
Automatic Parallelization for Non-cache

Coherent Multiprocessors �

Yunheung Paek David A. Padua

Department of Computer Science

University of Illinois at Urbana-Champaign,

1304 West Spring�eld Avenue,

Urbana, IL 61801, USA
fpaek,paduag@csrd.uiuc.edu

Abstract

Although much work has been done on parallelizing compilers for cache
coherent shared memory multiprocessors and message-passing multipro-
cessors, there is relatively little research on parallelizing compilers for non-
cache coherent multiprocessors with global address space. In this paper,
we present a preliminary study on automatic parallelization for the Cray
T3D, a commercial scalable machine with a global memory space and non-
coherent caches.

1 Introduction

Of the three main classes of today's parallel computers, namely, message-passing
multiprocessors, cache coherent multiprocessors, and noncoherent cache multi-
processors with a global address space, parallelizing compilers [2, 9, 11, 12] have
been extensively studied for only the �rst two. In this paper, we present a
preliminary study on the automatic parallelization of Fortran programs for the
third class machine. Our translation algorithms were implemented in the Polaris
restructurer [2], which was developed by the authors and others at Illinois. Im-
portant advances in automatic parallelization for cache coherent multiprocessors
have been demonstrated recently with the Polaris restructurer. For the work re-
ported in this paper, we have extended Polaris to generate code for the Cray
T3D, the only noncoherent cache machine commercially available today. Our
current implementation does a straightforward translation involving only a few
optimizations beyond parallelism detection. However, our long-term objective
is to develop more sophisticated techniques, such as those necessary for loop
scheduling, data distribution, and communication minimization.

�The research described is supported by Army contract #DABT63-95-C-0097. This work

is not necessarily representative of the positions or policies of the Army or the Government.



This paper is organized as follows. In Section 2, we brie
y introduce the
Polaris restructurer. The Cray T3D and CRAFT, the target language of our
code generator, are discussed in Section 3. In Section 4, we discuss the compiler
techniques we have implemented. In Section 5, we present the results of applying
these techniques to ten programs from the SPEC and Perfect Benchmarks. We
also discuss some of the factors that limit the performance of the target programs.
In Section 6 we discuss a few advanced techniques we plan to implement in the
near future to deal with these factors.

2 Polaris

The main objective of the Polaris project [2, 7] is to develop and implement
e�ective parallelization techniques for scienti�c programs. One important char-
acteristic of Polaris is its powerful internal representation [1]. It includes an
extensive collection of program manipulation operations to facilitate the im-
plementation of compiler transformations. After a program is converted into
Polaris' internal form, it is analyzed and transformed by a sequence of com-
piler passes which add annotations to identify the parallelism detected by the
compiler. Passes currently implemented in Polaris include: symbolic dependence
analysis, inlining, induction variable substitution, reduction recognition, and pri-
vatization [3, 5, 8]. To support data dependence analysis, Polaris applies range
propagation techniques based on symbolic program analysis [10]. After the in-
put program is restructured into the internally-represented parallel program, a
�nal pass or backend applies machine-speci�c transformations and outputs the
target parallel program. As mentioned above, we have implemented two back-
ends in Polaris: one for shared-memory multiprocessors, and one for the Cray
T3D which is discussed in this work.

Our main focus during the past two years has been on accurately identify-
ing parallelism. Very little e�ort has been devoted to the backend. However,
even without a sophisticated code generation algorithm, Polaris has been quite
successful. On an extensive collection of programs gathered from the Perfect
Benchmarks, SPEC, and other sources, Polaris substantially outperforms the
native parallelizer of the SGI multiprocessor. Work on parallelism detection
continues on several fronts, including the study of e�cient interprocedural anal-
ysis techniques, the parallelization of loops containing complex recurrences, and
run-time dependence analysis [16].

3 The Cray T3D and CRAFT

While the lack of cache coherence in the Cray T3D helps make the machine
a�ordable and scalable, it also introduces some di�culties in the development of
e�cient programs [18]. The experimental results presented in this paper give us
hope that these programming di�culties can be overcome with e�ective compiler
techniques. In this section, we very brie
y describe the Cray T3D and CRAFT.



More detailed descriptions of the machine can be found in [14, 15, 21].
The Cray T3D was designed mainly for large-scale parallel scienti�c applica-

tions. It consists of up to 1024 processing nodes, each containing 2 processing
elements(PE) and a local memory. The PEs are 150 MHz DEC Alpha 21064
microprocessors. The interconnection network is a 3-D torus network with high
throughput and low latency. Remote memory latency on the T3D ranges from
90 to 130 cycles [33]. Local memory latency is 22 cycles. The T3D also contains
a special tree-like network for global barrier synchronization. Various communi-
cation primitives, including single-sided communication primitives such as GET
and PUT, are supported in hardware. The local memory is logically partitioned
into private and shared address spaces. The shared memory in the T3D is no
more than the collection of the shared address portions of all local memories.
Every shared memory access is manipulated by o�-chip components before send-
ing the request to the appropriate module. This o�-chip manipulation requires
20-30 cycles. The T3D has a �rst level on-chip cache which is used only for data
in the private address space of the local memory.

There are implementations of the PVM and MPI message passing libraries
for the Cray T3D. The machine is often programmed using these primitives to
facilitate portability to other scalable multiprocessors. However, programming
and compiling for the T3D following the shared-memory model is simpler for
most problems and is, therefore, the approach we followed in our work. This can
be done using CRAFT, an extension of Fortran for the T3D which has several
features in common with other languages for distributed shared-memory ma-
chines [19, 25, 28]. CRAFT follows the Single-Program Multiple-Data(SPMD)
model and contains a shared address space. In our experiments, each CRAFT
process was allocated to a separate physical processor. Data objects can be de-
clared as shared or private. Shared data can be distributed across memory using
directives similar to those made popular by High Performance Fortran, Vienna
Fortran and other similar languages [4, 6, 13, 20]. CRAFT uses :block for block
distribution and :block(N) for block-cyclic distribution.

The do shared directive of CRAFT is used to mark parallel loops. To illus-
trate its semantics, consider the loop

cdir$ shared A(:block(1)), B(:block)

cdir$ do shared (I) on A(I)

do I = 1, N

A(I) = B(I)

enddo

Its I-th iteration is executed by the PE that owns A(I) in its local memory.
Since the elements of A are local to the PE accessing them, the compiler enables
the caching of A. The elements of B, on the other hand, are not cached be-
cause some of them may be accessed remotely. Therefore, due to the on clause,
CRAFT users can partition the computation according to the data distribution
and thereby enable the caching of some shared data structures. In the example,
the computation happens to be distributed according to the owner computes
rule, as is done in HPF; however, other distributions could also have been used.



Table 1 summarizes the di�erences between CRAFT and HPF, as discussed in
[14].

CRAFT HPF
Memory Classes shared/private implicitly all shared
Data Distribution W:block(N) block/cyclic/align

Computation Distribution programmer-controlled owner-computes rule
Redistribute statement NO YES
Explicit Communication YES NO
and Synchronization

Table 1: Comparison of CRAFT and HPF

Although the machine-supported shared memory model facilitates program-
ming on the T3D, ine�ciencies could arise if the program is not carefully de-
signed for the following reasons:

� Unlike cache coherent machines, a remote memory access to a single array ele-
ment does not take advantage of spatial locality.

� Shared data objects are not cached, even when they are accessed from local
memory. Therefore, shared data objects have to be fetched from the remote
location every time the program references them. This signi�cantly increases
average memory latency and network contention.

To avoid these ine�ciencies it is necessary to explicitly control caching and
data transfer. We plan to do so in future versions of the translator. To this
end we will use the SHMEM [21, 22] communication library which contains
various single-sided communication primitives, such as PUT and GET, and ex-
plicit cache control routines. For example, SHMEM enables message aggregation
which is not possible in ordinary CRAFT programs. The PUT/GET commu-
nication [19] allows asynchronous non-blocking access to any memory location.
This means that with the SHMEM primitives, the whole memory either private
or shared can be shared by all processors. Therefore, all data can be cached
without losing the ability to share it. Furthermore, the SHMEM library can be
used in programs containing shared data, whereas conventional message passing
libraries, such as PVM and MPI, assume all data to be private. SHMEM is
more e�cient than current implementations of other message-passing models.
In fact, in experiments conducted on a 16-processor partition [17], the latency
of a SHMEM PUT operation was measured at 2 �sec and the peak throughput
was measured at 116.8 MB/s, while the equivalent �gures for PVM send/receive
operations are 63 �sec and 26 MB/s respectively.

4 The Cray T3D backend

In this section, we describe the transformations applied by the Cray T3D backend
module of Polaris. The backend applies four classes of transformations which
we describe in separate subsections below.



Before invoking the backend, Polaris marks all loops it identi�es as parallel. It
also marks all the induction variables and reductions that have to be substituted,
as well as the variables that have to be privatized to make the loop parallel.

4.1 Translation into SPMD form following the master/slave
model

The �rst step of the T3D backend is to translate the parallelized Fortran pro-
gram into SPMD form. We follow a relatively simple approach. One of the
processes, designated as the master, executes a program that, outside parallel
loops, is identical to the original sequential Fortran program. The master and
slave processes cooperate in the execution of parallel regions, while the slaves do
not participate in the execution of sequential regions.

We use barriers to enforce synchronization in the master/slave model. Bar-
riers are inserted around parallel loops and calls to subprograms containing
parallel regions. Barriers are also needed for some other statements that read or
initialize privatized, and therefore replicated, variables.

Barriers do not have a signi�cant impact on overall program execution time
in the T3D. One reason is the e�cient hardware implementation of barriers in
the machine. Table 2 shows the performance of the T3D barrier [33].

PEs Barrier Time(�sec)

4 1.73
32 1.81
256 1.90

Table 2: Barrier Performance. Times are the average of 5000 barrier executions.

Furthermore, in the experiments reported in Section 5, barriers are executed
infrequently. The execution time increases by less than 1% due to barriers in
all cases. For instance, in FLO52, the dynamic counts of barrier calls are about
50,000. The total overhead due to barriers is approximately 0.1 sec on a 64-
processor partition, which is less than 0.2 % of the overall execution time of
FLO52.

We, therefore, apply only a few simple techniques to minimize barrier over-
head. One of techniques is to identify the places where implicit barriers are
inserted by CRAFT and avoid placing explicit barriers there. For instance,
CRAFT automatically places a barrier at the entrance and exit of shared sub-
programs in order to synchronize allocation and deallocation of shared data and
data redistribution. As a consequence, our code generation algorithm does not
need to insert explicit barriers at the boundaries of shared routines. Also, we
eliminate the in-between barriers when parallel regions are adjacent. We found
that Polaris' strategy of preferring outer loops for parallelization further con-
tributes to reducing barriers.



4.2 Work partitioning

This transformation uses the on clause to partition the iteration space of a paral-
lel loop across processors. We currently use the same code generation algorithm
for the T3D as we use for cache coherent machines. Thus, parallel triangular
loops are given cyclic schedules and square loops are given block schedules. Only
one loop in a nest is parallelized. If several loops in a nest are parallel, then the
outermost loop is parallelized unless its number of iterations is small relative
to the number of processors. In this case, loop interchanging will be applied to
move more practical inner loops to the outer level so that an inner loop can be
parallelized.

For the case of loops containing reductions, it was necessary to modify the
simple strategy applied by Polaris for cache coherent machines with a few pro-
cessors. Consider, for example, the loop

do J = 1, M

do I = 1, N

...

A(I) = A(I) + ...

...

enddo

enddo

Loops such as this arise frequently in real codes. Assuming that the loop is
parallel except for the reduction on A, the backend for cache coherent machines
generates the loop

cdir$ preamble

A priv(1:N) = 0.0

cdir$ parallel loop(J)

do J = b*my PE+1,(my PE+1)*b

do I =1, N

...

A priv(I) = A priv(I) + ...

...

enddo

enddo

cdir$ postamble

call set lock(lock)

A(1:N) = A(1:N)+A priv(1:N)

call clear lock(lock)

Here, A priv is a private array of the same size and type as A, and b is a
block size; that is, M=P , where P is the number of processors. The preamble

and postamble code segments are executed once by each processor cooperating
in the execution of the loop. The loop(J) code is strip-mined to distribute
computation across the processors.

This parallel version of the loop has the disadvantage that the postamble

is executed serially because it is in a critical section. This works well for a few



processors, but a di�erent strategy is needed for a large number of processors.
In our current implementation, A priv is divided into P sections within each
processor. The postamble consists of two phases. First, for 1 � i � P , the i-th
section of all processors is copied into the i-th processor. Then all processors
add the P sections copied into them. As expected, this approach of parallelizing
the postamble has an important impact on performance. This is illustrated in
Figure 3.

PEs Preamble Middle Loop Serial Postamble Parallel Postamble

2 0.014 260 0.39 0.1
64 0.017 11 2.7 0.129

Table 3: Times for parallel version of loop INTERF do1000 in MDG

4.3 Data Distribution and Privatization

In the T3D, if a variable is declared shared, it is not cached even when the
reference is to a local memory module. In fact, performance di�erence between
the best and worst distributions in a loop of the form

cdir$ shared A(distribution descriptor)

do I = 1, N

... A(f(I)) ...

enddo

is only a factor of 2 on 16 processors. On the other hand, declaring data as
private has an important impact on performance since private data is cached:
approximately one order of magnitude.

Our implementation of the T3D backend follows a simple strategy. Polaris
identi�es loop-private data using the existing privatization algorithm. Further-
more, the T3D backend marks as procedure-private those scalar variables local
to a procedure and never used in parallel loops, and other temporal variables
exclusively used by individual processors. Both the loop level and the procedure
level privatizable variables are declared as private in the target program. All
other variables are declared shared and are given :block distribution in all their
dimensions.

cdir$ private(procedure-level privatizable variables)

X = 3
...

do I = L, U

cdir$ private(loop-level privatizable variables)
...

enddo

The implementation of this simple strategy involves some complex issues. For
example in CRAFT, the private/shared attribute of formal arguments has to



be explicit and match that of the actual arguments. This is discussed in more
detail in Section 4.4.

In future implementations, the local sections of logically shared arrays will
be privatized to enable the use of the cache. Routines from the SHMEM library
could be used to fetch and store remote sections of these logically shared arrays.

4.4 Compatibility problems between Fortran and CRAFT

Many MPP Fortran extensions, such as CRAFT and HPF [20], help the user
attain high performance through distribution of data and other directives, while
maintaining some degree of compatibility with conventional Fortran 77. How-
ever, total compatibility has not been achieved because these languages impose
several restrictions in the name of performance. The following list shows the
major restrictions imposed by CRAFT:

� Fortran's sequence and storage association rules [23] do not apply to shared data.

� Shared data may not be in EQUIVALENCE or blank COMMON.

� Shared data may not be of type CHARACTER.

� The dimension size of shared arrays must be a power of two1.

� Shared formal parameters may not be associated with private actual parame-
ters, and their size and shape must match those of the corresponding actual
parameters.

We have endeavored to develop translation techniques to overcome these
limitations. Three of these techniques are discussed below.

4.4.1 Renaming

Aliasing has always been an important issue in program analysis in general,
and in automatic parallelization in particular [32]. Aliasing is also one of the
most di�cult problems in automatic parallelization for the T3D. Consider, for
example, the following segment extracted from HYDRO2D:

subroutine X1

real A, B, C, D, E, F

common /SCRA/ A, B, C, D, E, F

...

subroutine X2

real G(5)

integer I

common /SCRA/ I, G

1In the Cray T3E, this restriction is no longer imposed.



CRAFT cannot distribute a shared data object if it is aliased to other objects
with di�erent shape or type. In the code above, the shared variables within SCRA

cannot be distributed because of the aliasing of A and I. In order to address this
problem, we interprocedurally check the life times associated with each variable
and apply renaming. In the previous example, it can be proven that the life
time of the values of SCRA in X1 and in X2 are disjoint. As a result, we could
rename either occurrence of the common block without a�ecting the outcome of
the program.

4.4.2 Linearization

Variable linearization and renaming are the most common techniques used to
solve problems related to storage association rules. For example, linearization
is needed to inline a subroutine call when an actual parameter di�ers in shape
from the corresponding formal parameter.

We use linearization to deal with array equivalences because of the restriction
that the size of all shared array dimensions must be a power of 2. When two ar-
rays of di�erent shapes are equivalenced, we linearize the array before dimension
expansion. Linearization also helps to save memory. For example, a shared array
A(9,9,9) is expanded to A(16,16,16) without linearization, and A(1024) with
linearization. Linearization, in this case, saves 3K words. However, we do not
want to apply linearization to all multidimensional arrays because linearization
makes the program less readable and program analysis more di�cult due to the
complex subscript expressions.

4.4.3 Array Reshaping and Procedure Cloning

The following code, where we assume that A and B are shared arrays, illustrates
one important di�erence between Fortran 77 and CRAFT:

real A(8,8)

call foo(A(1,7))

...

subroutine foo(B)

real B(4,4)

... B(2,2)

If interpreted as Fortran 77, B(2,2) in this code is aliased with A(6,7); but,
if interpreted as CRAFT, it is aliased with A(2,8). This is because, in CRAFT,
aliasing between shared arrays takes place at the submatrix level, whereas in
Fortran, a linear storage sequence is often assumed for parameter aliasing. Many
real Fortran codes rely on such association rules.

We address this problem by changing the subscript expressions within the
subroutine to conform to the CRAFT semantics. Procedure cloning is applied
whenever the same routine is called with di�erent submatrices as actual param-
eters.



For example, our algorithmswould translate codes like the previous one using
the following transformation pattern:

real A(L1 : U1,...,Ln : Un) real A(L1 : U1,...,Ln : Un)
call foo(A(f1,...,fn)) call foo clone(A)

... )

...

subroutine foo(B) subroutine foo clone(B)

real B(L0

1 : U
0

1,...,L
0

m
: U 0

m
) real B(L1 : U1,...,Ln : Un)

... B(g1,...,gm) ... B(h1,...,hn)

Notice that in the resulting code the origin of the parameter array is passed
to the subroutine rather than the address of one of its elements. The actual
and formal parameter arrays are forced to have the same size and shape. Let
X be the o�set of A(f1,...,fn) from the �rst address of A, and X0 be that of
B(g1,...,gm). Then, the array index hk is de�ned as

hk = Xk mod Nk + Lk

where Nk = Uk + Lk + 1, X1 = X +X0 and Xi = bXi�1=Ni�1c for i > 1.
Our experiments show that cloning does not increase the size of the original

programs by more than a factor of 2. This is the case because actual and formal
parameters usually have the same shape, size and dimension.

5 Preliminary Results

Figure 1 presents the speedups obtained by Polaris on the T3D for �ve programs
from the Perfect Benchmarks (ARC2D, BDNA, FLO52, MDG, and TRFD), and
�ve programs from the SPEC collection (APPSP, HYDRO2D, SU2COR, SWIM,
and TOMCATV).

We report speedups for processor numbers that are powers of two between 1
and 64. During the sequential execution of an original program, we measured the
percentage of overall running time of the program for each loop, and added the
percentages of each parallelizable loop to obtain the total sum. We call this total
sum parallel coverage [2]. Two dotted lines in Figure 1 plot the ideal speedups
for programs with parallel coverage of 99% and 90% respectively. The ideal
speedup, S, is calculated by using the Amdahl's equality: S = 1=(c=P + 1 � c)
where P is the number of processors and c is a parallel coverage.

After all ten analyzed programs were transformed by Polaris, their parallel
coverages were between 90 and 99%. Therefore, the speedup curves for these
programs should, under ideal conditions, lie between the two dotted lines. Real
program speedups are much lower than the ideal for several reasons, including
synchronization and scheduling overhead, communication costs, and shared data
bypassing the cache. These speedups should improve once we implement in
Polaris optimizations to deal with these issues.



 99% parallel
 90% parallel

� � ARC2D

 
 BDNA
� � FLO52
� � MDG
� � TRFD
� � APPSP
� � HYDRO2D
� � SU2COR
	 	 SWIM
� � TOMCATV

|
1

|
2

|
4

|
8

|
16

|
32

|
64

|0.25

|0.50

|1.00

|2.00

|4.00

|8.00

|16.00

|32.00

 Number of Processors

 S
p

ee
d

u
p

�

�

�

�

�

�

�






















�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

	

	

	

	

	

�

�

�

�

�

�

�

Figure 1: Preliminary Results for the Perfect and SPEC Benchmarks

The e�ect of bypassing the cache, which we call cache bypassing penalty, is
re
ected in the speedups for one PE, where the speedup is below one in all cases,
as shown in Figure 1. The largest values are 0.9 for BDNA and 0.8 for MDG.
This occurs because both programs use several large privatized reduction arrays
and, thus, have very few accesses to shared data. To the contrary, FLO52 and
TRFD have lowest speedups for one PE because they repeatedly access large
sections of shared arrays in the loops.

In addition to the cache bypassing penalty, as we increase the number of
processors, other factors become signi�cant, such as communication, amount of
parallelism, and the number of iterations of parallel loops. Such factors tend
to decrease the e�ciency as the number of processors grow. In this paper,
e�ciency is de�ned as the ratio between speedup and the ideal speedup made
possible by the parallel coverage of the program. For example, the e�ciency of
TRFD, whose parallel coverage is 90%, goes from 0.23 to 0.13 as the number of
processors grows from 1 to 64.

In the rest of this section, we discuss the behavior of three of the ten programs
presented in Figure 1: SWIM, MDG, and TRFD.

5.1 SWIM

SWIM is a �nite di�erence solver of the shallow water equation on a 512x512
grid. Its serial execution time on the T3D is 2378 seconds. SWIM performs



most of its operations on fourteen 513x513 arrays. In the parallelized version,
these arrays are expanded to 1024x1024 shared arrays because of the CRAFT
restrictions discussed in Section 4.4. Fortunately, for 64 processors, the total
amount of extra memory required is relatively small: 0.1M words per processor.

 99% parallel
� � SWIM
� � SWIM-no cache bypassing penalty

|
1

|
2

|
4

|
8

|
16

|
32

|
64

|0.5

|1.0

|2.0

|4.0

|8.0

|16.0

|32.0

 Number of Processors

 S
p

ee
d

u
p

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2: Speedup Analysis for SWIM

SWIM shows the best speedups in Figure 1. The main reason for these
speedups is that Polaris parallelizes all the outermost loops, which results in a
parallel coverage of almost 100%. Most parallel loops in SWIM are doubly-nested
loops with 512x512 iterations. This is large enough to saturate 64 processors.
Furthermore, each processor accesses di�erent regions of the shared arrays in
parallel loops, so there are few memory access collisions during the execution
of the parallel loops. Above all, our simple block distribution policy happens
to match computation distribution in SWIM, thus reducing a large amount of
remote memory access overhead. As a result, we see that the speedup grows
with the number of processors.

Despite the good characteristics of SWIM, we notice that the e�ciency, for
a single processor is still 0.55. As mentioned earler, this number mainly refects
the impact of the cache-bypassing penalty in the T3D. In other words, if caching
is allowed for shared data, we would get a speedup of 1.8(= 1=0:55). We plot
this predicted speedup line in Figure 2. Therefore, we conclude that one of the
major optimization e�orts in SWIM should focus on increasing the fraction of
cacheable data.

5.2 MDG

MDG is a molecular dynamics model of water. Its sequential execution time on
the T3D is 330 seconds. The most important loop in MDG is INTERF do1000,
which accounts for 92% of sequential execution time. This loop is parallelized be-



cause of several advanced techniques applied by Polaris, including inlining, array
privatization, induction variable recognition, and histogram reduction recogni-
tion. The parallel version of INTERF do1000 has many privatized reduction ar-
rays instead of shared arrays. Figure 3 shows that the speedup will not grow
signi�cantly even after eliminating all the cache bypassing penalty for the par-
allel loops. Thus, the cache bypassing penalty is not as in
uential in MDG as it
is in SWIM.

 95% parallel
� � MDG
� � MDG-no cache bypassing penalty

|
1

|
2

|
4

|
8

|
16

|
32

|
64

|0.5

|1.0

|2.0

|4.0

|8.0

|16.0

|32.0

 Number of Processors

 S
p

ee
d

u
p

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3: Speedup Analysis for MDG

The main cause of the drop in speedup is a doubly-nested sequential loop,
INTRAF do1000, which accounts for just 1% of sequential execution time. This
loop accesses shared data and, when the number of processors grows, so does
the execution time of this loop, as shown in Table 4. This shows that, in some
cases, communication costs in a serial loop grow much faster than the same costs
in a parallel loop. Hence, we need to reduce these costs in sequential loops even
when their execution time is relatively small. In fact, the loop INTRAF do1000

is parallel and, thus, the speedup will improve when Polaris is extended to
parallelize this loop.

PEs INTERF do1000 INTRAF do1000
(sec) (sec)

2 260 4.6
4 140 5.8
8 76 8.4
16 41 14
32 21 26
64 11 59

Table 4: INTERF do1000 and INTRAF do1000 on the T3D



5.3 TRFD

TRFD is a small kernel for quantum mechanics calculations. It has two ma-
jor loops, OLDA do100 and OLDA do300, both of which correspond to 90% of
the sequential execution time. All the other parallel loops in TRFD take up
less than 1% of sequential execution time. Judging from the case on a single
processor in Figure 1, TRFD su�ers from bypassing the cache for shared data
more than SWIM and MDG. Removing such a penalty would drastically boost
the performance by a factor of 4.6, as projected by the ideal speedup shown in
Figure 4.

 90% parallel
� � TRFD-basic
� � TRFD-no cache bypassing penalty

|
1

|
2

|
4

|
8

|
16

|
32

|
64

|0.2

|0.5

|1.0

|2.0

|4.0

|8.0

|16.0

 Number of Processors

 S
p

ee
d

u
p

�

�

�

�

�
�

�

�

�

�

�

�
�

�

Figure 4: Speedup Analysis for TRFD

Even after we eliminate the cache bypassing penalty, the e�ciency of TRFD
would be too small still, as indicated in Figure 4. This is primarily due to the
small data set size for TRFD [24, 26].

6 Program Optimizations and the Data Copying

Strategy

From the discussion above, it is clear that the main factors in
uencing parallel
performance are:

� the parallel coverage;

� the parallel loop structure of a program;

� the amount of shared data used in local computations; and,

� the data access pattern.



In [7], we discuss several on-going e�orts in the Polaris project to increase the
parallel coverage and, in Section 4, we brie
y deal with the parallel loop structure
of a program. In this section, we discuss the last two factors.

From the evaluation outlined in Section 5, we concluded that to subtantially
improve performance it is necessary to privatize shared data. One strategy
that we plan to explore, the shared data copying scheme, uses shared memory
as a source/repository of values for private variables. In this strategy, most
of the work is done on private variables. Before a program section starts, the
processors copy all that is used in the computation from shared memory into
private memory. At the end of the section, the processors copy the results back to
shared memory so that all processors have access to the results. Shared memory
coherence is maintained by explicit synchronization.

PUT/GET primitives will be used for data copying in our future work. One
reason we have chosen to use PUT/GET is that these primitives match the
shared-memory programming paradigm assumed by Polaris. Another reason
is that PUT/GET is rapidly gaining widespread acceptance. In fact, several
portable shared-memory programming models supporting PUT/GET are al-
ready implemented on ordinary message-passing machines, such as the IBM
SP-1/2, Intel Paragon and TMC CM-5 [19, 25, 28]. Furthermore, several exist-
ing and newly proposed large-scale machines, such as the T3E, directly support
these primitives in hardware [21, 27], which reduces the e�ect of the increased
communication overhead resulting from the extra data copy operations.

Communication aggregation is useful in reducing the overhead. In most
Fortran programs, the natural program section that organizes copying from/to
global memory is the loop. The following code example shows how Polaris
transforms the information about the range of arrays fetched and written by the
loop into PUT/GET primitives.

cdir$ must read (A(l1:u1:s1)) call polaris get(A(l1:u1:s1),a(l
0

1:u
0

1:s
0

1))

cdir$ must write (A(l2:u2:s2)) do I = l0,u0,s0

do I = l,u,s ) access a

access A enddo

enddo call polaris put(A(l2:u2:s2),a(l
0

2:u
0

2:s
0

2))

In the transformation, a shared array A is replaced by a private array a. The
must read directive indicates the shared data sections that must be used in the
loop, and must write indicates the shared data sections that must be updated
in the loop. We generate PUT/GETs to move the data sections speci�ed in
these directives around each loop. In addition to the two directives, may read

and may write can be generated to mark shared data sections that may be used
and updated in a loop.

We implemented high level data transfer routines, polaris put/get, which
make use of the T3D's lower level single-sided communication primitives. Micro-
benchmarking experiments on a 16-processor partition show that the throughput
of these routines is approximately 1.5 Mwords/sec with data over 1K words long.
Table 5 shows the e�ect of our PUT/GET operations on the performance of loop
OLDA do100 of TRFD. The sequential execution time of the loop is 23.6 sec.



No Data Copying
PEs Data Copying (sec)

(sec) Loop PUT/GET
2 65 13 0.2
4 38 6.3 0.6
8 26 3.2 0.7
16 23 1.5 1.1
32 21 0.76 1.4
64 20 0.40 1.8

Table 5: Reduction of Cache Bypassing Penalty by PUT/GET on TRFD: The
total amount of data transferred at a time for the loop execution is about 1
Mwords with sizes varing from 0.1 to 600 Kwords

Even without using any other techniques, the e�ect of the work on loop
OLDA do100 increases the overall program speedup to 2. For the loop itself, with
overhead ignored, the speedup is 59 on 64 processors. Although the PUT/GET
overhead reduces the speedup to 11, this is still 9 times faster than the execution
time before optimization. Another program that bene�ts from using PUT/GET
is SWIM. Figure 5 shows the speedup obtained by hand on up to 64 proces-
sors. These and other test results have convinced us that the T3D's PUT/GET
operations are e�cient enough to improve performance across the board.

PEs

10 20 30 40 50 60

10

20

30

40

50

Sp
ee

du
p

Figure 5: Hand-optimized SWIM using PUT/GET

An important strategy that can be used to complement shared data copying is
prefetching and poststoring. Unlike cache memory, the data copied into private
memory is fully software controllable; that is, the data would never be 
ushed
out until explicitly done so by the program. Hence, as long as the local memory
space is available, a processor can prefetch data anytime before it is needed and
poststore it sometime after the computation. In [29], some other advantages
of the compiler-directed communication over cache-coherence protocol driven



communication on the non-cache coherent architecture are discussed.
The shared data copying scheme is especially useful when the data distri-

bution requirements of a program are dynamic. The conventional technique for
such a case is data redistribution [30]. Data redistibution usually moves much
of the array across the distributed memories. Unless most elements of the ar-
ray are fully used for a long time, this total data movement is ine�cient. In
contrast, PUT/GET operations enable us to avoid this ine�ciency by making
each processor copy only the portions of an array that are needed for its local
computations.

Shared data distribution is another important issue that we will have to
consider. In general, as discussed above, data distribution by itself did not
signi�cantly in
uence performance in our experiments. However, we found that
it is important to distibute shared data in order to minimize data copy overhead
in the shared data copying scheme. One way to reduce the copy overhead is
to aggregate the data as much as possible, taking advantage of the T3D's high-
bandwidth low-latency network. Most GET/PUT primitives support contiguous
data streams with regular stride more e�ectively. For these reasons, we simply
block distribute shared arrays in the shared data copying scheme. This also helps
simplify the calculation of the owner of the target data before issuing PUT/GET
calls. In TRFD, for example, the data sections needed by OLDA do100 change
every time we encounter the loop and thus, no single data distribution can
match this changing data access pattern. The simple block distribution always
guarantees no more than P PUT/GET calls per data copy for a P -processor
partition.

In any case, distributing data so that most target data are in local memory
is our ultimate goal since local copy operations are faster than remote copy
operations. We plan to investigate the possibility of improving data distribution
for the data copying scheme.

7 Conclusion

We have reported some preliminary experience using the Polaris restructurer
to parallelize Fortran codes for the Cray T3D. The strategy we used here was
to extend the traditional parallelizing compiler techniques for cache coherent
machines to deal with non-cache coherent multiprocessors. We discussed our
translation algorithms and presented optimization techniques that should signif-
icantly improve the preliminary results once they are implemented. Our long-
term objective is to develop and implement these advanced techniques in Polaris.

Acknowledgements

We would like to thank the Cray Research Inc. for generously granting machine
time for the experiments reported in this paper. We are especially grateful to
Thomas MacDonald for helping us access and understand the Cray T3D.



References

[1] K. Faigin, J. Hoe
inger, D. Padua, P. Petersen, S. Weatherford. The Polaris
Internal Representation. International Journal of Parallel Programming, Vol. 22,
No. 5, Oct. 1994, pp. 553{586

[2] B. Blume, et al., Polaris: Improving the E�ectiveness of Parallelizing Compilers,
Proceedings of the Seventh Workshop on Languages and Compilers for Parallel

Computing, OR. Lecture Note in Computer Science, Aug. 1994, pp. 141-154

[3] B. Pottenger, R. Eigenmann, Idiom Recognition in the Polaris Parallelizing Com-
piler, Proceedings of the 9th ACM International Conference on Supercomputing,
July 1995

[4] Z. Bokus, et al, Compiling Fortran 90D/HPF for Distributed Memory MIMD
Computers, Journal of Parallel and Distributed Computing, Vol. 21, 1994, pp.
15-26

[5] J. Grout, Inline Expansion for the Polaris Research Compiler, Master's thesis,
Univ. of Illinois at Urbana-Champaign, Cntr. for Supercomputing Res. & Dev.,
May 1995

[6] B. Chapman, P. Mehrota, H. Moritsch, H. Zima, Dynamic Data Distributions in
Vienna Fortran, Supercomputing '93 Proceedings, 1993, pp. 284-293

[7] B. Blume, et al., Advanced Program Restructuring for High-Performance Com-
puters with Polaris, Tech. Report, Univ. of Illinois at Urbana-Champaign, Cntr.
for Supercomputing R & D, 1996, CSRD Report No. 1473

[8] P. Tu, D. Padua, Automatic array privatization, Proc. 6th Workshop on Language

and Compilers for Parallel Computing, OR. Lecture Note in Computer Science,
Aug. 1993, pp. 500-521

[9] C. Polychronopoulos, et al., The Structure of Parafrase-2: An Advanced Paral-
lelizing Compiler for C and Fortran, Languages and Compilers for Parallel Com-

puting, MIT Press, 1990

[10] W. Blume, R. Eigenmann, The Range Test: A Dependence Test for Symbolic
Non-linear Expression, SuperComputing '94 Proceedings, Nov. 1994, pp. 643-656

[11] P.Banerjee, et al., The PARADIGM Compiler for Distributed-Memory Multicom-
puters, IEEE Computer, Vol. 28, No. 10, Oct. 1995, pp 37-47

[12] S. Amarasinghe, et al., An Overview of the SUIF Compiler for Scalable Parallel
Machines, Proceedings of the Seventh SIAM Conference on Parallel Processing for

Scienti�c Computing, Feb. 1995, pp. 662-667

[13] C. Tseng, An Optimizing Fortran D Compiler for MIMD Distributed-Memory
Machines, PhD Thesis, Rice University, Jan. 1993

[14] W. Oed, The Cray Reseach Massively Parallel Processor System CRAY T3D,
Cray Research, Nov 1993

[15] CRAY T3D System Architecture Overview, Cray Research, 1993



[16] L. Rauchwerger, D. Padua, The PRIVATIZING DOALL Test: A Run-Time Tech-
nique for DOALL Loop Identi�cation and Array Privatization, Proceedings of the
8th ACM International Conference on Supercomputing, July 1994, pp. 33-43

[17] R. Marcelin, Message Passing on the CRAY T3D, Massively Parallel Computing
Group, NERSC, 1995

[18] D. Bernstein, et al., Solutions and Debugging for Data Consistency in Multipro-
cessors with Noncoherent Caches, International Journal of Parallel Programming,
Vol. 23, No. 1, 1995, pp. 83-103

[19] M. Snir, Proposal for MPI-2, MPI meetings, 1995

[20] High Performance Fortran Language Speci�cation, High Performance Fortran Fo-
rum, May 1993

[21] CRAY MPP Fortran Reference Manual, Cray Research, 1993

[22] SHMEM Technical Note for Fortran, Cray Research, Oct. 1994

[23] Programming Language FORTRAN, American National Standards Institute,
ANSI X3.9-1978 ISO 1539-1980

[24] J. Gustafson, Reevaluating Amdahls Law, Communications of the ACM, Vol. 31,
No. 5, May 1988, pp. 532-533

[25] D. Culler, et al., Parallel Programming in Split-C,Supercomputing '93 Proceedings,
1993

[26] A. Grama, A. Gupta, V. Kumar, Isoe�ciency: Measuring the Scalability of Par-
allel Algorithms and Architectures, IEEE Parallel & Distributed Technology, Aug.
1993, pp. 12-21

[27] K. Hayashi, et al., AP1000+: Architectural Support of PUT/GET Interface for
Parallelizing Compiler. Proc. 6th International Conference on Architechtural Sup-
port for Programming Language and Operating Systems, Oct. 1994, pp. 196-207

[28] J. Nielocha, R. Harrison, R. Little�eld, Global Arrays: A Portable Shared-
Memory Programming Model for Distributed Memory Computers, Supercomput-
ing '94 Proceedings, 1994, pp.340-349

[29] J. R. Larus, Compiling for Shared-Memory and Message-Passing computer, ACM
Letters on Programming Languages and Systems, 1996

[30] K. Kenney, Compiler Technology for Machine-Independent Parallel Programming,
International Journal of Parallel Programming, Vol. 22, 1994, pp. 79-98

[31] R. Eigenmann, J. Hoe
inger, G. Jaxon, D. Padua, The Cedar Fortran Project,
Tech. Report, Univ. of Illinois at Urbana-Champaign, Cntr. for Supercomputing
R & D, Apr. 1992, CSRD Report No. 1262

[32] H. Zima, B. Chapman, Supercompilers for Parallel and Vector Computers, ACM
Press, 1992

[33] R. Arpaci, et al., Empirical Evaluation of the CRAY-T3D: A Compiler Perspec-
tive, Proceedings of ISCA, 1995, pp.320-331


