compilers cannot

deduce all type information. Therefore, for the cases where the type-checker cannot deduce

the type of a valid expression, run-time type checks are required. For dynamically typed

languages, type inference is primarily used for optimization purposes. Hence, the inferred

type information should be as precise as possible in order to avoid the overhead of run-time

type-checking. We now �rst describe relevant type inference techniques, followed by some

approaches for the compilation of APL, MATLAB, and MATLAB-like languages. These

approaches range from research projects to commercial products.

2.1 Relevant Type Inference Approaches

Type inference algorithms have been presented in the literature for both classes of languages

described above. However, most of the work concentrates on de�ning a type system and

inference rules for a particular language. One of our main objectives in this thesis is to

evaluate the e�ectiveness of the inference mechanisms for detecting intrinsic type, rank, and

shape on MATLAB programs.

We make use in this work of data-ow analysis as described by Aho, Sethi, and Ullman

in [ASU85], and type inference techniques developed for SETL [Sch75] and APL [Bud88,

Chi86]. We extend these techniques where necessary to deal with peculiarities of the MAT-

LAB language and to improve accuracy and performance. Examples of these techniques are:

a structural inference mechanism, a symbolic dimension propagation analysis, and a value

propagation analysis.

8

A forward/backward traversal scheme for type inference is described in [ASU85]. In this

scheme, type inference is performed with data-ow analysis on a ow graph of the program.

The in and out set of variables for each block of the program are mapped onto sets of

possible types. The scheme uses an iterative process that propagates information forward

and backward, reducing the set of types associated with each variable until a �xed point

is reached. One assumption of this scheme is that variables do not change types during

the execution of the program. In our case, this is not a valid assumption since variables

in MATLAB can change types during run-time; thereby not always allowing a backward

step. Hence, our inference mechanism concentrates on a forward data-ow analysis and, as

discussed later, performs a backward step only when backward inference is possible.

SETL is a set-theoretically oriented language of very high-level. A SETL program may be

considered to represent an algorithm before it is codi�ed into a language of lower-level [Sch75].

It treats types in a fully dynamic way, with no type declarations. However, the types of the

objects that appear in SETL programs can be deduced with the use of an appropriate global

analysis [Sch75]. For this type inference, a type algebra that operates on the structural type

of SETL objects is used. This algebra is implemented using tables whose entries describe

the action, on the symbolic entities of the algebra, of each of the primitives of the language

to be analyzed [Sch75].

2.2 Compilation of APL

APL is similar to MATLAB in that it can be executed interactively, is usually interpreted,

and operates on aggregate data structures. A few compilers for APL have been developed

in the past. These compilers are also based on forward/backward dataow analysis.

Budd [Bud88] and Ching [Chi86] have independently developed compilers for APL.

Budd's compiler translates APL programs into C, while Ching's compiler produces IBM

System/370 assembly code directly. The motivation for their work was to investigate the

issues raised by the development of a compiler for a very high-level language, and to exploit

9

the high-level semantics of the APL language. Hence, their work has several similarities

with our project, but there are also some important issues that di�erentiate their work from

ours. First, Budd's work was focused on demand driven evaluation to reduce operations

and memory requirements, while our work concentrates on generation of high-performance

parallelizable code. Second, both Budd's and Ching's procedure for undetermined types

and shapes during compile time di�ers signi�cantly from ours since arrays in MATLAB are

often built using Fortran-like loops and assignments that may be distributed across several

sections of the code. In contrast, the techniques developed for APL assume that arrays

are usually built by a single high-level array operation. Also, APL doesn't have the type

complex. Since operations with complex increase the processing time by a factor of two

or more, the penalty for not inferring the type of one variable in our compiler is much larger

than in an APL compiler. Finally, APL's syntax is much simpler than MATLAB. The

syntax for APL expressions is so regular that it can almost be recognized by a �nite state

automaton [Bud88]. Additionally, all functions in APL, including user de�ned functions,

are limited to either zero, one, or two arguments. This limitation facilitates the translation

process. Therefore, due to the di�erences between the languages and the two approaches, as

described above, the results of their research do not necessarily carry over to our research.

We make use of some of the techniques developed for these two languages (SETL and

APL) and extend them, with techniques originally developed for Fortran, to analyze array

accesses and to represent the gathered information in a compact form [TP95].

2.3 Compilation of MATLAB andMATLAB-like Lan-

guages

CONLAB [JKR92] is an interactive environment for developing algorithms for parallel com-

puter architectures. It uses a subset of the MATLAB language, with extensions for express-

ing parallelism, synchronization, and communication. A translator from CONLAB to C was

developed by Drakenberg et.al. [DJK93]. However, some simpli�cations and modi�cations

10

have been made to the source language to allow e�cient C code to be produced, such as

the exclusion of all primitives for synchronization and communication, except for message

passing. Some sort of type inference system is alluded to by the authors in their papers, but

it is not described.

A simple approach for the compilation of MATLAB was taken by [Ker95] to translate

MATLAB into C++. In this work, a matrix class was created to take care of all type and

shape inference decisions during run-time. This class is then utilized by the generated C++.

So, e�ectively, the control structure is compiled, but all the mathematical operations are

still interpreted within this matrix class.

Recently, MathWorks releasedMCC, a MATLABCompiler [Mat95] that translates MAT-

LAB programs into C for stand-alone external applications, or into C MEX-�les which are

called within the MATLAB environment. MEX-�les are MATLAB-callable C or Fortran dy-

namically linked subroutines that are built with a special interface module. From [Mat95],

it appears that MCC performs only simple inference and relies upon user provided ags,

pragmas, and assertions1 to optimize the generated C code. In Chapter 7 we compare the

performance of the codes generated by MCC and by our compiler for a set of MATLAB

programs.

1Assertions are M-�les functions that are installed by the compiler and used to specify the intrinsic type
or rank of a variable.

11

Chapter 3

OVERALL STRATEGY

3.1 Restrictions to the MATLAB Language

In our MATLAB compiler we tried to support as much as possible the current version of

the MATLAB language (Version 4.2C). However, a few restrictions on the language were

necessary, mostly to be able to perform the static inference.

� Since most operations in MATLAB that have an empty vector as an argument will

result in an empty vector, static inference would be seriously hindered if any expression

could evaluate to the empty vector. For this reason, we assume that when a variable

is used, its value is never the empty vector. However, we allow the assignment of the

empty operator \[]" to a column, row, or element of a matrix, as long as the assignment

does not transform the matrix into an empty vector.

� Currently, inter-procedural analysis within M-�les is performed in our system by in-

lining the M-�les. Therefore, recursive M-�les are not supported by this version of the

compiler. In practice, recursive M-�les do not occur very often due to the ine�ciency

of the interpreter in handling recursions.

� Functions that can receive as a parameter a string containing a MATLAB expression,

or the name of an M-�le to be executed (e.g., eval, feval) are not supported. Due to the

possibility of changes in the value of the parameter during run-time, the compilation

of these functions became practically impossible.

12

� Although not due to a limitation of our inference mechanism, the current version of

our compiler does not support global variables or sparse constructions, and supports

only a limited number of input/output commands. The support of global variables

and the reminder of the input/output constructions is straightforward, and should be

available in a second version of the compiler. Support for sparse computation requires

more research. This issue is being addressed for the FALCON system in the work by

Gallivan et. al. [GMBW95].

3.2 Phases of the MATLAB Compiler

The main challenge of the MATLAB compiler is to perform inference on the input program

to determine the variable properties: intrinsic type, rank, shape, and structure. These

properties are used by the compiler to generate the Fortran 90 declarations and to optimize

the output code.

The MATLAB compiler was structured in a conventional way [ASU85] with a series of

di�erent passes, as shown in Figure 3.1. This section discusses the main issues and the

overall strategy adopted for each of the phases of the compiler.

3.2.1 Structure of a MATLAB Program

MATLAB is a procedural language. Its current version works with essentially one kind of

data structure: a rectangular numerical matrix [Mat92a]. A MATLAB program consists of

one or more Fortran-like statements which may include function calls.

There are two types of functions in MATLAB: intrinsic or built-in functions, and M-�les.

Built-in functions range from elementary mathematical functions, such as sqrt, log, and

sin, to more advanced matrix functions, such as inv (for matrix inverse), qr (for orthogonal

triangular decomposition), and eig (for eigenvalues and eigenvectors).

M-�les consist of a sequence of MATLAB statements, which possibly include references

to other M-�les. There are two types of M-�les: scripts and functions. A script does not

13

symbol-table

manager

Matlab
Program

lexical
analyzer

syntax
analyzer

Program

Fortran 90
Compiler

Executable
Program

Fortran 90

inliner

intermediate

code gen.

static
analysis

code
generator

for dynamic
analysis

transformations

Figure 3.1: Phases of the MATLAB compiler.

14

function avg = mean(x)

[nr,nc] = size(x); [nr,nc] = size(x);

avg = sum(x) / nc; avg = sum(x) / nc;

(a) (b)

Figure 3.2: M-�le to compute the mean of a vector using (a) script and (b) function.

accept parameters and operates on the scope of the caller. Figure 3.2 (a) shows a script �le

to compute the mean of vector x. Notice that the variable avg is updated with the mean of

x, that is a variable in the scope of the program of function that called the script.

A function di�ers from a script in that arguments may be passed, and that variables

de�ned and manipulated inside the �le are local to the function and do not operate on

the workspace of its caller. Figure 3.2 (b) shows a function to compute the mean of a

vector. Notice that in this example, the body of the function is the same as the script �le;

however, the function's input variable is given as an argument, and the output is de�ned

in the function de�nition. One important characteristic of M-�le functions in MATLAB is

that they are side-e�ect free. This functionality can be used to facilitate the exploitation of

functional parallelism [GP92] and loop parallelism.

To avoid confusion, from here on when the term function is used alone in the text, it will

refer to M-�le functions and built-in functions only, and not to script �les. Similarly, the

term M-�le will refer to M-�le functions and not to script �les.

3.2.2 Scanner, Parser, and the Symbol Table Generation

Initially, a LALR(1) grammar [ASU85] was de�ned for MATLAB, as there is no publicly

available grammar for the MATLAB language. The compiler accepts as input a MATLAB

script (from here on referred to as main program), that may contain several M-�le calls. The

lexical analyzer, which is generated by lex [LS], reads and converts the main program into a

stream of tokens that are processed by a syntax analyzer, which is generated by yacc [Joh],

15

according to the grammar rules, producing a parse tree and a symbol table. These two steps

are similar to scanning and parsing for conventional compilers, described in the literature

[ASU85].

The main problem during this phase, as described in Section 4.1, is addressed by the

symbol table manager with the di�erentiations between variables and functions. By the end

of this phase, the symbol table manager will have created a list containing all the M-�les

invoked by the main program. This list is then used by the M-File inliner.

3.2.3 Inlining of M-�les

Functions require a special treatment by the compiler. This problem is important because

the knowledge of the statements inside a function might be necessary when de�ning the

properties of its output parameters. Hence, functions cannot be treated as simple black

boxes.

For the case of built-ins, we compile each function independently, using a database that

contains all the necessary information about the function for the inference process. Hence, for

a particular built-in, its possible to retrieve the variable properties of the output parameters

given the variable properties of the input arguments.

For the case of M-�les, we approached the function compilation problem by inlining all

the M-�les that are used in the program, including multiple instances of the same M-�le and

multiple levels of M-�le calls (i.e., M-�les called inside another M-�le). We then compile the

entire program at once.

The M-�le inliner is divided into two steps. The �rst step consists of a recursive procedure

that traverses the list of M-Files generated by the symbol table manager and generates an

independent parse tree and symbol table for each M-�le in the list. These M-�le's parse trees

and symbol tables are generated using the same tools and functions described in Section 3.2.2.

Each new M-�le invoked by the M-�le that is being parsed is added to the list of M-�les.

This step �nishes when a parse tree and its corresponding symbol table have been created

16

for all M-�les in the list. Notice that if the same M-�le is called multiple times in the whole

program, only one parse tree and corresponding symbol table are generated. As described

below, however, this same parse tree will be inlined in the main program's parse tree multiple

times.

The second step is the actual inlining. In this step, the main program's parse tree is read

in lexicographic order and, for each call to an M-�le, a copy of its corresponding parse tree

is inserted in the main program's parse tree, replacing the M-�le call. At this point, nodes

are inserted in the parse tree to copy the actual parameters of the M-�le call into the formal

parameters of the M-�le de�nition, and to copy the output parameters of the M-�le into

their corresponding variables in the program.

In contrast to regular Fortran or C functions, MATLAB functions can return more than

one output variable and, although the number of output parameters in the function de�nition

is �xed, the actual number of parameters returned by the function is dependent on the

function call. Thus, the copy of the output parameters is performed only for the actual

variables used by the M-�le caller.

Finally, the M-�le's symbol table is integrated into the program's symbol table, with all

the M-�le's local variables renamed to receive unique names. The reason for these unique

variable names, as well as the multiple instances of the same M-�le and copies of the M-�le's

input and output parameters, is that M-�les are polymorphic, and their variables have local

scope. Therefore, the same variable in an M-�le may have di�erent properties in di�erent

activations of the M-�le, depending on the properties of the actual input parameters.

3.2.4 The Intermediate Representation

After the inline of the M-�les, the parse tree is transformed into an abstract syntax tree

(AST) [McK76], which has an intermediate representation more suitable for the generation

of the output code.

Our inference algorithms are applied to a Static Single Assignment (SSA) [CFR+91]

17

S1: load %(V) S1: load %(V1)

S2: n = length(V); S2: n1 = length(V1);

S3: T = 0; S3: T1 = 0;

S4: for k=1:n S4: for k1=1:n1
P1: T4 = �(T2,T1);

S5: T = T + V(k); S5: T2 = T4 + V1(k1);

S6: end S6: end

P2: T3 = �(T2,T1)
S7: AVG = T / n; S7: AVG1 = T3 / n1

(a) (b)

Figure 3.3: MATLAB code to compute the average of a vector (a) and its respective SSA
representation (b).

representation of the MATLAB program in the form of an AST. A program in SSA form

has two main properties: �rst, each assignment creates a new instance of the variable;

and each use of the variable can have only one possible assignment. Hence, in the SSA

representation, each variable is assigned a value by at most one statement. When several

de�nitions feed a single use of a variable, one or more � function operators are inserted at

the points of conuence in the control ow graph to merge the di�erent de�nitions into a

single variable. These � functions are created and inserted into the AST during this phase.

SSA is a convenient representation for our analysis algorithms because it is evident which

de�nitions a�ect (or cover) a particular use of a variable.

Consider for example the MATLAB program to compute the average of a vector1, as

presented in Figure 3.3(a). In this example, there are two statements (S5 and S7) where

variable T may have multiple de�nitions. For these cases, new instances of the variable are

created and assigned according to the value of a � function, as shown in Figure 3.3(b).

Each variable instance in the symbol table and each node of the AST representing a

variable, a constant, or an operator contain the following attribute �elds to store inference

1This is not the best way of writing a MATLAB program to compute the average of a vector. However,
this form is more adequate for the presentation of the SSA representation.

18

information:

� number of rows;

� number of columns;

� rank;

� intrinsic type;

� structure;

� maximum estimated value;

� minimum estimated value;

Our inference mechanism considers only scalars, vectors, and two-dimensional ma-

trices; hence, only two attributes are necessary for the representation of shape, namely

number of rows and number of columns.

The attribute structure is used for the structural inference, as described in Section 5.5.

Finally, the �elds minimum and maximum estimated value are used to store and propagate

the value information used by our value-propagation technique, described in Section 5.2.

All attribute �elds, with the exception of the estimated values, are initialized as un-

known. The maximum and minimum estimated values are initialized as +1 and �1
respectively. These attribute �elds are �lled during the inference phases and propagated

through the AST and the symbol table whenever a new attribute is synthesized.

These attribute �elds are used by the inference mechanism to synthesize information.

In some cases, a node representing a variable in the AST and its corresponding instance in

the symbol table may have the same values for their attribute �elds. This, however, is not

always the case. The node in the AST contains the information for the operand represented

by the variable, while the attribute �elds in the symbol table contain the information for

the instance of the variable. Consider for example Statement S5 in Figure 3.3(b). The node

19

representing variable V1 will contain the information that the rank of the operand is scalar

and that its shape is (1,1), while its corresponding instance in the symbol table will contain

the information that V1 is a vector with shape (1,?) or (?,1). This latter information is

used in conjunction with the information from the AST node representing the array index

(k) to synthesize the information for the AST node representing the operand V1(k1).

3.2.5 Static Analysis

The variable properties are estimated during the static analysis phase using a forward/back-

ward traversal scheme similar to the one described in Section 2.1. We will briey describe

next the overall strategy for the inference of each variable property, and the sources of

information for the static inference mechanism.

Intrinsic Type Inference

Although MATLAB operates on real and complex values only, our static inference mech-

anism also considers integer and logical values. That is, it considers all Fortran 90

intrinsic data types, except for character. These types are inferred according to the

following type hierarchy:

logical � integer � real � complex:

In our compiler, intrinsic type inference could be avoided if all variables were considered

as complex. This, however, would a�ect tremendously the performance of the code due to

the number of additional arithmetic operations required by complex variables. Consider

for example a matrix multiplication C = A � B, where \A" and \B" are square matrices of

size 100 � 100. This matrix multiplication requires approximately 2 Mops for type real,

and 8 Mops for type complex. Hence, the determination of the correct variable intrinsic

type during compile time is very important for the e�ciency of the code.

20

Shape and Rank Inference

Shape and rank are inferred for the static allocation of storage for the variables through decla-

rations. Although MATLAB considers all variables two-dimensional arrays, the identi�cation

of scalars and vectors through rank inference is important to avoid the unnecessary use

of indices and the over-dimensioning of variables that may cause poor memory and cache

utilization. Moreover, it is also necessary to provide the ability to recognize scalars and

vectors through rank inference because MATLAB has di�erent semantics for certain oper-

ators, depending on the rank of the operands since each one requires a di�erent translation

to Fortran 90. Consider for example the MATLAB expression for the multiplication of two

variables A * B. This can be an inner-product, an outer-product, a matrix multiplication,

a matrix-vector multiplication, or a scalar multiplication (by another scalar, vector, or ma-

trix), depending on the ranks of A and B. Due to performance and conformability issues,

each of these possibilities requires a di�erent method for the computation and, therefore, a

di�erent library function or operator is used for each case.

Shape inference is also important for the e�ciency of the code. If the dimensions of the

arrays are known during compile time, they can be declared statically and the overhead of

dynamic allocation can be avoided. However, in several cases it is impossible to determine

array sizes since they may be input data dependent (e.g., they may be read as an input for

the program) and, thus, the only alternative is to allocate dynamically. In this case, an extra

e�ort is necessary to predict the maximum size that an array will take in order to avoid the

extra overhead of multiple execution time tests and reallocations of a variable with every

change in shape. To this end, we developed a symbolic-propagation technique, discussed in

Section 6.2.1.

21

Structural Inference

One of the great advantages of MATLAB is the encapsulation of its built-in functions and

operators. For example, the linear equation

A� x = b (3:1)

can be solved in MATLAB using the simple statement:

x = A n b;

When executing this statement, MATLAB performs the following tests [Mat92b] to

choose the best method to solve the linear system:

� If A is a triangular matrix, or a permutation of a triangular matrix, then

x is computed by a permuted back-substitution algorithm.

� IfA is symmetric, orHermitian, and has positive diagonal elements, then a Cholesky

factorization is attempted.

� If A is sparse, then a symmetric minimum pre-ordering is applied.

� If A is square, and all the above tests fail, then a general triangular factorization

is computed by Gaussian elimination with partial pivoting. If A is sparse, a non-

symmetric minimum degree pre-ordering is applied.

� If A is a not square full matrix, then Householder reections are used to compute an

orthogonal-triangular factorization.

� If A is a not square sparse matrix, the least squares method is applied using sparse

Gaussian elimination with numerical pivoting.

One of the challenges of the compiler is to exploit the high-level semantics of the language

in order to detect some of these matrix structures statically, to avoid run-time tests, and to

improve the performance of the target code.

22

A structural inference mechanism was designed to improve code performance by en-

hancing library selection by the code generator. Suppose for example, that in a matrix

multiplication, both variables are known to be matrices, but one of them can be inferred

to be a triangular matrix. In this case, instead of using a library function to perform a

general matrix multiplication operation, an optimized function that takes into consideration

the triangular structure of the variable could be used. This structural inference mechanism

has not been implemented in the current version of the compiler.

Sources of Information for the Static Inference

The static inference mechanism extracts information from four main sources: input �les;

program constants; operators; and functions. If the program reads data from an external

�le, the system requires a sample �le to be present during the compilation. From this

�le, the compiler extracts the initial intrinsic type and rank2 of the variables being loaded3.

Variable shapes are not extracted from the input �les because they are muchmore likely than

intrinsic type and rank to di�er between runs. However, with the rank information from the

loaded variables, the compiler can propagate partial (or even complete) shape information

represented in terms of values obtained when vectors (and scalars) are loaded.

The second source of information is program constants, from which intrinsic type, rank,

and shape can be inferred and propagated. MATLAB operators are the third source of

information. From them, we can extract type information in the case of logical operators,

and rank, shape, and structural information by taking into consideration the conformability

requirements imposed by the MATLAB operators.

Finally, the fourth source of information is the high-level summary information from the

MATLAB intrinsic functions. Built-in functions can provide information for both forward

and backward inference. An example of this is the function rcond, for the conditional

2The use of this initial rank information can be turned o� by a compiler ag. In this case, all loaded
variables are assumed to be two-dimensional allocatable arrays.

3For clarity of presentation, a MATLAB comment (%) is used to indicate which variables are being loaded
in the pseudo-code examples using the load function. This comment is not required by the compiler.

23

reciprocal estimator, which requires the input parameter to be a square matrix (useful for

backward inference), and generates as output a scalar of type real (useful for forward

inference). Most of the information for the structural inference is obtained from built-in

functions.

3.2.6 Dynamic Phase

If any of the variable attributes necessary for the generation of the Fortran 90 declarations

(i.e., intrinsic type, number of rows, and number of columns) have an unknown value at

the end of the static inference phase, the system generates code to determine the necessary

attribute at run-time. We follow an approach similar to that used in many systems: asso-

ciating tags with each variable, that after the static analysis, have unknown intrinsic type

or shape. Based on these tags, which are stored in shadow variables, conditional statements

are used to select the appropriate operations and to allocate the necessary space.

The dynamic phase is divided in the two steps. First, the AST is traversed to determine

all the instances where dynamic type inference is necessary and the conditional statements

for dynamic type inference are inserted, as described above. Second is the dynamic shape and

rank inference, where dynamic code is generated to compute during run-time the necessary

space for the dynamic allocation, and to select the appropriate method to perform certain

operations. The overall strategy for each step of the dynamic inference is described next.

Dynamic Type Inference

To avoid the excessive number of conditional tests necessary to detect the intrinsic type of

the outcome of an expression, the dynamic inference mechanism considers only two intrinsic

types: real and complex. If the intrinsic type of a variable can be determined statically,

a Fortran declaration for the inferred intrinsic type is generated. Otherwise, the mechanism

for dynamic de�nition of intrinsic types is activated. To this end, whenever a variable with

unknown intrinsic type is used, a conditional statement is introduced during run-time to

24

test the shadow value for intrinsic type. Each branch of the conditional statement receives

a clone of the operation that uses the variable requiring the shadow test. In one branch

the variable is assumed to be of type complex, while in the other it is assumed to be of

type real. The intrinsic type attribute in the corresponding nodes of the AST is updated

accordingly.

This solution introduces some overhead in the computation and increases the size of the

code. However, in some cases it is cheaper than executing complex arithmetic all the time.

For example, consider the following expression:

X = A�B + C �D (3:2)

If A, B, C, and D are square matrices of size 100 � 100, each matrix multiplication will

require approximately 2 Mops for type real, and 8 Mops for type complex. Thus,

we observe that each multiplication can be computed up to four times faster if complex

arithmetic is avoided with the inclusion of conditional statements.

It is important to observe that due to our static type inference mechanism, the generation

of shadow tests for intrinsic type does not occur very often in practice. (The reason for this

is explained in Section 5.1.) In our test cases using actual MATLAB programs, there were

no situations where a shadow test for intrinsic type was necessary. Therefore, the question of

whether this approach is better than just assigning complex intrinsic type to all variables

requiring shadow tests was considered irrelevant.

One problem with this approach is that the number of possible type combinations grows

exponentially with the number of operands. To reduce this problem, all expressions with

more than two operands are transformed into a sequence of triplets using three-address code

in the form: t x op y. Hence, for an expression with n operands, there will be at most

n�1 triplets with at most 4 cases each ([real,real]; [complex,real]; [real,complex];

and [complex,complex]). That is, we consider at most 4(n� 1) cases as opposed to the

2n cases that would arise if the expression were not decomposed. The transformation into

triplets is performed during the generation of the AST (Section 3.2.4).

25

if (A T .eq. T COMPLEX) then

if (B T .eq. T COMPLEX) then

T 1 C = A C � B C

else

T 1 C = A C � B R

end if

T 1 T = T COMPLEX

else

if (B T .eq. T COMPLEX) then

T 1 C = A R � B C

T 1 T = T COMPLEX

else

T 1 R = A R � B R

T 1 T = T REAL

end if

end if

T 2 = C � D

if (T 1 T .eq. T COMPLEX) then

X C = T 1 R + T 2

X T = T COMPLEX

else

X R = T 1 R + T 2

X T = T REAL

end if

Figure 3.4: Dynamic code for X=A�B+C�D, when A and B have unknown type.

Determining on which case should be used during execution time is dependent on the

value of the corresponding shadow variable for the intrinsic type. For example, consider

again Expression (3.2) and suppose, that the compiler was not able to infer the variable

intrinsic types of A and B, and that the types of C and D are known to be real.4 The

pseudo-code generated for this case is presented in Figure 3.4, where the su�xes R and

C represent the real and complex de�nitions for a variable, and shadow variables for

intrinsic type are represented by the T su�x. Notice that the multiplication A � B is

generated in four di�erent ways, depending on the dynamic type of the operands.

4If any of these variables were inferred as type complex, then the resulting variable would also be of
type complex; however, the conditional statements would still be necessary when A and B are real.

26

S1: Ap = A � p;

S2: alpha = (r' � p) / (p' � Ap);

S3: x = x + alpha � p;

S4: r = r + alpha � Ap;

Figure 3.5: MATLAB code segment to compute conjugate gradient.

A simpler approach would be to consider all variables that cannot have their type inferred

statically by the compiler as having intrinsic type complex One problem with this approach

is that for each of these unde�ned variables, the type will have to be propagated as a

complex variable, and this propagation will tend to perturb the inference process. For

example, consider the MATLAB code segment from a function that computes conjugate

gradient, as presented in Figure 3.5.

Suppose that the type of A is unknown and that the compiler assumes it to be of type

complex. Assume also that all other variables are known to be of type real. We notice

that the variable A appears only once in this code segment; however, the compiler will have

to consider Ap, alpha, x, and r as complex variables because of its assumption about the

type of A.

The generation of dynamic code is avoided whenever there is an assignment that rede�nes

a variable, changing its intrinsic type. To this end, the variable is renamed and a second

declaration for the variable is generated. Thus, for example, for the pseudo-code presented

in Figure 3.6, the compiler will declare statically three instances of the variable, one for each

intrinsic type assumed by the variable, and generate the code as shown in �gure 3.7.

Dynamic Shape and Rank Inference

The second step of the dynamic phase is the dynamic shape and rank inference. During

this step, dynamic code is generated to compute during run-time the necessary space for the

dynamic allocation. To this end, two shadow variables are used to keep track of variable

dimensions during execution-time. So, for example, if the shape of B in an assignment of

27

S1: temp = 1;

S2: X = function(temp);

...

S3: temp = 10;

S4: W = function(temp);

...

S5: temp = sqrt(-1);

S6: Z = function(temp);

...

S7: temp = 0.5;

S8 Y = function(temp);

Figure 3.6: Pseudo-code example where the intrinsic type of the variable changes between
assignments.

INTEGER temp 1

COMPLEX*16 temp 2

DOUBLE PRECISION temp 3

...

S1: temp 1 = 1

S2: X = function(temp 1)

...

S3: temp 1 = 10

S4: W = function(temp 1)

...

S5: temp 2 = sqrt(-1)

S6: Z = function(temp 2)

...

S7: temp 3 = 0.5

S8 Y = function(temp 3)

Figure 3.7: Fortran 90 code for multiple assignments with di�erent intrinsic types to the
same variable.

28

S1: if (A D1 .ne. B D1 .or. A D2 .ne. B D2) then

S2: if (ALLOCATED(A)) DEALLOCATE(A)

S3: A D1 = B D1

S4: A D2 = B D2

S5: ALLOCATE(A(A D1,A D2))

S6: end if

S7: A = B + 0.5

Figure 3.8: Example of shadow variables for shape.

the form A=B+0.5 were unknown at compile time, the compiler would generate the code

presented in Figure 3.8, which uses shadow variables A D1, A D2, B D1, and B D2, to

store the run-time information about the dimensions of A and B. These shadow variables

are initialized to zero at the beginning of the program. This �gure shows the general form

for the dynamic allocation. However, only the necessary statements are generated. So, for

example, if this is the �rst de�nition of variable A, statements S1 and S2 are not generated5.

Dynamic rank inference is also generated for the correct execution of the code. Consider

again a multiplication of two variables being assigned to a third variable: c = a � b. Sup-

pose that both variables a and b are of type real, but have unknown shape at the end of

the static analysis phase.

The simple solution of generating a single matrix multiplication statement for this ex-

pression (e.g., c = MATMUL(a,b)) is not possible due to performance and conformability

considerations. Thus, dynamic rank inference is performed in order to select the appropri-

ate functions to perform the operations according to the rank of a and b. The resulting

Fortran 90 code would be the code sequence6 shown in Figure 3.9.

The shadow variables of a and b are used to infer the rank of the variables during

execution time. The shadow variable for c is updated according to the operation that is

5If this de�nition occurs inside a loop, it is not considered the �rst de�nition because there will be an
arti�cial assignment to null outside the loop, as described in Section 4.2.2.

6The compiler assumes the correctness of the original program. It uses the BLAS routines DDOT, DGEMV,
and DGEMM for dot-product, matrix-vector multiplication, and matrix multiplication respectively.

29

if (a D1 .eq. 1) then
if (a D2 .eq. 1) then
if (c D1 .ne. b D1 .or. c D2 .ne. b D2) then
if (ALLOCATED(c)) DEALLOCATE(c)
c D1 = b D1
c D2 = b D2
ALLOCATE(c(c D1,c D2))

end if
c = a(1,1) � b

else
if (b D1 .eq. 1) then
if (c D1 .ne. a D1 .or. c D2 .ne. a D2) then
if (ALLOCATED(c)) DEALLOCATE(c)
c D1 = a D1
c D2 = a D2
ALLOCATE(c(c D1,c D2))

end if
c = a � b(1,1)

else
if (b D2 .eq. 1) then
if (c D1 .ne. 1 .or. c D2 .ne. 1) then
if (ALLOCATED(c)) DEALLOCATE(c)
c D1 = 1
c D2 = 1
ALLOCATE(c(c D1,c D2))

end if
c = DDOT(a D2, a, 1, b, 1)

else
if (c D1 .ne. 1 .or. c D2 .ne. b D2) then
if (ALLOCATED(c)) DEALLOCATE(c)
c D1 = 1
c D2 = b D2
ALLOCATE(c(c D1,c D2))

end if
CALL DGEMV('C', b D1, b D2, 1.0D0, b, b D1, a,1 , 0.0D0, c, 1)

end if
end if

end if
else
if (b D2 .eq. 1) then
if (b D1 .eq. 1) then
if (c D1 .ne. a D1 .or. c D2 .ne. a D2) then
if (ALLOCATED(c)) DEALLOCATE(c)
c D1 = a D1
c D2 = a D2
ALLOCATE(c(c D1,c D2))

end if
c = a � b(1,1)

else
if (c D1 .ne. a D1 .or. c D2 .ne. 1) then
if (ALLOCATED(c)) DEALLOCATE(c)
c D1 = a D1
c D2 = 1
ALLOCATE(c(c D1,c D2))

end if
CALL DGEMV('N', a D1, a D2, 1.0D0, a, a D1, b,1 , 0.0D0, c, 1)

end if
else
if (c D1 .ne. a D1 .or. c D2 .ne. b D2) then
if (ALLOCATED(c)) DEALLOCATE(c)
c D1 = a D1
c D2 = b D2
ALLOCATE(c(c D1,c D2))

end if
CALL DGEMM('N', 'N', a D1, b D2, a D2, 1.0D0, a, a D1, b, b D1, 0.0D0, c, c D1)

end if
end if

Figure 3.9: Fortran 90 code for c=a�b when rank and shape of a and b are unknown.

30

being performed (e.g., multiplication, left solve, right solve) and the shape of a and b. They

are then used to guide the allocation (or reallocation) of the array c, whenever necessary.

Notice that special consideration is taken with scalars when the variable is dynamically

allocated. The problem is that the Fortran 90 operation a � b assumes the operands to be

conformable if they are dynamically allocated. Hence, if one of the operands is scalar and

if it is dynamically allocated as a 1 � 1 array, the operation as written above would result

in an error. Therefore, dynamic rank inference is necessary. As presented in Section 6.2.1,

this dynamic code can be optimized with the use of symbolic-propagation.

3.2.7 Code Generator

The �nal phase of the MATLAB compiler generates Fortran 90. This pass is also divided

into two steps: the generation of declarations, and the generation of executable code.

The declarations are generated by traversing the symbol table. Variables that have

unknown intrinsic type at the end of the static phase are declared twice: once for the real

instance of the variable, and once for the complex instance. Variables that have unknown

shape are declared as two-dimensional allocatable arrays. Shadow variables are generated

only for variables that have unknown shape or intrinsic type at the end of the static phase.

The generation of executable code is performed by traversing once more the AST in

lexicographic order. This pass is straightforward because our output language is a high-level

language and, therefore, we do not deal with most of the issues of code generation [ASU85].

Moreover, at this point, all necessary attributes for the code generation have been already

�lled by the static and dynamic inference phases.

To maintain compatibility with the MATLAB interpreter, whenever possible7 the com-

piler generates function calls from the same libraries used by MATLAB (i.e., LINPACK

[DMBS79], LAPACK [ABB+92], EISPACK [SBD+76]).

7The information on which library function is being used by the interpreter is not always available. Also,
sometimes this information is provided with a note stating that the library function was modi�ed.

31

Chapter 4

INTERNAL REPRESENTATION

4.1 Distinguishing Variables from Functions in MAT-

LAB

In MATLAB, an identi�er occurrence may represent a function or a variable, depending on

the context in which the identi�er is �rst referenced and the �les present in the execution

environment. For example, consider the pseudo-code presented in Figure 4.1. The identi�er

\i" in Statement S2 is a built-in function that returns the imaginary unit, while in Statements

S3 and S4 it represents the variable \i" used as the loop index.

In general, a MATLAB identi�er may represent a function instead of a variable if, in the

lexicographic order of the program, it appears on the right hand side (RHS) before it appears

on the left hand side (LHS). If the identi�er is not a valid built-in function, the �les in the

execution environment determine whether the identi�er represents an M-�le. An example of

this is presented in Figure 4.2, which contains two versions of pseudo-code to compute the

cumulative sum of a vector.

S1: n = ...

S2: p = -0.5 * i;

S3: for i=1:n

S4: p = -0.5 * i;

Figure 4.1: MATLAB pseudo-code segment in which the same expression has di�erent se-
mantics.

32

S1: a = 1:5; S1: a = 1:5;

S2: for i = 1:5 S2: for i = 1:5

S3: if (i > 1) S3: if (i == 1)

S4: cs(i) = s + a(i); S4: s = a(i);

S5: s = cs(i); S5: cs(i) = s;

S6: else S6: else

S7: s = a(i); S7: cs(i) = s + a(i);

S8: cs(i) = s; S8: s = cs(i);

S9: end S9: end

... ...

(a) (b)

Figure 4.2: Two MATLAB code segments to compute the cumulative sum of a vector.

The execution of both code segments in Figure 4.2 will generate the same results if there is

no M-�le \s.m" de�ned in the user's path or in MATLAB's path. However, code segment (a)

will generate wrong results (or may generate an error) if such a �le exists. The reason for this

inconsistent behavior is that MATLAB parses the program in lexicographic order. If it �nds

an identi�er on the RHS without a previous de�nition on the LHS, it considers the identi�er

a function and searches for its de�nition in the user's path and, if not found, in its own path.

If a function is not found in any of the paths, MATLAB considers the identi�er a variable.

Therefore, as the �rst reference to the identi�er \s" in code segment (a) appears on the RHS,

MATLAB will execute the program correctly only if there is no \s.m" M-�le. However, if

such an M-�le is found, MATLAB will execute this function every time it executes Statement

S4. The code segment in Figure 4.2(b) will always generate the correct result because the

�rst reference to the variable \s" appears on the LHS.

In order to di�erentiate variables from functions during the compilation of MATLAB

programs, we require that the translation take place in the same environment as the exe-

cution. We use the following algorithm, which simulates MATLAB's behavior exactly, to

distinguish between variables and functions.

33

Algorithm: Di�erentiation Between Variables and Functions

Input: A MATLAB program and its correspondent symbol table.

Output: The kind of each identi�er in the program; that is, whether the identi�er

represents a variable, a function, or both throughout the program.

This algorithm is based on the state diagram presented in Figure 4.3. Each

identi�er can be in one of the following states: Built-in, M-�le, Empty, Function,

Variable, or Multiple. The Start state is responsible for the de�nition of the

initial state for each identi�er. This de�nition is based on one of the following

three conditions:

1. An identi�er will start in the Built-in state if it is in the pre-de�ned list of

valid MATLAB built-in functions.

2. An identi�er k will start in the M-�le state if there is an M-�le k.m in the

user's path or in MATLAB's path.

3. If the identi�er is neither a Built-in nor an M-�le, then it starts in the Empty

state.

After de�ning the initial state of all identi�ers, the MATLAB program is tra-

versed in lexicographic order. Every identi�er occurrence (read or write) causes a

transition in the state diagram. The state at the end of the program is the kind

of the identi�er. An identi�er will be in the state Multiple if at some point in

the program it represented a function (Built-in or M-�le) and became a variable

later in the program. An example of an identi�er of the kind Multiple is \i" in

Figure 4.1.

End algorithm for di�erentiation between variables and functions.

34

R/WMultiple

R/WVariable

R

Function

Start M-File

Built-in

Empty

R

W

W

W

R

R/W

3

1

2

Figure 4.3: State diagram for di�erentiation between functions and variables.

4.2 Static Single Assignment

4.2.1 Extensions to the Symbol Table for the SSA Representa-

tion

To support the SSA representation, our symbol table is divided in two main parts: the entry

list and for each entry, a list containing all variable instances. As an example, consider again

the SSA representation of the program to compute the average of a vector, presented in

Figure 3.3(b). The data structure for the symbol table corresponding to this program is

outlined in Figure 4.4.

Each node in the entry list contains the information that is shared by all instances

of the corresponding variable, such as loaded name and program name1, as well as global

information used by the symbol table manager, such as the number of instances and a pointer

to the start of the corresponding variable's instance list. Information about built-ins and

M-�les are also stored in the symbol table. Therefore a �eld kind is used to indicate if the

entry is a variable, built-in, M-�le, or multiple (for identi�er in the state Multiple described

1The original MATLAB name must be saved for the load function. The loaded name may be di�erent
than the program name due to renaming performed by the inliner.

35

entry list variable’s instances

V

n

T

k

AVG 1

1

1

1

1

2 3 4

Figure 4.4: Symbol table for the SSA representation.

above).

Each node in the variable instances list contains information speci�c to a particular

instance of the variable, such as the set of attribute �elds (described in Section 3.2.4), its

index number, and a pointer to the variable's de�nition node in the AST.

4.2.2 SSA Representation for Scalar and Full Array Assignments

The MATLAB language allows full array assignments (e.g., A=B where B is an array), as

well as indexed array assignments (e.g., A(R)=RHS, where R is a range that can be a scalar, a

vector, or a two-dimensional array represented with constants, variables, or both). Full array

assignments can be treated as scalar assignments since each full array assignment completely

rede�nes its previous de�nition.

Due to the structured nature of MATLAB (having only if statements, structured loops,

and no \goto"s), the SSA representation of a MATLAB program is very simple. In fact, the

� functions are always at the conuence of two control arcs, which means � functions always

have two parameters. Each parameter can have a backward de�nition if it corresponds to

36

a variable previously de�ned in lexicographic order, or a forward de�nition if it points to a

variable de�nition that post-dominates the � function.

Our � functions are classi�ed into two groups, according to the kind of construction

required by the function. The �rst group of � functions, which we rede�ne as � functions,

replaces the � functions required at the end of conditional statements and loops. Both

parameters of � functions have backward de�nitions. The other group of � functions, which

we rede�ne as ' functions, replaces the � functions required at the beginning of loops. '

functions have one forward de�nition and one backward de�nition.

In some cases, the use of a variable may not have a previous de�nition in the lexico-

graphic order of the program, as for example variable y in Statement S3 in the code segment

presented in Figure 4.5(a). In these cases, when generating the � and ' functions, the

corresponding backward de�nitions are assumed to be null, as exempli�ed by Statement

P1 in Figure 4.5(b) that presents the SSA representation for the same program. Thus, as

shown in Statement P2, the ' function will have two parameters; however, one points to an

\actual" assignment, while the other points to an \arti�cial" assignment to null. These

arti�cial assignments are not necessary for the static inference mechanism, as the ' function

could have just the forward parameter. However, its use facilitates the implementation by

forcing all ' functions to have two parameters. It is also helpful during the dynamic phase,

as discussed in Chapter 6.

4.2.3 Extension of the SSA Representation to Support Indexed

Array Assignments

While it is easy to determine which de�nitions cover a given use in the case of scalars and

full array assignments using the SSA representation, indexed array assignments require a

more complex approach involving a new function. Consider, for example, the MATLAB

code segment presented in Figure 4.6, and assume that A is assigned in statements S2 and

S4 only. In this code segment, S1 creates a matrix Z �lled with zeros; S2 creates a matrix

37

S0: load %(n) S0: load %(n1)

P1: y0 = �

S1: for k=1:n S1: for k1=1:n1
P2: y2 = '(y1,y0)

S2: if (k > 1) S2: if (k1 > 1)

S3: z = y / k; S3: z1 = y1 / k1;

S4: else S4: else

S5: z = k1; S5: z2 = k1;

S6: end S6: end

P3: z3 = �(z1,z2)
... ...

S7: y = z; S7: y1 = z3;

S8: end S8: end

(a) (b)

Figure 4.5: Example of a variable use and de�nition not in lexicographic order.

A �lled with real numbers; and S4 updates a range of A with values from Z. As previously

mentioned, there is no problem in treating Statements S1 and S2 as scalar assignments.

They generate an integer and real array respectively. Moreover, if statement S4 did not

involve subscripts and were of the form A = Z, the SSA representation would be obtained

by simply renaming A in S2 and S4 and the corresponding uses. However, since S4 updates

only a part of A, a simple renaming of A would not be correct. If we use the standard SSA

approach and consider that the integer assignment to A in S4 will generate a new instance

of the variable with type integer, the type inference would generate wrong results. Hence,

in situations like this, we use the standard approach and transform indexed assignments of

the form A(R) = RHS; where R is an arbitrary range, into

Ai+1 = �(Ai, R, RHS);

The � function we use is similar to the \Update" function described in [CFR+91], but

extended for assignments to a matrix range. In the case of MATLAB, an � function may

return an array with dimensions larger than that of the parameter array. In this case, if the

array section R completely covers the old range of A, the values and shape of A are those of

38

S0: load %(n,m)

S1: Z = zeros(n,m);

S2: A = rand(n,m);

...

S3: while (...)

...

S4: A(i:n,j:m) = Z(i:n,j:m);

...

S5: end

...

Figure 4.6: MATLAB code with indexed array assignment.

S0: load %(n,m)

S1: Z1 = zeros(n1,m1);

S2: A1 = rand(n1,m1);

...

S3: while (...)

S4: A3 = '(A2, A1);

...

S5: A2 = �(A3, (i1:n1,j1:m1), Z1(i1:n1,j1:m1));

...

S6: end

S7: A4 = �(A1, A2);

...

Figure 4.7: SSA representation for indexed array assignments.

the RHS. Otherwise, array A will have to be expanded in one or both dimensions2, and the

unassigned elements are given the value zero. Using this extension, the SSA representation

for the code presented in Figure 4.6 will be as shown in Figure 4.7, where the assignments

to A have been renamed and merged in the same manner as for scalar assignments.

2All matrices in MATLAB have lower dimension 1. Hence, only the upper dimension of a range is
considered for matrix expansions.

39

Chapter 5

THE STATIC INFERENCE

MECHANISM

In this chapter we discuss the main topics on the static inference mechanism, starting with de-

scription of the algorithms for the intrinsic type inference, followed by the value-propagation

technique used to improve the intrinsic type inference, the shape and rank inference mecha-

nism, a discussion about compilation of functions, and �nally, a description of the structural

inference. For clarity of presentation, the intrinsic type inference, and shape and rank in-

ference are discussed separately, despite the fact that they are applied by a single compiler

pass.

5.1 Intrinsic Type Inference

The static mechanism for intrinsic type inference propagates intrinsic types through expres-

sions using a type algebra similar to that described in [Sch75] for SETL. For the case of logical

operators, the output is always considered to be of intrinsic type logical. For the other

operators and built-in functions, this algebra operates on the intrinsic type of MATLAB

objects and is implemented using tables for all operations. These tables contain for each

operation the intrinsic type of the result as a function of the intrinsic type of the operands.

When the intrinsic types of the operands are di�erent, the static type inference promotes

the output of the expression to be of an intrinsic type that subsumes the intrinsic types

40

of both operands, according to the intrinsic type hierarchy presented in Section 3.2.5. In

some cases, however, (e.g., \n" left and \=" right division) the output will be promoted to a

higher intrinsic type from the type hierarchy, even if the intrinsic type of the operators are

the same (for example, the division of two integer variables result in an output of intrinsic

type real). For the cases where the outcome of an expression can be of di�erent intrinsic

types, depending on the values of the operands (such as the power operator, square root,

and inverse trigonometric functions), we use our value-propagation technique, described in

Section 5.2, to infer statically the range of values of the variables. When this value-based

analysis fails, we promote the output type of the expression to complex.

The general algorithm for intrinsic type inference is described below.

Algorithm: Intrinsic Type Inference

Input: An SSA representation of a MATLAB program (or segment) in the form

of an AST.

Output: The intrinsic type for all variables in the program (or segment).

The algorithm traverses the AST in lexicographic order. Its actions are de-

pendent on the kind of each statement visited, as described next. In all cases,

after the action is taken, the algorithm proceeds with the analysis of the next

statement.

� Control Flow: Do nothing.

� Input (i.e., load): Assign the intrinsic type of all loaded variables according

to the information from the loaded �le.

� Assignment to an expression or constant: Assign the intrinsic type of the

output according to the type algebra.

� Assignment to a built-in function: Assign the intrinsic type(s) of the out-

put(s) according to the database for built-in functions.

41

Type of �rst Type of second parameter
parameter null logical integer real complex unknown

null null logical integer real complex unknown
logical logical logical integer real unknown unknown
integer integer integer integer real unknown unknown
real real real real real unknown unknown
complex complex unknown unknown unknown complex unknown
unknown unknown unknown unknown unknown unknown unknown

Table 5.1: Resulting type for the comparison of � or ' functions parameters.

� Assignment to a � function: Compare the intrinsic types of the parameters

and assign the intrinsic type of the output according to Table 5.1.

� Assignment to a ' function: Execute the iterative algorithm for intrinsic

type inference of ' functions, as described in Section 5.1.1.

� Assignment to an � function: Execute the iterative algorithm for intrinsic

type inference of � functions, as described in Section 5.1.2.

End algorithm for intrinsic type inference.

As can be observed in the algorithm for intrinsic type inference, the type inference for �

functions is straightforward because both parameters have backward de�nitions. However,

special consideration is necessary in the presence of ' and � functions. The following sec-

tions describe the algorithms for propagation of intrinsic type information through ' and �

functions.

5.1.1 Propagation of Intrinsic Type Information Through ' Func-

tions

The static inference of a ' function requires an iterative process because the forward def-

inition has yet to be analyzed when it is encountered for the �rst time. To this end, the

following algorithm is applied for the inference of the intrinsic type of ' functions.

42

Algorithm: Intrinsic Type Inference of ' Functions

Input: An assignment to a ' function of the form:

Av = '(Af ; Ab):

Output: The intrinsic type of the variable Av, assigned according to the output

of a ' function.

This algorithm assumes Af and Ab to be respectively the forward and back-

ward de�nitions of the variable A, and Af Type and Ab Type to be their re-

spective intrinsic type attribute. The intrinsic type attribute of the ' function

is assigned to Av Type that is used whenever the variable Av is used. The

algorithm also uses a temporary variable (At Type).

1. Af Type (null

2. At Type (Ab Type

3. DO

4. Av Type (At Type

5. EXECUTE the intrinsic type inference algorithm from the statement

following the ' function in the AST until the de�nition of Af

6. INFER Af Type

7. INFER At Type as the output of the ' function, according to Table 5.1

8. UNTIL At Type == Av Type.

End algorithm for intrinsic type inference of ' functions.

This iterative process is guaranteed to �nish because, as shown in Figure 5.1, our inference

system for � and ' functions uses a type lattice that is �nite. Hence, each new iteration

of the process will consider a new type at least one level higher in the lattice. Thus, in

the worst case, the output of the ' function and all variables that directly or indirectly use

43

Real Complex

Unknown

Integer

Logical

Null

Figure 5.1: Intrinsic type lattice for ' functions.

this output will be considered as unknown, and the process will �nish. Note that because

null is an arti�cial type, the combination of null with any other intrinsic type results in

the non-null type. Notice also that in Table 5.1, the conuence of real and complex

is unknown rather than complex. In this way, if a variable can contain both real and

complex values at execution time, complex operations will be executed only when the

variable have a complex value.

5.1.2 Propagation of Intrinsic Type Information Through � Func-

tions

For the intrinsic type inference of � functions, the following iterative algorithm is applied:

Algorithm: Intrinsic Type Inference of � Functions

Input: An assignment to an � function of the form:

Ai = �(Ap;R;RHS):

44

Type of Type of previous de�nition
RHS Empty logical integer real complex unknown

null null logical integer real complex unknown
logical logical logical integer real complex unknown
integer integer integer integer real complex unknown
real real real real real complex unknown
complex complex complex complex complex complex complex
unknown unknown unknown unknown unknown complex unknown

Table 5.2: Resulting type for � functions.

Output: The intrinsic type of the variable Ai, assigned according to the output

of an � function.

This algorithm uses the last full de�nition of A (Afull), previous to the de�-

nition of Ai. If such a de�nition does not exist, the algorithm considers Afull to

be an arti�cial de�nition assigned to NULL, before the �rst de�nition of A.

1. INFER Ai Type according to Table 5.2

2. IF (Ai Type 6= Ap Type) THEN

3. REPEAT

4. Ap Type (Ai Type

5. EXECUTE the intrinsic type inference algorithm from the statement

following the de�nition of Ap in the AST until the de�nition of Ai

6. INFER Ai Type according to Table 5.2

7. UNTIL (Ai Type == Ap Type)

8. END IF.

End algorithm for intrinsic type inference of � functions.

As can be observed in Table 5.2, to avoid the overhead of copying the array during

execution time, whenever the intrinsic type of the RHS di�ers from that of the previous

de�nition, we promote the resulting � function type to one that subsumes both types. Thus,

45

A = zeros(5,1);

for ...

...

A(1:5) = complex expression;

...

Figure 5.2: Variable initialization using a lower intrinsic type.

if an � function output is inferred to be of a more general type than its previous de�nition,

then the intrinsic type of the previous de�nition is set with this more general type. Therefore,

the backward inference process is necessary to update the previous full assignment to the

variable, the subsequent indexed assignments and the variables that use it.

To be able to detect possible initializations to a lower intrinsic type than those used by

the indexed assignment, as for example in the pseudo-code segment presented in Figure 5.2,

this algorithm is performed for all � functions, even if it can be proved statically that the

range R covers the previous de�nition of the variable (Ap).

This algorithm is also guaranteed to �nish for the same reason as the algorithm for intrin-

sic type inference of ' functions. In this algorithm, in the two worst cases, the participating

variables will have intrinsic type complex or unknown. However, due to the decision of

promoting the intrinsic types, the variables will have intrinsic type unknown only if the

RHS or the previous de�nition (Ap) have intrinsic type unknown.

5.2 Value Propagation

In some cases the outcome of a built-in function, such as sqrt or log, can be of di�erent

types, depending on the values of the operands. From now on, these class of functions will be

referred to as multi-typed built-in to emphasize the fact that their output can be of multiple

intrinsic types, not only due to the intrinsic type of the input parameters, but also due to

the values of the input parameters during execution time.

46

Our standard intrinsic type inference for built-in functions which, as described in Sec-

tion 3.2.3, uses a database containing the possible intrinsic types for the output variables

based on the intrinsic types of the input parameters, is not the best approach for multi-typed

built-ins. The ine�ciency results because the same activation of the built-in may result in

di�erent intrinsic types, depending on the value of the parameters. The simplest approach

for these kinds of functions, as used by MathWorks in their compiler [Mat95], is to assume

that the output of these built-ins will always be of type complex. However, this automatic

promotion of intrinsic type may a�ect the performance of the code.

To improve our type inference mechanism, we developed the following value-based anal-

ysis algorithm that takes into consideration the range of possible values for each variable in

the program.

Algorithm: Value-based Analysis

Input: SSA representation of a MATLAB program in the form of an AST.

output: Estimated range of possible values (minimum and maximum) for all

variables in the program.

The algorithm traverses the AST in lexicographic order, estimating the mini-

mum and maximum possible values for each variable. For non-scalar variables,

the estimated values correspond to the minimum and maximum possible values

for all elements of the vector or matrix. Whenever it is not possible to infer

any of these values for a particular expression, the values �1 or +1 are assigned

as the minimum or maximum value respectively. The actions of the algorithm

are dependent on the kind of each statement visited, as described next. In all

cases, after the action is taken, the algorithm proceeds with the analysis of the

next statement.

� Control Flow: Do nothing.

� Input (i.e., load): Attribute the range �1 to +1 for all loaded variables.

47

� Assignment to a constant: Attribute the constant as minimum and maxi-

mum values for the variable.

� Assignment to a built-in function that returns a �xed range (e.g., sin, cos,

norm, rand): Attribute the output range of the function to the variable, if

the parameter is logical, integer, or real.

� Assignment to an expression:

{ If possible, evaluate the expression using the minimum and maximum

estimated values of the operands, taking into consideration possible

sign changes due to the expression. For example, the minimum and

maximum estimated values for the expression x2, considering that the

range of x is �1 to 1, will be 0 and +1 respectively.

{ If not possible, attribute the range �1 to +1 to the output variable.

� Assignment to a � function: Attribute the minimum and maximum esti-

mated values of the two parameters.

� Assignment to an � function: If the range of estimated values of the RHS

is larger than the range of estimated values of the previous de�nition of the

variable, update its range, and execute an algorithm similar to the algorithm

for intrinsic type inference of � functions.

� Assignment to a ' function: Execute an algorithm similar to the algorithm

for intrinsic type inference of ' functions.

End algorithm for value-based analysis.

As an example, consider the following expression that is used for the Dirichlet solution

to Laplace's equation:

! =
4

2 +

r
4 �

h
cos

�
�

n�1

�
+ cos

�
�

m�1

�i2 (5:1)

48

This expression returns an optimal choice for the parameter ! used to perform the successive

over-relaxation (SOR). According to the SOR method, this parameter should be in the range

1 � ! � 2. Although ! is only a scalar variable, for performance reasons it is important to

be able to infer its intrinsic type; this variable is used to update an n �m rectangular grid

which is in turn used to solve Laplace's equation in a iterative process. Therefore, if ! is

assumed to be complex, the n �m matrix that contains the grid will have to be declared

and operated as complex.

Using our value-based analysis and considering that the types of n and m are known

to be integer (or real) values, the compiler can infer that the cosine function (cos) will

return minimum and maximum values equal to -1 and 1 respectively. Thus, the addition of

the two cosines will return a value between -2 and 2, and its square will result in a value

between 0 and 4. Hence, the argument of the square root will be always � 0, and ! can be

inferred to be a real variable in the range 1 � ! � 2.

5.3 Shape and Rank Inference

For each variable, the outcome of the static inference mechanism is one of the following:

Exact rank: When all dimensions are known, the result is one of the following ranks:

matrix, rowVector, columnVector, or scalar.

Exclusive rank: For variables of which only one dimension is known. If the known dimension

is 1, the variable is inferred to have a notMatrix rank. Otherwise, if it is known to

be greater than 1, the variable is inferred to have a notScalar rank.

Unknown rank: Variables for which the static inference mechanism cannot infer any of the

dimensions are considered to have unknown rank.

Although compiled languages, such as C and Fortran, do not di�erentiate between row

vectors and column vectors, we need to make this distinction because MATLAB does so.

49

A � B B
A scalar vector(p,1) vector(1,q) matrix(p,n)

scalar scalar vector(p,1) vector(1,q) matrix(p,n)
vector(p,1) vector(p,1) error matrix(p,q) error
vector(1,q) vector(1,q) scalar1 error vector(1,m)1

matrix(n,q) matrix(n,q) vector(n,1)1 error matrix(n,m)1

1Only if p = q; otherwise error.

Table 5.3: Exact rank and shape inference for the multiplication operator.

MATLAB overloads operators with di�erent semantics depending on the kind of vector

that is being used. Variables that are not inferred to have an exact rank are marked to

be dynamically allocated and, as mentioned before, are always de�ned as two-dimensional

allocatable arrays.

The MATLAB operators can be divided in two main groups, depending on their con-

formability requirements. We de�ne the operators that require conformability for only one of

the dimensions of the operands (e.g., \�", \=", and \n") as a single-dimension conformable

operator, and operators that require both operands to have the same shape (e.g., +, -, and

logical operators) as a shape conformable operator the

Rank and shape information are obtained with the use of tables, such as Table 5.3 for

the (exact) rank and shape inference for the multiplication operator, and Table 5.4 for the

shape inference of a shape conformable operator. In these tables the shape information is

indicated with the letters (m, n, p, and q) that represent the exact values for the number of

rows or the number of columns; during the static phase of the analysis, shape information

is obtained only from constants. ColumnVectors and rowVectors are represented as

vector(p,1) and vector(1,q) respectively, and unknown values are represented with \?".

Although not implemented in the current version of the compiler, the conformability

constraints imposed by the MATLAB language allow backward inference in several cases.

Consider for example the addition of a variable A that is known to be a columnVec-

tor, with a variable B that is inferred to be notMatrix with shape (1,?). As presented

in Table 5.4 the output must be a columnVector; however, we can also infer that for

50

A+B B
scalar vector notMatrix notScalar matrix unknown

A (1,1) (p,1) (1,q) (1,?) (?,1) (p,?) (?,q) (p,q) (?,?)

(1,1) (1,1) (p,1) (1,q) (1,?) (?,1) (p,?) (?,q) (p,q) (?,?)
(p,1) (1,1) (p,1) error (p,1) (p,1) (p,1) error error (p,1)
(1,q) (1,q) error (1,q) (1,q) (1,q) error (1,q) error (1,q)
(1,?) (1,?) (p,1) (1,q) (1,?) (?,?) (p,?) (?,q) (p,q) (?,?)
(?,1) (?,1) (p,1) (1,q) (?,?) (?,1) (p,?) (?,q) (p,q) (?,?)
(p,?) (p,?) (p,1) error (p,?) (p,?) (p,?) error (p,q) (p,?)
(?,q) (?,q) error (1,q) (?,q) (?,q) error (?,q) (p,q) (?,q)
(p,q) (p,q) error error (p,q) (p,q) (p,q) (p,q) (p,q) (p,q)
(?,?) (?,?) (p,1) (1,q) (?,?) (?,?) (p,?) (?,q) (p,q) (?,?)

Table 5.4: Shape inference for a conformable operator.

A+B B
vector notMatrix notScalar matrix unknown

A (p,1) (1,q) (1,?) (?,1) (p,?) (?,q) (p,q) (?,?)

(p,1) B((1,1) B((p,1) B((?,1)
(1,q) B((1,1) B((1,q) B((1,?)
(1,?) A((1,1) A((1,1) A((1,1)
(?,1) A((1,1) A((1,1) A((1,1)
(p,?) A((p,1) B((1,1) A((p,q)
(?,q) A((1,q) B((1,1) A((p,q)
(p,q) B((1,1) B((1,1) B((p,q) B((p,q)
(?,?) A((?,1) A((1,?)

Table 5.5: Backward inference for a conformable operator.

the program to perform correctly, the variable B must be scalar. Table 5.5 presents all

situations where backward inference is possible for a shape conformable operator (+).

5.3.1 Propagation of Rank and Shape Information Through Both

� and ' Functions

The algorithms for propagation of rank and shape information through � and ' functions are

very similar to the algorithms for type inference described in Section 5.1. During the static

phase of the analysis, shape information is obtained only from constants; hence, our lattice

for shape inference, presented in Figure 5.3, is similar to the one described by Wegman and

Zadeck in [WZ91] for constant propagation. For each dimension of a variable, there are

51

Unknown

New

. . .κ κ κ κj l mi

Figure 5.3: Lattice for static shape inference.

First Second parameter
parameter New �j unknown

New New �j unknown

�i �i �i if �i = �j unknown
unknown if �i 6= �j

unknown unknown unknown unknown

Table 5.6: Resulting size for the comparison of one dimension of � or ' functions parameters.

only three possibilities for the lattice element: the bottom new, the top unknown, and all

constant elements (�) in the middle. There is an in�nite number of �i lattice elements, each

corresponding to a di�erent value for the dimension; however, they are all in the same level

in the lattice. The meet operator for � or ' functions is de�ned according to Table 5.6.

5.3.2 Propagation of Rank and Shape Information Through �

Functions

Due to the possibility of dynamic growth of arrays, the analysis of � functions for the static

shape inference requires a di�erent approach. We use the lattice presented in Figure 5.4 for

the analysis of � functions. In this case, the constants �, although still considered to be in

the same level in a lattice-theoretic sense, are now ordered in this level according to their

values. The meet operator for � functions is de�ned according to Table 5.7. In this case,

the range is never new because it must be part of the � operator.

52

Unknown

New

. . .κ κ κ κj l mi

Figure 5.4: Lattice for static shape inference.

Previous de�nition
Range New �j unknown

�i �i max(�i; �j) unknown

unknown unknown unknown unknown

Table 5.7: Resulting size for the comparison of one dimension of � functions.

When analyzing � functions, special consideration must be taken for the cases in which

there is a full use of a variable between its previous de�nition and an � function. In this

case, due to a possible horizontal movement in the lattice, a variable may be de�ned with

its �nal size that might be larger than the correct size for a particular use. Thus, the full

use of the variable may result in a program error. Consider, for example, the MATLAB

code segment presented in Figure 5.5(a), and its correspondent SSA representation, shown

in Figure 5.5(b). Statement S1 de�nes a 2� 2 matrix B that is multiplied by a scalar (A)

in Statement S3, generating a 2 � 2 matrix C. Finally, Statement S4 rede�nes the variable

A as a vector. If there were no full use of A between Statements S2 and S4, there would

be no problems in de�ning A as a vector for the whole program. However, in this case,

Statement S3 will generate a vector of length 2 if A is considered to be a vector instead

of a scalar. One solution to this problem is to de�ne variable A as a Vector, but to

replace its full use in Statement S3 by an indexed use, as presented in Figure 5.6.

53

S1: B = rand(2); B1 = rand(2);

S2: A = 10; A1 = 10;

S3: C = A * B; C1 = A1 * B1
S4: A(2) = C(2,2); A2 = �(A1, 2, C1(2,2))

(a) (b)

Figure 5.5: MATLAB pseudo-code segment in which there is a full use of variable between
its previous de�nition and an � function.

S1: B1 = rand(2);

S2: A1 = 10;

S3: C1 = A1(1) * B1
S4: A2 = �(A1, 2, C1(2,2))

Figure 5.6: Indexed use to solve the array growth problem.

5.4 Functions

One of the problems for the compilation of functions is the exponential number of combina-

tions to be considered when a function accepts several input parameters. Built-ins, however,

normally accept a small number of parameters, with a limited number of intrinsic type pos-

sibilities. Thus, it is possible to generate a database for the inference process that contains

all the necessary information about the built-in functions. In addition, this approach allows

the possibility of backward inference, as for example with the MATLAB function eig(A,B),

that accept as parameters two n� n matrices to solve the generalized eigenvalue problem:

Ax = �Bx: (5:2)

Suppose that A was inferred to be notScalar (n,?) and B has an unknown shape. As

MATLAB requires both matrices to be square matrices, we can infer that A and B are both

matrix of shape n � n.

For the case of M-�les, the inlining approach was chosen over procedure cloning or inter-

procedural analysis, mainly due to its simple implementation. With the inliner, intrinsic

54

type, rank, shape, and structural information can be easily propagated inside each instance

of the M-�le, and the number of combinations for the properties of the input arguments is

limited by the number of M-�les used in the program. However, special consideration must

be taken to preserve the side-e�ect free aspect of the M-�les. Hence, for each M-�le call, all

local variables receive a unique name. Therefore, two instances of the same M-�le are viewed

independently by the compiler. We recognize a few problems with this approach. First, it

generates a larger code to be compiled. Second, it may generate a much larger number of

variables, especially if the same M-�le is used several times with parameters having the same

properties. Finally, by inlining M-�les, we cannot handle recursion.

A simpler approach was taken by MathWorks in their MATLAB compiler. They compile

each M-�le independently, but rely on pragmas and assertions provided by the user, for

the type and rank inference of the input parameters. If no information is provided by the

user and type inference is not possible, they consider that all input parameters are of the

same type. This approach is implemented by cloning the function for the case of real

and complex types, and deciding during run-time with the use of a \ag variable" which

function clone to use: the \Complex Branch" or the \Real Branch". The downside of this

approach is that if any of the input parameters has a complex type, all input parameters

are considered to be complex.

5.5 Structural Inference

The main goal of the structural inference is to extract the high-level information of the MAT-

LAB language in order to help the code generator select speci�c methods to perform certain

operations. Hence, to perform structural inference, the compiler should use the semantic

information to search for special matrix structures, such as diagonal and triangular.

This structural information is propagated using an algebra of structures which de�nes how

the di�erent structures interact for the various operations. This information is then used by

the code generator to replace general methods that operate on regular dense matrices with

55

[L, U, P] = lu(A);

y = L n (P � b);

x = U n y;

Figure 5.7: MATLAB code segment for the solution of a linear system Ax = b.

specialized functions for structured sparse matrices.

Consider, For example, the MATLAB code segment for the solution of a linear system

Ax = b using an LU decomposition, presented in Figure 5.7

The �rst statement calls a built-in function (lu) that returns a lower triangular

matrix L, an upper triangular matrix U, and a permutation matrix P. For a regular

compiler, the second statement should perform a matrix-vectormultiplication (P b) and solve

the linear system Ly = Pb. Finally, the last statement should solve the linear system Ux = y.

However, by taking into consideration the semantics of the array language and knowing the

properties of L, U, and P, the system will infer that the matrix-vector multiplication (P � b)

is only a permutation on the vector b, and that the two linear systems to be solved are

triangular systems. Using this information, the multiplication operation and the general

linear system solve can be replaced by specialized algorithms during the code generation

phase.

In several situations, MATLAB, as well as our library system, perform run-time tests

to detect certain matrix structures and characteristics, as in the example described in Sec-

tion 3.2.5 for the solve operation. By performing these less expensive tests, MATLAB is able

to improve its performance using specialized functions. Consider, for example, the solve op-

eration: z = M n b; that appears in the preconditioned conjugate gradient (CG) [BBC+93],

presented in Figure 5.8 (Statement S10). In this case, M is a matrix and b is a rowVector.

The general method for the solution of a linear system requires O(n3) operations. However,
as mentioned in Section 3.2.5, if M were a triangular matrix, it would be detected by

56

S1: function [x, error, iter, flag] = cg(A, x, b, M, max it, tol)

S2: flag = 0;

S3: iter = 0;

S4: bnrm2 = norm(b);

S5: if (bnrm2 == 0.0), bnrm2 = 1.0; end

S6: r = b - A*x;

S7: error = norm(r) / bnrm2;

S8: if (error < tol) return, end

S9: for iter = 1:max it

S10: z = M n r;

S11: rho = (r'*z);

S12: if (iter > 1)

S13: beta = rho / rho 1;

S14: p = z + beta*p;

S15: else

S16: p = z;

S17: end

S18: q = A*p;

S19: alpha = rho / (p'*q);

S20: x = x + alpha * p;

S21: r = r - alpha * q;

S22: error = norm(r) / bnrm2;

S23: if (error <= tol), break, end

S24: rho 1 = rho;

S25: end

S26: if (error > tol) flag = 1; end

Figure 5.8: MATLAB function to solve the linear system Ax=b, using the Conjugate Gra-
dient method with preconditioning.

57

MATLAB, and x would be computed in O(n2) operations, using a back-substitution algo-

rithm. Hence, the extra O(n2) operation necessary to detect a triangular structure for

M is compensated by the cost to perform the operation using the general method for full

matrix, especially since most non-triangular matrices are detected almost immedi-

ately. However, this extra overhead could be avoided if the triangular structure of M

were detected during compile-time. Moreover, simpler structures, such as diagonal, are

not detected by MATLAB, since the run-time overhead for detecting a diagonal structure

is as expensive as solving the problem considering M to be a triangular matrix instead

of a diagonal matrix. If the diagonal structure is detected during compile-time, how-

ever, the solve operation can be substituted by a simple O(n) vector division equivalent

to z = b ./ diag(M). This solve operation using a diagonal matrix occurs normally in

practice, as for example in the CG algorithm using a diagonal preconditioner [BBC+93].

The following structures can be detected using the high-level semantics of MATLAB and

propagated using an algebra of structures.

� Vector (row or column); from vector constructors and built-ins that reduce the

rank of a matrix (e.g., min and max that return a vector with the minimum and

maximum elements of a matrix respectively).

� Square matrix; as input or output of built-ins that require square matrix as param-

eters (e.g., eig for eigenvalues and eigenvectors, and rcond for the matrix conditional

number estimate).

� Identity; from the built-in eye that returns a matrix with ones in the diagonal and

zeros elsewhere.

� permutation (only one non-zero entry in each row or column); from built-ins, such

as lu that computes the LU decomposition, and qr that computes the orthogonal-

triangular decomposition.

58

� diagonal; from built-ins, such as diag that returns diagonal matrices or diagonals

of a matrix; svd that computes the singular value decomposition; and eig.

� banded; from built-ins such as diag.

� tri-diagonal; by operating with banded and diagonal matrices.

� penta-diagonal; also by operating with banded, diagonal matrices, and tri-

diagonal matrices.

� triangular (lower or upper); from built-ins, such as tril that returns a lower

triangular part of a matrix; triu that returns an upper triangular part of a matrix;

and chol that computes the Cholesky factorization.

� permutation of a triangular (lower or upper); from built-ins, such as lu.

Another use for structural inference is to avoid the generation of dynamic code for rank

inference. Consider again the code generated for the multiplication c = a � b, presented in

Figure 3.9. If, for example, one of the matrices is known to be square, several of the tests

can be avoided as both dimensions of the variable must be equal. This is shown in Figure 5.9

for the case where variable a is known to be a square matrix.

59

if (a D1 .eq. 1) then

if (c D1 .ne. b D1 .or. c D2 .ne. b D2) then

if (ALLOCATED(c)) DEALLOCATE(c)

c D1 = b D1

c D2 = b D2

ALLOCATE(c(c D1,c D2))

end if

c = a(1,1) � b

else

if (b D2 .eq. 1) then

if (b D1 .eq. 1) then

if (c D1 .ne. a D1 .or. c D2 .ne. a D2) then

if (ALLOCATED(c)) DEALLOCATE(c)

c D1 = a D1

c D2 = a D2

ALLOCATE(c(c D1,c D2))

end if

c = a � b(1,1)

else

if (c D1 .ne. a D1 .or. c D2 .ne. 1) then

if (ALLOCATED(c)) DEALLOCATE(c)

c D1 = a D1

c D2 = 1

ALLOCATE(c(c D1,c D2))

end if

CALL DGEMV('N', a D1, a D2, 1.D0, a, a D1, b,1 , 0.D0, c, 1)

end if

else

if (c D1 .ne. a D1 .or. c D2 .ne. b D2) then

if (ALLOCATED(c)) DEALLOCATE(c)

c D1 = a D1

c D2 = b D2

ALLOCATE(c(c D1,c D2))

end if

CALL DGEMM('N','N',a D1,b D2,a D2,1.D0,a,a D1,b,b D1,0.D0,c,c D1)

end if

end if

Figure 5.9: Fortran 90 code for c = a � b when rank and shape of a and b are unknown,
but a is known to be a square matrix.

60

Chapter 6

THE DYNAMIC INFERENCE

MECHANISM

6.1 Dynamic De�nition of Intrinsic Types

As mentioned in Section 3.2.6, every use of a variable that has unknown type requires a

conditional statement to select during execution time which instance of the variable (real or

complex) should be used. The generation of these conditional statements is straightforward,

requiring only the cloning of the expression that requires this shadow test, and the update

of the corresponding shadow variable of the output of the expression.

Variables that are initially de�ned as full matrices with some intrinsic type di�erent

than complex, and are later promoted to complex with the use of indexed assignments,

may require special consideration. Consider, for example, the pseudo-code presented in

Figure 6.1. If there were no use of the variable A between its initial de�nition (Statements

S1) and the indexed assignment that promotes the array to complex (Statements S7), the

static inference mechanismwould detect that Statement S1 is just an array initialization and,

according to the procedure described in Section 5.1.2, it would infer the intrinsic type of A

as complex. However, since there are uses of A between S1 and S7, the compiler considers

the variable to have dynamic type, and generates code that takes into consideration both

instances of the variables, the real (A R) and the complex (A C), including a statement

that copies the real instance of the variable into the corresponding complex instance, as

61

S1: A = ones(5);

S2: B = function(A);

S3: X = function(B)

S4: for k=2:5

S5: C = A;

S6: for j=2:5

S7: B(k,j) = C(k,j) + A(k-1,j-1);

S8: A(k,j) = sqrt(-j);

S9: end

S10:end

Figure 6.1: Indexed assignment requiring intrinsic type change.

shown if Figure 6.2 (a similar analysis is valid for the variable B in this pseudo-code).

This approach was preferred over simply considering the array to be complex for the

whole program so as to avoid the the overhead of using a complex instance of the variable

before it is really necessary.

To avoid loop overhead and to maintain the correctness of the code, the copy statement

should be placed outside of the outermost loop. This placement of the copy statement is

easily determined. To exemplify the placement procedure, we observe the SSA representation

of the program, presented in Figure 6.3. A copy statement will be necessary if the ' function

inside of the outermost loop (statements P1 for A and P2 for B) has di�erent intrinsic types

for its parameters (complex for the forward parameter and another intrinsic type for the

backward parameter). In this case, the corresponding copy statement is placed after the

last use (that is not a � or a ' function) of the backward de�nition. In this example, it is

placed after Statement S2 for A and after Statement S3 for B. The last use of the backward

de�nition is guaranteed to be outside of the loop because ' functions are placed before any

other statement in the loop body.

62

S1: A R = 1

A T = T REAL

S2: B R = function(A R)

B T = T REAL

C1: A C = A R

A T = T COMPLEX

S3: X = function(B R)

C2: B C = B R

B T = T COMPLEX

S4: do k=2,5

S5: C = A C

S6: do j=2,5

S7: B C(k,j) = C(k,j) + A C(k-1,j-1)

S8: A C(k,j) = sqrt(DCMPLX(-j))

S9: end do

S10:end do

Figure 6.2: Update of the complex instance of the variable and corresponding shadow
value.

S1: A1 = ones(5);

S2: B1 = function(A1);

S3: X1 = function(B1);

S4: for k1=1:5

P1: A5 = '(A3,A1);
P2: B5 = '(B3,B1);
S5: C1 = A5;

S6: for j1=1:5

P3: A4 = '(A2,A5);
P4: B4 = '(B2,B5);
S7: B2 = �(B4,(k1,j1), C1(k1,j1) + A4(k1-1,j1-1));

S8: A2 = �(A4,(k1,j1),sqrt(-j1));
S9: end

P5: A3 = �(A2,A5);
P6: B3 = �(B2,B5);
S10: end

Figure 6.3: SSA representation for the pseudo-code requiring intrinsic type change.

63

6.2 Dynamic Shape Inference

The use of shadow variables to keep track of array dimensions during execution time makes

the generation of dynamic code straightforward for full array assignments. However, for

indexed assignments, it is necessary to take into consideration the possibility of dynamic

growth of the array. Consider, for example, the general indexed assignment: A(i:k,j:m) =

RHS, where A is a real variable, and i, j, k, and m are integer scalars. The dynamic

code needs to check if any of the dimensions of the array A are going to be extended and, if

so reallocate A with its new shape. Figure 6.4 presents the code generated for this indexed

assignment. Notice that this dynamic code executes the procedure required by an � function.

Some optimizations in the shape inference mechanism are necessary to avoid the excessive

number of tests and allocations. To illustrate this, consider the code segment of Figure 6.5,

which computes the tridiagonal part of a Poisson matrix. Let us assume that the value of

n is not known at compile time. The program resulting from a naive compilation of this

code would contain allocation tests just before statements S2, S5, and S6. For example, the

allocation test corresponding to statement S2 would be as shown in Figure 6.6.

The allocation tests before S2, S5, and S6 can be avoided if an allocation of P with shape

n�n were placed before statement S1. Avoiding the allocation tests is particularly important

if there is no de�nition of P before S1. In fact, if P were de�ned before S1, each allocation test

would cause only a small overhead from the conditional statements. On the other hand, if P

were �rst referenced in statement S2, loop S1 would produce a very large overhead because

P would have to be reallocated at each iteration.

This simple example illustrates two static techniques needed to support dynamic shape

inference: coverage analysis and e�cient placement of dynamic allocation. The objective of

the �rst technique is to determine whether an indexed array assignment may increase the size

of the array. If this information is known at compile time, it is not necessary to generate an

allocation test for the indexed assignment. Otherwise, the allocation test must be generated

64

if (k .gt. a D1 .or. m .gt. a D2) then

if (ALLOCATED(a)) then

T0 D1 = a D1

T0 D2 = a D2

ALLOCATE(T0 R(T0 D1, T0 D2))

T0 R = a

DEALLOCATE(a)

a D1 = MAX(a D1, k)

a D2 = MAX(a D2, m)

ALLOCATE(a(a D1, a D2))

a(1:T0 D1, 1:T0 D2) = T0 R

a(1:T0 D1, T0 D2+1:a D2) = 0.

a(T0 D1+1:a D1, :) = 0.

DEALLOCATE(T0 R)

else

a D1 = k

a D2 = m

ALLOCATE(a(a D1, a D2))

a = 0.

end if

else

if (.not. ALLOCATED(a)) then

a D1 = k

a D2 = m

ALLOCATE(a(a D1, a D2))

a = 0.

end if

end if

a(i:k , j:m) = RHS

Figure 6.4: Dynamic test for indexed assignments.

S1: for k=1:n

S2: P(k,k)=4;

S3: end

S4: for j=1:n-1

S5: P(j,j+1)=-1;

S6: P(j+1,j)=-1;

S7: end

Figure 6.5: MATLAB code segment for the generation of a Poisson matrix.

65

if (k .gt. P D1 .or. k .gt. P D2) then

if (ALLOCATED(P)) then

T0 D1 = P D1

T0 D2 = P D2

ALLOCATE(T0 R(T0 D1, T0 D2))

T0 R = P

DEALLOCATE(P)

P D1 = MAX(P D1, k)

P D2 = MAX(P D2, k)

ALLOCATE(P(P D1, P D2))

P(1:T0 D1, 1:T0 D2) = T0 R

P(1:T0 D1, T0 D2+1:P D2) = 0.

P(T0 D1+1:P D1, :) = 0.

DEALLOCATE(T0 R)

else

P D1 = k

P D2 = k

ALLOCATE(P(P D1, P D2))

P = 0.

end if

else

if (.not. ALLOCATED(P)) then

P D1 = k

P D2 = k

ALLOCATE(P(P D1, P D2))

P = 0.

end if

end if

S2: P(k , k) = 4

Figure 6.6: Fortran 90 allocation test for the MATLAB expression P(k,k)=4.

66

and the second technique is used to place the test where it will minimize the overhead.

6.2.1 Symbolic Dimension Propagation

To determine whether there is de�nition coverage, we use the following: dimension propaga-

tion algorithm with symbolic capabilities. This algorithm is similar to the range propagation

algorithm used by Blume and Eigenmann for the Range Test [BE94]. Since all matrices in

MATLAB have lower dimensions set to 1, our problem is simpli�ed to determining whether

the maximum value that an array index will reach is larger than the corresponding dimen-

sion in the previous assignment of the variable. If it is larger, then reallocating the array is

necessary; otherwise, no dynamic test is necessary for the assignment being considered.

Our dimension propagation algorithm symbolically computes the maximumvalue of each

scalar subscript expression that can be used to generate ALLOCATE statements. This infor-

mation is obtained by tracing the indices of the array to their earliest de�nitions in the AST

representation of the program, following an on-demand approach similar to that introduced

in [TP95]. In some situations (such as non-scalar indices or indirections), this symbolic

inference is unable to determine the maximum value. In this case, the compiler sets the

corresponding information as unknown, and dynamic allocation is required.

Algorithm: Symbolic Dimension Propagation.

Input: An AST representation of a MATLAB program.

Output: The symbolic value for each scalar variable, and the symbolic dimen-

sions for the dynamically allocated variables.

This algorithm is implemented as a single compiler pass that traverses the

AST in lexicographic order gathering symbolic information. Its goal is to syn-

thesize the following information:

1. For scalar assignments (e.g., S = RHS):

67

� A pointer (P s) to an AST node corresponding to the de�nition of the

RHS.

� A list (L s) containing symbolic expressions that de�ne the value of a

scalar. Each node in the list contains a pointer to a variable de�nition

(V) in the AST, and a constant value indicating the numeric di�erence

between (V) and the variable being assigned. If the constant value is

zero, the two variables are symbolically the same.

2. For de�nitions of dynamic variables (two-dimensional allocatable arrays):

� Two pointers (P nr and P nc) to AST nodes, corresponding to the

scalar variables that de�ne respectively the number of rows and num-

ber of columns of the array.

� Two lists (L nr and L nc) similar to L s, respectively for the number of

rows and number of columns of the array.

The algorithm could be rewritten using a node in the list L with a value

equal to zero to replace the corresponding pointer P . However, the pointers are

used to speedup the search process.

To illustrate the procedure for symbolic dimension propagation, we consider

the SSA representation of an extension of the code that generates the tridiagonal

part of a Poisson matrix, as presented in Figure 6.7. The action taken by the

algorithm depends on the kind of node being visited, as described next:

Scalar assignments :

� If the RHS is a scalar (e.g., S1 and S2): The pointer P s is updated

with the de�nition of the variable in the RHS. The algorithm traces

back to the earliest de�nition, using the pointers P s already updated.

So, in Statement S2, P s will point to the de�nition of m1 in S0 instead

of the de�nition of x1 in S1. This is possible because the pointer P s for

68

S0: load %(m1)

S1: x1 = m1;

S2: n1 = x1;

S3: P5 = null
S4: for k1=1:n1
S5: P6 = '(P1, P5);

S6: P1 = �(P6,(k1,k1),4);
S7: end

S8: P4 = �(P1, P5);

S9: T 11 = n1-1;

S10: for j1=1:T 11
S11: P8 = '(P3, P4);

S12: T 21 = j1+1;

S13: P2 = �(P8,(j1,T 21),-1);

S14: T 31 = j1+1;

S15: P3 = �(P8,(T 31,j1),-1);

S16: end

S17: P7 = �(P3, P4);

S18: Z1 = P7

Figure 6.7: Extension of a MATLAB code to generate a Poisson matrix.

69

x1 will be already pointing to m1; therefore, the algorithm can backtrack

using this information.

� If the RHS is a scalar expression (e.g., S9, S12, and S14): The sym-

bolic expression is added to the list L s of the corresponding variables.

Backtracking is also used for this list. So, for example, in Statement S9,

the information that T 11 is one less than m1 is saved. For the case of

T 21 and T 31, both �elds can be updated. First, L s is updated with

the information that T 21 is one greater than j1. Second, as P s from

j1 will indicate the maximum value that j1 will reach is T 11, with

simple symbolic computation m1 can be assigned to the pointer P s of

T 21. A similar update is performed for T 31.

� If the RHS is a triplet expression (e.g., LHS = start:stride:end): The

symbolic information is obtained according to the procedure above. It

considers the symbols start or end of the vector triplet as the RHS,

depending on the sign of stride. If stride is positive (or not present

in the triplet expression), the symbolic information is obtained from

end. Otherwise, it is derived from start.

Full array assignments :

� If the RHS is a built-in that creates arrays (e.g., zeros, rand, eye): The

symbolic information (P nr, P nc, L nr, and L nc) is updated according

to the parameters of the built-in function by backtracking to the earliest

de�nition using the pointers P s from the built-in parameters.

� If the RHS is an array (e.g., S18): The symbolic information is updated

according to the symbolic information from the RHS.

� If the RHS is a built-in function that returns matrices with the same

shape as the input parameter (e.g., sin, sqrt, abs): The symbolic

70

information is updated according to the symbolic information of the

built-in parameter.

� If the RHS is a two-dimensional conformable expression (e.g., C=A+B):

For each dimension, if the dimension of both operands can be proven to

be symbolically equal, the symbolic pointer for C is updated with the

corresponding information of one of the operands. The symbolic list is

updated with the union of the lists of the two operands.

� If the RHS is a one-dimensional conformable expression (e.g., C=A*B):

In this case, the symbolic information for C cannot be inferred, un-

less some information about the values of the conformable dimension

of the operands is known. Consider, for example, the multiplication

C = A * B, where A and B are n�q and p�m, respectively. We cannot

infer that C will be an n�m matrix without knowing the actual values

of n, q, p, and m. If n and q are both equal to 1, then C will be a p�m
matrix. Similarly, if p and m are both equal to 1, then C will be an n�q
matrix. Thus, without further information about n, q, p, and m, it is

impossible to infer the symbolic information for the variable C. In this

case, if the conformable dimensions q and p are known to be di�erent

than 1, then P nr will be set to n, P nc will be set to m, and the lists

L nr and L nc will be updated according to the left and right operands,

respectively.

Indexed assignments (� functions) (e.g., S6, S13, and S15) :

� For each dimension, compare the symbolic information from the index

(P s and L s) with the symbolic information from the previous de�nition

(P nr and L nr, or P nc and L nc). The symbolic information for the

indexed assignment is the largest of the two. Consider for example the

�rst dimension in S15. The index T 31 has P s set to m1, and P8 has

71

P nr also set to m1. Therefore, P nr for P3 will be set to m1, and L nr will

have the union of the two lists: L s from T 31 and L nr from P8. If P s

from T 31 and P nr from P8 were di�erent, then symbolic computation

would be performed to de�ne which value is larger.

� functions :

� The symbolic information from both parameters are compared. If they

have di�erent information, the output is set as unknown.

' functions :

� An iterative process similar to the one described in Section 5.1.1 for

the algorithm for intrinsic type inference of ' functions is performed.

The symbolic information of the output of the ' function is assigned

tentatively according to the backward parameter. After the symbolic

information for the forward parameter is computed, the symbolic infor-

mation of the ' function is reevaluated as a � function. If the output is

unknown, then all information previously de�ned based on the initial

choice is nulli�ed.

End algorithm for symbolic dimension propagation.

6.2.2 Coverage Analysis

To solve the coverage problem for an indexed array assignment, we compare the shape

resulting from the indexed assignment with the shape of the array before the assignment,

using the information from the symbolic dimension propagation algorithm. If the array

does not grow, the allocation test is unnecessary. If an indexed assignment has no previous

de�nition, then it can be considered a full assignment and allocated as such.

Consider again the code segment presented in Figure 6.7. From the scalar assignment in

S4, the compiler determines that the maximumvalue of the variable k1 will be n1. Using this

72

information, the compiler determines that S6 creates a matrix P with shape n1�n1. From

S10, the compiler determines that the maximum value of j1 will be T 11, that is equal to

n1-1. Notice that by using simple symbolic algebra capabilities it is possible to determine

that T 21 and T 31 are equal to j1+1 and � n1. Consequently, the shape of P is not

expanded in S13 or S15; therefore, it is not necessary to generate dynamic allocation tests

for these statements.

6.2.3 Placement of Dynamic Allocation

If dynamic allocation is necessary, the following algorithm for placement of dynamic alloca-

tion is activated:

Algorithm: Placement of Dynamic Allocation.

Input: An � function that requires dynamic allocation.

Output: Location in the AST for the dynamic allocation.

1. Using the pointer P s described in the algorithm for symbolic dimension

propagation, trace the the de�nition of the variable that determines the

symbolic dimension (s).

2. Trace the SSA representation from a variable assignment to its previous full

de�nition (d). If there is no previous de�nition for the assigned variable,

the ALLOCATE can be placed at any point between s and the assignment.

3. If an allocation test is required after d, it can be placed after both s and

the last use of d (that is not a � or a ' function).

End algorithm for Placement of Dynamic Allocation.

If possible, the dynamic allocation should be placed outside of the outermost loop. As

mentioned before, due to the algorithm for the generation of ' functions, the last use of d

is guaranteed to be outside of the loop. Hence, if s is outside of the outermost loop, the

73

ALLOCATE statement can be placed outside of the outermost loop, thus avoiding the loop

overhead.

74

Chapter 7

EXPERIMENTAL RESULTS

This chapter presents the experiments performed to measure both the e�ectiveness of the

internal phases of the inference mechanism and the overall e�ectiveness of the compiler.

Three sets of experiments were performed. In the �rst set, the performance of compiled

codes were compared with their interpreted MATLAB execution, with the C-MEX �les

compiled by the MathWorks compiler, and with Fortran 90 hand-written versions of the

same algorithms. In the second set, the importance of each of the major phases of the

inference system was measured. Finally, in the third set, a scalability study was performed

to determine how problem size a�ects the relative speed of the programs.

The following sections present a description of the test programs and the computational

environment where the experiments were performed, the evaluation of the overall e�ective-

ness of the compiler, the evaluation of the inference phases, and the scalability analysis.

7.1 Description of the Test Programs

For the �rst set of experiments, we ran 12 MATLAB programs on a single processor of

an SGI Power Challenge and on a Sun SPARCstation 10. To avoid large execution times,

especially in MATLAB, the time required for the experiments was controlled by setting

the problem size and the numerical resolution (in the case of iterative problems). These

parameters were chosen in order to execute each MATLAB program in about one minute on

a Sun SPARCstation 10.

75

Test Programs: Problem size Lines Source

Preconditioned Conjugate Gradient method (CG) 420 � 420� 36 a
Successive Overrelaxation method (SOR) 420 � 420� 29 a
Quasi-Minimal Residual method (QMR) 420 � 420� 91 a
Adaptive Quadrature Using Simpson's Rule (AQ) 1 Dim. (7) 87 b
Crank-Nicholson solution to the heat equation (CN) 321 � 321 29 b
Finite Di�erence solution to the wave equation (FD) 451 � 451 28 b
Dirichlet solution to Laplace's equation (Di) 41 � 41 39 b
Galerkin method to solve the Poisson equation (Ga) 40 � 40 48 c
Two body problem using 4th order Runge-Kutta (RK) 3200 steps 66 c
Two body problem using Euler-Cromer method (EC) 6240 steps 26 c
Incomplete Cholesky Factorization (IC) 400 � 400 33 d
Generation of a 3D-Surface (3D) 51�31�21 28 d

Source:
a: [BBC+93] b: [Mat92c] c: [Gar94] d: Colleagues
� A sti�ness matrix from the Harwell-Boeing Test Set (BCSSTK06) was used as input

data for these programs.

Table 7.1: Test programs.

A brief description of the test programs is presented in Table 7.1. These programs can be

classi�ed into di�erent groups, depending upon certain characteristics of the MATLAB code

and its execution. The main characteristics are: use of indexed assignments; requirement of

array growth during execution time; execution time dominated by built-in functions; and use

of multi-typed built-ins. We refer to the programs that have execution time dominated by

build-in functions as library-intensive programs1, while loop-based programs that perform

mostly elementary scalar operations (using scalars or element-wise access of vectors

or matrices) are referred to as elementary-operation intensive. Finally, a program that

concentrates its execution time with memory allocations and data movements is referred to

as a memory-intensive program.

A description of the main characteristics of each program is presented next. Notice that

all programs, with the exception of CG, SOR, and QMR, use indexed assignment.

1Notice that in our analysis, operations such as matrix-matrix multiplication and matrix-vector mul-
tiplication are also considered built-ins due to their use of specialized library functions to perform the
computation.

76

CG: is an iterative method for the solution of linear systems. It is an implementation of the

preconditioned conjugate gradient algorithm using diagonal preconditioner. This is a

library-intensive program due to the computation of matrix-vector multiplications. It

has no indexed assignments.

SOR: is also an iterative solver. Its is a library-intensive program due to a triangular

matrix-vector multiplication and a triangular solve. This program has no indexed

assignments.

QMR: is another iterative solver with no indexed assignments. Its execution time is also

dominated by matrix-vector multiplications. In addition, it uses a multi-typed function

(sqrt) to compute the expression:

 =
1p

1 + �2
: (7:1)

 is used to update a vector containing the residual and a vector containing the

approximation. These vector updates, however, require only O(n) computations,

and are not propagated through the part of the code that executes the matrix-vector

multiplications (which require O(n2) computations).

AQ: uses the Simpson's rule to numerically approximate the value of the de�nite integral:

Z 6

�1

13 � (x� x2)e
�3x

2 dx: (7:2)

This is a memory-intensive program because the adaptive quadrature method adjusts

the integration interval to smaller subintervals, when some portions of the curve have

large functional variation [Mat92c]. This re�nement in the integration process requires

data movements and dynamic reallocation of an array as new subintervals are gener-

ated.

CN: is a numeric approximation method for the solution of parabolic di�erential equations

(the heat equation). This is an elementary-operation intensive program that performs

indexed updates to a two-dimensional grid.

77

FD: is a numeric approximation method for the solution of hyperbolic di�erential equations

(the wave equation). This is also an elementary-operation intensive program that

performs indexed updates to a two-dimensional grid.

Di: is an iterative method for the solution to Laplace's equation. This is another elementary-

operation intensive program requiring element-wise access of grid elements. Another of

its characteristics is the use of a multi-typed built-in (sqrt) to compute Expression 5.1,

presented in Section 5.2. As mentioned before, in this program, the output of the

square root (!) is always a real value. Thus, the penalty for not being able to infer

the intrinsic type of ! would be very large, because it is propagated through the grid

used by the program.

Ga: is a numeric approximation method to solve the Poisson equation in two-dimensions

using the Galerkin method. This is also an elementary-operation intensive program.

This test program computes the charge distribution for a two-dimensional dipole using

a multi-typed built-in (log). The logarithmic function is used for the computation of

the expression:

�(r) =
��
2�"0

�
ln

�����r �
�
rc +

1

2
d
�����
�
� ln

�����r �
�
rc +

1

2
d
�����
��

(7:3)

This expression is used only to save the partial result for plotting purposes. Thus,

its output is not propagated through the program. Although our value-propagation

algorithm is able to detect that the output of the logarithm function is real, the

penalty of not inferring it would be very small.

EC: is an ordinary di�erential equation problem. It computes the orbit of a comet about

the Sun using the Euler-Cromer method. Its main characteristic is the utilization of

the built-in norm to compute norms of vectors of size 2. Also, due to the lack of

\pre-allocation" in the program2, the vectors that are used to save the results grow

2A common practice of MATLAB programmers is to pre-allocate vectors and matrices using built-ins,
such as zeros, to avoid allocation overhead inside of loops.

78

during the MATLAB execution.

RK: uses a di�erent approach to solve the same problem as EC. In this case, it uses the

Runge-Kutta method. It also performs computations of built-ins using vectors of

size 2, and requires reallocations of vectors during the MATLAB execution.

IC: uses a double-nested loop to compute the incomplete Cholesky factorization of a matrix.

Its main characteristic is the use of a multi-typed built-in (sqrt). In this case, as

shown in the program segment presented in Figure 7.1, the square root may result in

a complex output. However, due to the conditional statement following the square

root3, the complex value of r is never assigned to L. Thus, the program does not need

to perform complex arithmetic. Our inference mechanism is not yet able to detect

that the complex result is not used and, due to the promotion of intrinsic types

described in Section 5.1.2, the compiled program cannot avoid the use of complex

variables in this case.

3D: uses a three-nested loop to generate the 3-dimensional surface. This is a library-

intensive program due to the computation of eigenvalues with the use of the built-in

eig.

7.2 Evaluation of the Overall Compiler E�ectiveness

Tables 7.2 and 7.3 present the execution times in seconds for all programs in our test set run-

ning on the SGI Power Challenge and on the Sun SPARCstation 10, respectively. For each

individual test the time presented in the table is the best time out of �ve runs. The Fortran 90

programs were compiled on the SGI using their native Fortran 90 compiler with the opti-

mization ag \O3". Due to the lack of a native Fortran 90 compiler on our SPARCstation,

3In MATLAB, a logical expression can operate with complex operands; however, it considers only the
real part. Hence, if the square root function returns a complex value, its real part is zero. Thus, the
logical test (sqrt(...) <= 0) will always return true if the output of the square root is complex.

79

for j = 1:n

...

r = sqrt(L(j,j) - s);

if (r <= 0)

Error = j;

L(j,j) = 1;

else

L(j,j) = r;

end

...

end

Figure 7.1: MATLAB code segment for the Incomplete Cholesky Factorization (IC).

the Fortran 90 programs were �rst translated to Fortran 77 with the use of VAST 90 [Pac93],

and then compiled with the Sun Fortran 77 compiler using the optimization ag \O3". The

C-MEX-�les generated by the MathWorks MATLAB to C Compiler (MCC) were compiled

on the SPARCstation with the GNU C compiler using the optimization ag \O3". On the

SGI, they were compiled both with the SGI native C compiler using the highest possible op-

timization ag (\O2") and with the GNU C compiler using the optimization ag \O3". For

each program, the best execution time out of the two compilers was chosen. MCC does not

support the load statement; hence, the input data was loaded using interpreted MATLAB

commands (not timed) and provided to the MEX-�les as function parameters. Assertions

indicating the intrinsic type and rank of the loaded variables were added to the M-�les to

provide MCC with the same information that was extracted by our compiler from the loaded

variables (described in Section 3.2.5).

Figures 7.2 and 7.3 present the speedups of the compiled codes over the interpreted

MATLAB execution running on the SGI Power Challenge and on the Sun SPARCstation 10,

respectively. In both �gures, the darker bars represent the speedup of our compiler over

MATLAB, while the lighter bars represent the speedup of MCC over MATLAB. Due to

the large di�erence in performance for some of the programs, the speedups are shown in

80

Program MATLAB MCC FALCON Hand coded
AQ 19.95 2.30 1.477 0.877
CG 5.34 5.51 0.588 0.543
CN 44.10 0.70 0.098 0.097
Di 44.17 1.50 0.052 0.050
FD 34.80 0.37 0.031 0.031
Ga 31.44 0.56 0.156 0.154
IC 32.28 1.35 0.245 0.052
3D 34.95 11.14 3.163 3.158
EC 8.34 3.38 0.012 0.007
RK 20.60 5.77 0.038 0.025
QMR 7.58 6.24 0.611 0.562
SOR 18.12 18.14 2.733 0.641

Table 7.2: Execution times (in seconds) running on an SGI Power Challenge.

Program MATLAB MCC FALCON Hand coded
AQ 59.53 25.82 25.71 15.11
CG 46.55 58.47 20.68 19.15
CN 60.98 1.85 0.36 0.34
Di 75.28 4.43 0.26 0.26
FD 49.02 1.30 0.28 0.28
Ga 54.87 1.32 0.70 0.69
IC 53.92 5.12 1.97 0.61
3D 64.73 30.77 10.77 10.63
EC 72.37 17.33 0.19 0.16
RK 53.45 19.22 0.23 0.18
QMR 54.93 60.33 13.88 12.80
SOR 62.05 66.38 24.43 7.64

Table 7.3: Execution times (in seconds) running on a Sun SPARCstation 10.

81

11.21.4
SOR CG 3D QMR AQ IC Ga CN RK EC Di FD

 1

 4

 10

 40

 100

 400

1000
Sp

ee
du

p
(lo

g
sc

al
e) MCC

FALCON

SGI Power Challenge

Figure 7.2: Speedup of compiled programs over MATLAB, running on the SGI Power Chal-
lenge.

11.21.4
SOR CG 3D QMR AQ IC Ga CN RK EC Di FD

 1

 4

 10

 40

 100

 400

Sp
ee

du
p

(lo
g

sc
al

e)

MCC

FALCON

SPARCstation 10

Figure 7.3: Speedup of compiled programs over MATLAB, running on the Sun SPARCsta-
tion 10.

82

logarithmic scale. We observe that the performance of the Fortran 90 programs on the

SPARCstation 10 is partly a�ected by the use of VAST 90. As mentioned before, VAST 90

translates the Fortran 90 into Fortran 77, causing a performance degradation on the �nal

code.

7.2.1 Comparison of Compiled Fortran 90 Programs to MAT-

LAB

Our experimental results show that for all programs in the test set, the performance of the

compiled Fortran 90 code is better than the respective interpreted execution, and the range

of speedups is heavily dependent on the characteristics of the MATLAB program.

Library-intensive programs (e.g., CG, SOR, and 3D) have a small speedup compared to

MATLAB. In these programs, the speedup obtained is primarily attributed to the overhead

of interpretation since, in general, the built-ins use the same optimized library functions that

are called by our compiler and by the MathWorks compiler.

The speedup obtained by AQ resulted from the better handling of indexed assignments

and the reallocation of matrices by the compiled program. However, according to the scal-

ability study to determine how problem size a�ects the relative speed of the programs,

discussed in Section 7.4, this improvement varies considerably, depending upon the number

of reallocations required by the program, which is in turn dependent upon the input data

set and the function being used for the numerical integration.

Finally, elementary-operation intensive programs are the ones that bene�t the most from

compilation. This improvement is due to the more e�cient loop control structure of the

compiled code and the larger overhead of the indexed assignments within the interpreted

code.

83

7.2.2 Comparison of Compiler Generated Programs with the

Hand-written Fortran 90 Programs

When comparing the hand-coded Fortran 90 programs with the compiler generated versions,

we observe that, for most programs, the performance of the compiled versions is very close

to the performance of the hand-written programs.

The largest performance di�erences occur with IC and SOR. In both cases, the hand-

written code performed more than four times faster on the SGI, and more than three times

faster on the SPARCstation. The reason for the performance di�erence with the IC program

was the inability of the inference mechanism to detect that the conditional statement shown

in Figure 7.1 would prevent the array L to became complex. Hence, the compiled code

performs complex arithmetic for most of the program, while the optimized program uses

real variables for the same operations.

The main reason for the performance degradation in the SOR case is attributed to the

computation of the following MATLAB expression inside a loop:

x = M n (N � x + b);

where x and b are vectors, M is a lower triangular matrix, and N is an upper triangular

matrix. The hand-coded version considers this information and calls specialized routines

from the BLAS library to compute the solve operation (n) and the matrix multiplication

(N � x) for triangular matrices. The compiled version (as well as MATLAB) uses a run-

time test to detect that M is a triangular matrix, and computes the solve using specialized

functions. However, the price of detecting the triangular structure of the matrix is that it

requires O(n2) operations. Moreover, in both cases, the matrix multiplication is performed

using a generalized function for full matrices that performs 2n2 operations, while the BLAS

function for triangular matrix multiplication performs roughly half the number of operations.

Furthermore, it would not be worthwhile to test if the matrix is triangular during run-time

because, as mentioned above, the test itself has an O(n2) cost. We observe that with the

84

implementation of the structural inference mechanism, discussed in Section 5.5, the compiler

will be able to detect the triangular structure of the matrices, and the performance of the

generated code will be closer to the hand-optimized code.

Other performance di�erences that are worth mentioning are from EC, RK, and AQ. In

the �rst two programs, the di�erence in performance is attributed to the computation of the

norm. Both EC and RK compute several norms of vectors of two elements. The compiled

programs call a library function for the computation of the norm, while the hand-optimized

programs perform the computation using a single expression which takes into consideration

that the vector has only two elements. Moreover, due to the granularity of the programs,

the performance di�erence becomes more noticeable when the programs are executed on the

SGI.

Finally, the performance di�erence observed with AQ is primarily a result of the code

generated by the compiler for the reallocation of matrices, as presented in Figure 6.6. In the

hand-written code, because of a better knowledge of the algorithm, it is possible to avoid part

of the copy of the old values to the expanded matrix and the initialization of the expanded

part to zero.

7.2.3 Comparison with the MathWorks MATLAB Compiler

Figures 7.4 and 7.5 present the speedups of the codes generated by our compiler over MCC's

codes. With the exception of AQ on the SPARCstation 10 which, as described previously,

spends most of its time performing reallocations and data movements, all other codes gener-

ated by our compiler ran faster than their MCC counterparts. We observe from Figure 7.3

that in three cases (CG, SOR, and QMR) MCC generated programs that ran slower than

MATLAB on the SPARCstation 10.

Three programs generated by our compiler (RK, EC, and Di) had signi�cantly better

performance than the corresponding MCC versions. The primary reason for these di�erences,

is lack of more in depth inference analyses by the MathWorks compiler. The MathWorks

85

11.11.2SOR CG 3D QMR AQ IC Ga CN RK EC Di FD

0

1

2

3

4

5

6

7

8

9

10

Sp
ee

du
p

of
 F

AL
CO

N
ov

er
 M

CC

SPARCstation 10

83 91 17

Figure 7.4: Speedup of FALCON's compiler over MCC on a SPARCstation 10.

11.11.2SOR CG 3D QMR AQ IC Ga CN RK EC Di FD

0

2

4

6

8

10

12

Sp
ee

du
p

of
 F

AL
CO

N
ov

er
 M

CC

SGI Power Challenge

151 281 29

Figure 7.5: Speedup of FALCON's compiler over MCC on an SGI Power Challenge.

86

compiler does not perform use-coverage analysis and, as mentioned before, simpli�es the

handling of multi-typed built-ins by considering that they always return complex output.

Moreover, as described in [Mat95], the code generated by MCC cannot handle complex

values nor perform subscript checking. To solve these problems, the code generated by MCC

calls MATLAB using \callback functions" provided in their library.

RK and EC perform several elementary vector operations using vectors of size 2. the

code generated by MCC is very ine�cient for these kinds of operations because it calls

the MATLAB functions to perform vector and matrices operations. These callback

functions generate an overhead that, in this case, is not amortized due to the size of the

vectors. Moreover, MCC does not appear to infer the rank vector, and instead treats

both vectors and matrices with the same data structure. Small vector size generates

another overhead problem for MCC. Furthermore, the lack of pre-allocation of variables in

the MATLAB code is also responsible for the degradation of the performance of these MCC

codes. Our compiler, by contrast, is able to allocate all matrices in these programs outside

the main loop, because of our symbolic propagation analysis.

Finally, the better performance from Di results from our value-propagation analysis. In

this case, the intrinsic type inference mechanism can determine that the Expression 5.1 will

always return a real value, whereas MCC assumes the output of multi-typed built-in to be

always of type complex. Thus, the code generated by MCC for Di uses complex variables

for most of its computations, whereas ours uses only real variables.

7.3 Evaluation of the Inference Phases

For the analysis of the major phases of the compiler and for the scalability analysis, we run a

select subset of the programs above, with each program representing a di�erent characteristic

of the MATLAB codes. For the evaluation of the inference phases, the following programs

87

were selected:

� AQ, due to its reallocation of arrays;

� CG, representing the group of programs without indexed assignments;

� 3D, as a library-intensive program;

� Di, due to its use of a multi-typed built-in; and

� FD, representing the elementary-operation intensive programs.

With the use of compiler ags, we independently deactivated intrinsic type inference,

shape and rank inference, and symbolic dimension propagation. When type inference was

deactivated, all variables, with the exception of do loop indices and temporaries used for

conditional statements, were declared complex. When shape and rank inference were de-

activated, all variables, with the same two exceptions just mentioned, were declared as

two-dimensional allocatable arrays. For all runs where shape and rank inference were de-

activated, symbolic dimension propagation was also deactivated since it is an optimization

of shape and rank inference. For each of the programs, the following six combinations of

inference phases were used:

No inference: all variables were declared as two-dimensional allocatable complex arrays.

Only shape and rank inference: all variables were of type complex.

No intrinsic type inference: shape, rank, and symbolic inference were activated.

Only intrinsic type inference: all variables declared as two-dimensional allocatable ar-

rays.

No symbolic inference: type, shape, and rank inference were activated.

Complete inference: all inference phases were performed.

88

Figure 7.6 shows a graphical comparison of the execution times for all programs, using

all six combinations. The execution times in seconds are also presented in Table 7.4.

We observe that 3D is the program having the least variation in performance between

the di�erent inference phases. This behavior results from the fact that this program spends

most of its time executing a library function to calculate eigenvalues. Furthermore, 3D

uses a complex array during this computation, thus minimizing the e�ect of intrinsic type

inference. Its overall improvement in performance, from no inference to all phases being

used, was on the order of 25%. For all other programs, at least one of the inference phases

produced a signi�cant performance improvement.

Shape and rank inference had a large inuence on performance for all other programs,

with improvements ranging from 3 times faster for CG to almost 30 times faster for Di. The

main reason for this improvement is the reduction in overhead for dynamic shape inference,

especially for scalars. When dynamic shape inference is necessary for a matrix, the overhead

generated by the compiler may be amortized by the subsequent operation and assignment

to the matrix, depending on its size and the number of oating point operations performed

by the expression. On the other hand, a typical scalar assignment does not require enough

work to compensate the overhead.

As expected, only the elementary-operation intensive programs (Di and FD) bene�ted

from the symbolic dimension propagation. AQ requires reallocation of arrays; hence, the

symbolic dimension propagation has no e�ect on the program. Since CG has no indexed

assignments and spends most of its time computing library functions, symbolic dimension

propagation also has a very small e�ect on the generated program.

Intrinsic type inference generated the biggest improvements for the computational in-

tensive programs (CG, Di, and FD). In these cases, when shape inference and dimension

propagation were activated, the speedup resulting from type inference ranged from 3.8 to 5.

On the other hand, type inference had very little e�ect on AQ since it spends most of its

time performing data movements.

89

inference phases AQ CG 3D Di FD
no inference 27.93 3.49 3.92 2.45 2.93
only shape and rank 1.82 2.46 3.40 0.28 0.34
no intrinsic type 1.80 2.42 3.40 0.26 0.12
only intrinsic type 27.85 1.68 3.58 2.58 2.07
no symbolic 1.48 0.59 3.16 0.09 0.13
all phases 1.48 0.59 3.16 0.05 0.03

Table 7.4: Execution times in seconds when inference phases were deactivated.

11.21.4

0.03

0.10

0.30

1.00

3.00

10.0

30.0

a b c

se
co

nd
s

(lo
g

sc
al

e)

a b c a b c a b c a b c

with type inference
no type inference

SGI Power Challenge

a: no shape inf. b: no symb. prop. c: with shape inf. & symb. prop.

AQ

Di

CG

FD

3D

Figure 7.6: Comparison of the inference phases.

90

0 50 100 150 200 250 300 350 400 450 500
3

4

5

6

7

8

9

10

SGI Power Challenge

CG

Sp
ee

du
p o

f F
AL

CO
N

ov
er

MA
TL

AB

Number of iterations

Figure 7.7: CG speedups on the SGI Power Challenge when increasing the number of itera-
tions.

7.4 Scalability Analysis

In our scalability analysis, we studied the behavior of three programs with respect to changes

in problem size (CG and FD), number of iterations (CG and AQ), and memory require-

ments (AQ). CG was selected because it is a library-intensive program. FD represents the

elementary-operation intensive programs. And, �nally, AQ was selected due to its memory-

intensive characteristics. Unfortunately, these times had to be obtained while running in

multi-user mode.

7.4.1 Analysis of Library-intensive Programs

For this study, we performed two sets of runs using the program CG. In the �rst set of

experiments, we measure the speedup of the compiled Fortran 90 programs over MATLAB

on the SGI Power Challenge, varying the tolerance from 10�1 to 10�15 with �xed problem

size (using the same 420 � 420 matrix sti�ness matrix). The corresponding speedup curve

is presented in Figure 7.7.

When increasing the number of iterations for a �xed problem size, the computation time

91

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

SGI Power Challenge

CG

MATLAB

FALCON

Se
co

nd
s

Number of iterations

Figure 7.8: CG Execution time on the SGI Power Challenge with �xed problem size.

increases linearly, as shown in Figure 7.8, which presents the time in seconds for both the

MATLAB execution and the compiled execution. Hence, the speedup curve is expected to

reach an asymptotic value for a large number of iterations. This value appears to be around

9 for the problem size used. When only a small number of iterations is executed, the speedup

is expected to be small because the initial overhead of the program has yet to be amortized.

In the second experiment, we measured the speedup of the compiled Fortran 90 code over

MATLAB on the SGI Power Challenge using a �xed number of iterations and varying the

problem size. For this experiment, we used a larger matrix from the Harwell-Boeing Test

Set (BCSSTK10). This matrix has 1086 � 1086 elements. Several runs were executed, each

one using a subset of the matrix with di�erent size. In all runs, the number of iterations

was �xed to 145 and the tolerance was set to 10�15. The corresponding speedup curve is

presented in Figure 7.9, and the Mop ratios for the compiled program and the interpreted

execution are presented in Figure 7.10.

The speedup curve presents four regions that require observations. First, when running

with small problem sizes we observe a higher speedup because the time spent by MATLAB

to perform the built-in functions is not enough to amortize the overhead of the rest of the

92

100 200 300 400 500 600 700 800 900 1000 1100
0

2

4

6

8

10

12

14

Sp
ee

du
p

of
 F

AL
CO

N
ov

er
 M

AT
LA

B

Problem size (n by n matrix)

SGI Power Challenge

CG

Figure 7.9: CG speedups on the SGI Power Challenge when varying the problem size.

100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

250

M
flo

ps

Problem size (n by n matrix)

SGI Power Challenge

CG

FALCON

MATLAB

Figure 7.10: Mops ratios for the CG program running on the SGI Power Challenge.

93

program. Notice that although the Mop curve for the MATLAB interpretation is much

atter then the Mop curve for the compiled version, the performance of the MATLAB

interpretation increased by a factor of two when the matrix size changed from 100�100 to

300�300, while the performance of the compiled code increased by about one third. As the

problem size increases, the matrix-vector multiplication starts to dominate the computation,

and the speedup curve approaches an asymptotic value. Notice that both the compiled code

and the MATLAB interpretation use the same library function to compute theO(n2) matrix-

vector multiplication (a BLAS-2 DGEMV). In this second region of the speedup curve, the

compiled program is making full use of cache, reaching its peak Mop ratio. The large

di�erence in the Mop ratio between the two curves indicates the better cache utilization

by the compiled program. This better cache utilization is supported by the drop in speedup

that occurs in the third region of the curve. At this region, the performance degradation due

to cache misses is much more noticeable in the compiled program than in the interpreted

code. Finally, in the fourth region of the speedup curve, the problem size is so large that

the program is running practically out of memory. At this point, the speedup curve reaches

another asymptotic value.

One possible reason for the better cache utilization from the compiled program is the

interpreter's memory requirements. The compiled code uses the instruction cache for the

program, while the interpreter uses the data cache for both the data and the internal rep-

resentation of the M-�les being used. Hence, it is likely that with the increase in problem

size, the overhead of the interpretation will increase since the instructions of the M-�le will

have to be accessed from memory. Unfortunately, due to the complexity of the SGI Power

Challenge, and the lack of single-user time and of access to the internals of the MATLAB

interpreter, it is very di�cult to prove this assumption.

94

50 100 150 200 250 300 350 400 450 500
300

400

500

600

700

800

900

1000

1100

SGI Power Challenge

FD

Sp
ee

du
p

of
 F

AL
CO

N
ov

er
 M

AT
LA

B

Grid points (on an n by n grid size)

Figure 7.11: FD speedup on the SGI Power Challenge varying the grid size.

7.4.2 Analysis of Elementary-operation Intensive Programs

For the analysis of elementary-operation intensive programs, we run the program FD on an

SGI Power Challenge varying the grid size from 31 � 31 grid points to 451 � 451 grid points.

The speedup curve of the Fortran 90 programs over MATLAB is presented in Figure 7.11.

As expected, the speedup curve has a behavior similar to of the speedup curve for the

CG program with �xed problem size. In this case, no built-in function is used; thus, the

speedup is only due to the overhead of the interpretation. After the initial loop overhead of

the compiled code is amortized, the speedup reaches the asymptotic value.

7.4.3 Analysis of Memory-intensive Programs

For the analysis of memory-intensive programs, we performed three sets of runs with the

AQ program varying the tolerance from 10�8 to 10�15. The reduction in tolerance has a

direct e�ect on the number of subintervals required by the algorithm. In the �rst set of

95

runs, there were no preallocations of the array. Thus, reallocation was necessary every time

the algorithm required a re�nement of the interval into subintervals. In the second set,

there was an initial pre-allocation of 2500 subintervals. Hence, reallocation of the array was

necessary only if the program required more than these 2500 subintervals. Finally, in the

third set, there was an initial pre-allocation of 10000 subintervals, which was su�cient for

all runs. Therefore, in this case, no reallocations of the array were necessary. Figures 7.12

and 7.13 present the speedups of the compiled code over MATLAB running on the SGI

Power Challenge and on the SPARCstation 10, respectively.

We observe a similar behavior on both architectures. We notice that the speedup de-

creases as the memory operations (data movements and reallocations) of the programs start

to dominate the execution time. The speedup curves for the runs on the SPARCstation 10

appears to have reached their asymptotic value, while on the SGI they are still decreas-

ing. The overhead of allocating and using a larger array than necessary is responsible for

the smaller speedup of the runs with full pre-allocation, compared with the runs with 2500

pre-allocated sub-intervals.

In this program, although it is not possible for the inference mechanism to avoid the

overhead of reallocation, by determining the correct size required by the array, the gap

between the speedup curves for the runs with full pre-allocation and the runs with no pre-

allocated demonstrate the importance of inference techniques for pre-allocation of arrays.

For this program, this gap indicates the cost of dynamic allocation. We observe that the

speedup on the SGI practically doubles when the array is pre-allocated.

96

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

100

SGI Power Challenge

AQ

Sp
ee

du
p

of
 F

AL
CO

N
ov

er
 M

AT
LA

B

Number of sub−intervals

10000 intervals pre−allocated

2500 intervals pre−allocated

No pre−allocation

Figure 7.12: AQ speedup on the SGI Power Challenge when varying the required number of
subintervals.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

30

SPARCstation 10

AQ

Sp
ee

du
p

of
 F

AL
CO

N
ov

er
 M

AT
LA

B

Number of sub−intervals

10000 intervals pre−allocated

2500 intervals pre−allocated

No pre−allocation

Figure 7.13: AQ speedup on the Sun SPARCstation 10 when varying the required number
of subintervals.

97

Chapter 8

CONCLUSIONS AND FUTURE

DIRECTIONS

The main goal of this thesis has been the development of inference techniques for the compi-

lation of MATLAB programs. The MATLAB compiler presented here is part of a program-

ming environment for the development of scienti�c libraries and applications, that is being

developed at CSRD. By using MATLAB as the source language and producing Fortran 90 as

output, this environment takes advantage of both the exibility and power of an interactive

array language and the performance of compiled languages. In order to generate code from

the interactive array language, the compiler combines static and dynamic inference meth-

ods for intrinsic type, shape, rank, and structural inference. This inference mechanism is

enhanced with value and symbolic dimension propagation analyses.

As shown by our experimental results, the compiled programs performed better than their

respective interpreted executions, with performance improvement factors varying according

to the characteristics of each program. For certain classes of programs, our compiler generates

code that executes as fast as hand-written Fortran 90 programs, and more than 1000 times

faster than the corresponding MATLAB execution on an SGI Power Challenge. Loop-base

programs with intensive use of scalars and array elements (both vectors and matrices) are

the ones that bene�t the most from compilation.

When comparing the performance of the programs generated by our compiler with the

performance of the programs generated by the MathWorks MATLAB to C Compiler (MCC),

98

we observe that in MCC generated code similar in performance to the code generated by our

compiler in only one situation. In the other cases, the performance of the programs generated

by our compiler was faster than the corresponding program generated by MCC, with perfor-

mance di�erence ranging from approximately 2 to 90 times faster on a SPARCstation 10 and

from 3.5 to 280 times faster on the SGI Power Challenge. This di�erence in performance is

attributed to the more enhanced inference mechanism utilized by our compiler.

8.1 Future Work

A reasonable amount of work, both in the theoretical aspects and the implementation aspects,

is still necessary to improve the performance of the target programs. This work can be divided

into the improvement of sequential performance and the exploitation of parallelism.

For the improvement of sequential performance, a global analysis mechanism should

be designed to enhance the static inference system. This mechanism should consider the

context of blocks of statements to be able to improve the inference. Also, the symbolic

dimension propagation described in this thesis should be extended to handle more complex

symbolic computation. Areas needing improvement in the implementation side include the

implementation of the structural inference; further exploitation of backward inference; and

the implementation of cloning or inter-procedural analysis in order to reduce program size.

The integration of this compiler with a parallelizing compiler is an important step for

the exploitation of parallelism. This integration includes the utilization of the high-level

semantics of the array language in order to facilitate the work of the parallelizer. We envision

two possible methods for this integration: an external integration with the generation of

directives for parallelization; or an internal integration, by generating the internal structure

of the parallelizer compiler, providing more direct information that is synthesized by the

inference process.

Two other important areas of research with respect to the compilation of MATLAB are

the study of techniques for the generation of code for sparse computation, and the study

99

of techniques for the generation of data parallel languages, such as HPF, including the

automatic generation of directives for data distribution.

100

BIBLIOGRAPHY

[AALL93] Saman P. Amarasinghe, Jennifer M. Anderson, Monica S. Lam, and Amy W.

Lim. An Overview of a Compiler for Scalable Parallel Machines. In Utpal Baner-

jee, David Gelernter, Alex Nicolau, and David Padua, editors, Languages and

Compilers for Parallel Computing, pages 253{272. Lecture Notes in Computer

Science, vol. 768, Springer-Verlag, August 1993. 6th International Workshop,

Portland, Oregon.

[ABB+92] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LA-

PACK User's Guide. Society for Industrial and Applied Mathematics, 1992.

[ASU85] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.

Addison-Wesley Publishing Company, 1985.

[BBC+93] Richard Barrett, Michael Berry, Tony Chan, James Demmel, June Donato,

Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk van

der Vorst. Templates for the Solution of Linear Systems: Building Blocks for

Iterative Methods. SIAM, 1993.

[BBG+93] Francois Bodin, Peter Beckman, Dennis Gannon, Srinivas Narayana, and Shelby

Yang. Distributed pC++: Basic Ideas for an Object Parallel Language. InOON-

SKI'93 Proceedings of the First Annual Object-Oriented Numerics Conference,

pages 1{24, April 1993.

101

[BE94] William Blume and Rudolf Eigenmann. The Range Test: A Dependence Test

for Symbolic, Non-linear Expressions. In Proceedings of Supercomputing '94,

pages 528{537, November 1994.

[BEF+94] William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeinger,

David Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu,

and Stephen Weatherford. Polaris: Improving the E�ectiveness of Parallelizing

Compilers. In K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,

editors, Languages and Compilers for Parallel Computing, pages 141{154. Lec-

ture Notes in Computer Science, vol. 892, Springer-Verlag, August 1994. 7th

International Workshop, Ithaca, NY, USA.

[Bud88] Timothy Budd. An APL Compiler. Springer-Verlag, 1988.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. E�ciently Computing Static Single Assignment Form and the

Control Dependence Graph. ACM Transactions on Programming Language and

Systems, 13(4):451{490, October 1991.

[Chi86] Wai-Mee Ching. Program Analysis and Code Generation in an APL/370 Com-

piler. IBM Journal of Research and Development, 30:6:594{602, November 1986.

[Coo88] Grant O. Cook Jr. ALPAL A Tool for the Development of Large-Scale Simula-

tion Codes. Technical report, Lawrence Livermore National Laboratory, August

1988. Technical Report UCID-21482.

[DGG+94] L. DeRose, K. Gallivan, E. Gallopoulos, B. Marsolf, and D. Padua. An Envi-

ronment for the Rapid Prototyping and Development of Numerical Programs

and Libraries for Scienti�c Computation. In F. Makedon, editor, Proc. of

the DAGS'94 Symposium: Parallel Computation and Problem Solving Envi-

ronments, pages 11{25, Dartmouth College, July 1994.

102

[DGG+95a] L. DeRose, K. Gallivan, E. Gallopoulos, B. Marsolf, and D. Padua. FALCON: A

MATLAB Interactive Restructuring Compiler. In C.-H. Huang, P. Sadayappan,

U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and

Compilers for Parallel Computing, pages 269{288. Lecture Notes in Computer

Science, vol. 1033, Springer-Verlag, August 1995. 8th International Workshop,

Columbus, Ohio.

[DGG+95b] L. DeRose, K. Gallivan, E. Gallopoulos, B. Marsolf, and D. Padua. FALCON:

An Environment for the Development of Scienti�c Libraries and Applications.

In Proc. of the KBUP95: First international workshop on Knowledge-Based sys-

tems for the (re)Use of Program libraries, Sophia Antipolis, France, November

1995.

[DGK+94] D. L. Dai, S. K. S. Gupta, S. D. Kaushik, J. H. Lu, R. V. Singh, C.-H. Huang,

P. Sadayappan, and R. W. Johnson. EXTENT: A Portable Programming En-

vironment for Designing and Implementing High-Performance Block-Recursive

Algorithms. In Proceedings of Supercomputing '94, pages 49{58, November 1994.

[DJK93] Peter Drakenberg, Peter Jacobson, and Bo Kagstrom. A CONLAB Compiler

for a Distributed Memory Multicomputer. In Proceedings of the 6th SIAM

Conference on Parallel Processing for Scienti�c Computing, Norfolk Va, March

1993.

[DMBS79] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK User's

Guide. Society for Industrial and Applied Mathematics, 1979.

[DPar] Luiz DeRose and David Padua. A MATLAB to Fortran 90 Translator and

its E�ectiveness. In Proceedings of the 10th ACM International Conference on

Supercomputing, to appear.

[Gar94] Alejandro L. Garcia. Numerical Methods for Physics. Prentice Hall, 1994.

103

[GHR94] E. Gallopoulos, E. Houstis, and J. R. Rice. Computer as Thinker/Doer:

Problem-Solving Environments for Computational Science. IEEE Computa-

tional Science & Engineering, 1(2):11{23, Summer 1994.

[GMBW95] K. Gallivan, B. Marsolf, A. Bik, and H. Wijsho�. The Generation of Optimized

Codes using Nonzero Structure Analysis. Technical Report 1451, Center for

Supercomputing Research and Development, September 1995.

[GMW79] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh

LCF, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[GP92] Milind Girkar and Constantine D. Polychronopoulos. Automatic Extraction of

Functional Parallelism from Ordinary Programs. IEEE Transactions on Parallel

and Distributed Systems, 3(2), March 1992.

[GR83] A. Goldeberg and D. Robson. Smalltalk-80: The Language and Its Implemen-

tation. Addison-Wesley Publishing Company, 1983.

[GR84] L. Gilman and A. Rose. APL : An Interactive Approach. Wiley, 1984.

[Hig93] High Performance Fortran Forum. High Performance Fortran Language Speci-

�cation, May 1993. Version 1.0.

[HRC+90] E. N. Houstis, J. R. Rice, N. P. Chrisochoides, H. C. Karathanasis, P. N. Pa-

pachiou, M. K. Samartzis, E. A. Vavalis, Ko Yang Wang, and S. Weerawarana.

//ELLPACK: A Numerical Simulation Programming Environment for Parallel

MIMD Machines. In Proceedings 1990 International Conference on Supercom-

puting, pages 96{107, 1990.

[HWA+88] P. Hudak, P. Wadler, Arvind, B. Boutel, J. Fairbairn, J. Fasel, J. Hughes,

T. Johnsson, D. Kieburtz, S. P. Jones, R. Nikhil, M. Reeve, D. Wise, and

104

J. Young. Report on the Functional Programming Language Haskell. Technical

report, Yale University, December 1988. Technical Report DCS/RR-666.

[JKR92] Peter Jacobson, Bo Kagstrom, and Mikael Rannar. Algorithm Development for

Distributed Memory Multicomputers Using CONLAB. Scienti�c Programming,

1:185{203, 1992.

[Joh] Steve Johnson. Yacc: Yet Another Compiler-Compiler. Unix Programmer's

Manual - Supplementary Documents.

[Ker95] Yaron Keren. MATCOM: A MATLAB to C++ Translator and Support Li-

braries. Technion, Israel Institute of Technology, 1995.

[LS] M. Lesk and E. Schmidt. Lex - A Lexical Analyzer Generator. Unix Program-

mer's Manual - Supplementary Documents.

[MAE+65] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin.

Lisp 1.5 Programmer's Manual. The MIT Press, 2nd edition, 1965.

[Mat92a] The Math Works, Inc. MATLAB, High-Performance Numeric Computation

and Visualization Software. User's Guide, 1992.

[Mat92b] The Math Works, Inc. MATLAB, High-Performance Numeric Computation

and Visualization Software. Reference Guide, 1992.

[Mat92c] John H. Mathews. Numerical Methods for Mathematics, Science and Engineer-

ing. Prentice Hall, 2nd edition, 1992.

[Mat95] The Math Works, Inc. MATLAB Compiler, 1995.

[McK76] W. M. McKeeman. Compiler Construction. In Compiler Construction, An

Advanced Course. Springer-Verlag, 1976. Lecture Notes in Computer Science,

Volume 21.

105

[Pac93] Paci�c-Sierra Research Corporation. VAST-90 Fortran 90 Language System:

User guide, 2.1 edition, 1993.

[PGH+89] Constantine Polychronopoulos, Milind Girkar, Mohammad Reza Haghighat,

Chia-Ling Lee, Bruce Leung, and Dale Schouten. Parafrase-2: A New Genera-

tion Parallelizing Compiler. In Proceedings of 1989 Int'l. Conference on Parallel

Processing, St. Charles, IL, volume II, pages 39{48, August 1989.

[Pom83] S. Pommier. An Introduction to APL. Cambridge University Press, New York,

1983.

[SBD+76] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema,

and C. B. Moler. Matrix Eigensystem Routines - EISPACK Guide, volume 6 of

Lecture Notes in Computer Science. Springer-Verlag, second edition, 1976.

[Sch75] J. T. Schwartz. Automatic Data Structure Choice in a Language of a Very High

Level. Communications of the ACM, 18:722{728, 1975.

[TP95] Peng Tu and David Padua. Gated SSA-Based Demand-Driven Symbolic Anal-

ysis for Parallelizing Compilers. In Proceedings of the 9th ACM International

Conference on Supercomputing, pages 414{423, Barcelona, Spain, July 1995.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant Propagation with Condi-

tional Branches. ACM Transactions on Programming Languages and Systems,

13(2):181{210, April 1991.

106

VITA

Luiz Antônio De Rose was born in Porto Alegre, Brazil, on the 2nd of November, 1956.

He graduated from University of Brasilia with a B.S. in Statistics in 1978. While there, he

was awarded in 1976 with the Scienti�c Initiation Scholarship from the Brazilian National

Council of Research and Development. Also, from October 1976 to May 1979, he worked for

the research group at the University of Brasilia's data processing center.

From May 1979 to October 1984, he worked at the Brazilian Federal Research Center in

Communications. His research was in the area of computer security and cryptology. From

1980 to 1982 he also attended the University of Brasilia, receiving his M.S. degree in Statistics

and QuantitativeMethods. FromNovember 1984 to August 1987, he was a consulting analyst

at the Federal Data Processing Department in Brazil (SERPRO), working with distributed

systems, networks, computer security, and cryptology.

In 1987, he received a scholarship from the Brazilian National Council of Research and

Development (CNPq) for his graduate studies in Computer Science. Since August 1987, he

has been a graduate student at the University of Illinois at Urbana-Champaign, working

towards a Ph.D degree in Computer Science. He received his M.S. in Computer Science

in January 1992, working with Professor E. Gallopoulos, and received his Ph.D in Com-

puter Science in 1996, working with Professor David Padua as his advisor. Since August

1989, he has been a Research Assistant with the Center for Supercomputing Research and

Development (CSRD), except during the Fall of 1993 when he was a Teaching Assistant

at the Department of Computer Science. As a TA, he received a departmental award for

outstanding TA work.

107

