
To appear in the Proceedings of the 10th ACM International Conference on Supercomputing - ICS’96. Philadelphia, PA, May 1996

A MATLAB to Fortran 90 Translator and its Effectiveness

Luiz De Rose and David Padua

March 1996
CSRD Report No. 1462

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign
1308 West Main Street
Urbana, Illinois 61801

A MATLAB to Fortran 90 Translator and its Effectiveness �

Luiz De Rose and David Padua
Center for Supercomputing Research and Development

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801, U.S.A.
(fderose,paduag@csrd.uiuc.edu)

Abstract

In this paper, we describe the inference mechanism used by the
FALCON system to translate MATLAB1 programs to Fortran 90.
FALCON is a programming environment for the development of
scientific libraries and applications. The objective of the MATLAB
compiler is to allow program development to take place in a user-
friendly, interactive environment without sacrificing performance.
FALCON’s inference mechanism combines static and dynamic in-
ference methods for intrinsic type, rank, and shape inference, and is
supported by a sophisticated symbolic value propagation algorithm.
Experimental results show that FALCON’s MATLAB compiler can
generate code that is over 1000 times faster than MATLAB on a
uniprocessor SGI Power Challenge, and is often as fast as hand-
written Fortran programs.

1 Introduction

The development of software for scientific computation on high
performance computers is a difficult and time-consuming task. We
are studying strategies to facilitate this process, and are implement-
ing them in FALCON [8, 9], a programming environment for the
development of scientific libraries and applications.

Program development in FALCON starts with a prototype and
proceeds with a sequence of automatic and interactive transfor-
mations until an effective program or routine is obtained. The
prototype and intermediate versions of the code are represented in
the MATLAB language [15]; we chose MATLAB over other inter-
active array languages, such as APL [12], because of its popularity
and its clean, well-structured design.

MATLAB does not require variable declarations which, in the
opinion of some, simplifies the programmer’s task. However, the
downside is that MATLAB, like most languages without declara-
tions, is interpreted, and therefore its performance is often much
slower than the that of compiled languages. To circumvent this
problem, FALCON includes a MATLAB to Fortran 90 translator.
This paper describes this translator and presents some data on its

�This work was supported in part by Army contract DABT63-92-C-0033. This
work is not necessarily representative of the positions or policies of the Army or the
Government.

1MATLAB is a trademark of The MathWorks, Inc.

effectiveness. Our ultimate goal is to generate parallel code by
integrating FALCON with Polaris [4], a parallelizing compiler de-
veloped at Illinois. In this paper, we focus exclusively on the
techniques we use to generate effective sequential code. These
techniques are either static inference mechanisms used to generate
declarations at compile time, or dynamic strategies that are applied
at execution time when a lack of statically available information
prevents the automatic generation of a particular variable’s decla-
ration.

Type inference algorithms, including some developed for lan-
guages that are quite similar to MATLAB such as SETL [19] and
APL [5, 6], have been developed in the past. In the work reported
here, we apply these type inference techniqueswith extensions from
approaches that were originally developed to analyze and represent
array accesses in Fortran [20]. These extensions are useful in the
case of MATLAB, where arrays are often built using Fortran-like
loops and where different sections of an array may be built in differ-
ent program regions. In contrast, the techniques developed for APL
assume that arrays are usually built by a single array operation.

The rest of this paper is organized as follows: FALCON’s static
inference mechanism is presented in Section 2; the dynamic strategy
is discussed in Section 3; some experimental results are presented
in Section 4; related work is discussed in Section 5; and, finally, our
conclusions are presented in Section 6.

2 The Static Inference Mechanism

To generate Fortran 90 declarations, FALCON analyzes an Ab-
stract Syntax Tree (AST) representation of a MATLAB program in
an attempt to identify for each variable the following three prop-
erties: intrinsic type (i.e. INTEGER, REAL, COMPLEX, or LOGICAL);
rank (i.e. SCALAR, VECTOR, or MATRIX); and shape (i.e. size of
each dimension). These variable properties are estimated using a
forward/backward propagation strategy [1].

Our inference mechanism extracts the initial type information
from four sources: program constants whose intrinsic type, rank,
and shape are statically known; input files; operators; and functions.
If the program loads a variable, FALCON can extract from a sample
external file the initial intrinsic type and rank2 of the variable3. Vari-
able shapes are not extracted from the input files because they are
much more likely than intrinsic type and rank to differ between runs.
However, the translator propagates shape information in terms of
input values. Built-in MATLAB functions can provide information

2The use of this initial rank information can be turned off by a compiler flag. In
this case, all loaded variables are assumed to be two-dimensional allocatable arrays.

3For clarity of presentation, a MATLAB comment (%) is used to indicate which
variables are being loaded in the pseudo-code examples presented below. This com-
ment is not required by the translator.

S1: n = ...
S2: p = -0.5 * i;
S3: for i=1:n
S4: p = -0.5 * i;

Figure 1: MATLAB pseudo-code segment in which the same ex-
pression has different semantics.

S1:a = 1:5; S1:a = 1:5;
S2:for i = 1:5 S2:for i = 1:5
S3: if (i > 1) S3: if (i == 1)
S4: cs(i) = s + a(i); S4: s = a(i);
S5: s = cs(i); S5: cs(i) = s;
S6: else S6: else
S7: s = a(i); S7: cs(i) = s + a(i);
S8: cs(i) = s; S8: s = cs(i);
S9: end S9: end

... ...
(a) (b)

Figure 2: Two MATLAB code segments to compute the cumulative
sum of a vector.

for both forward and backward inference. For example, the func-
tion rcond, for the conditional reciprocal estimator, requires the
input parameter to be a square MATRIX. This information is useful
for backward inference. Also, the fact that the output of rcond is
a SCALAR of intrinsic type REAL can be used for forward inference.

Since most operations in MATLAB that have an empty vector
as an argument will result in an empty vector, static inference would
be seriously hindered if any expression could evaluate to the empty
vector. For this reason, we assume that when a variable is used, its
value is never the empty vector. However, we allow the assignment
of the empty vector to a column or a row of a matrix as long as the
assignment does not transform the matrix into an empty vector.

In the rest of this section, we will discuss the main topics on
the static inference mechanism, starting with the algorithm used
to distinguish between variables and functions, followed by a de-
scription of the internal representation, the intrinsic type inference,
and the shape and rank inference. For clarity of presentation, we
will discuss intrinsic type inference, and shape and rank inference
separately, despite the fact that they are applied by a single compiler
pass.

2.1 Distinguishing Variables from Functions in MATLAB

In MATLAB, an identifier occurrence may represent a function or
a variable, depending on the context in which the identifier is first
referenced and the files present in the execution environment. For
example, consider the pseudo-code presented in Figure 1. The
identifier “i” in statement S2 is a built-in function that returns the
imaginary unit, whereas in statements S3 and S4, “i” is a loop
index variable.

In general, a MATLAB identifier may represent a function in-
stead of a variable if, in the lexicographic order of the program,
it appears on the right hand side (RHS) before it appears on the
left hand side (LHS). If the identifier is not a valid built-in func-
tion, the files in the execution environment determine whether the
identifier represents a function. An example of this is presented in
Figure 2, which contains two versions of pseudo-code to compute
the cumulative sum of a vector.

The execution of both code segments in Figure 2 will generate
the same results if there is no M-file4 “s.m” defined in the user’s

4M-files are user-written functions consisting of a sequence of standard MATLAB
statements that possibly include references to other M-files.

path or in MATLAB’s path. However, code segment (a) will gen-
erate wrong results (or may generate an error) if such a file exists.
If a function is not found in any of the paths, MATLAB considers
the identifier as a variable. Therefore, as the first reference to the
identifier “s” in code segment (a) appears on the RHS, MATLAB
will execute the program correctly only if there is no “s.m” M-file.
The code segment in Figure 2(b) will always generate correct re-
sults because the first reference to the variable “s” appears on the
LHS.

In order to differentiate variables from functions during the
compilation of MATLAB programs, we require that the translation
take place in the same environment as the execution. We use the
following algorithm, which simulates MATLAB’s behavior exactly,
to distinguish between variables and functions.

Algorithm: Differentiation Between Variables and Functions

Input: A MATLAB program and its correspondent
symbol table.
Output: The kind of each identifier in the program.
That is, whether the identifier represents a variable, a
function, or both throughout the program.

This algorithm is based on the state diagram pre-
sented in Figure 3. Each identifier can be in one of the
following states: Built-in, M-file, Empty, Function,
Variable, or Multiple. The Start state is responsible
for the definition of the initial state for each identifier.
This definition is based on one of the following three
conditions:

1. An identifier will start in the Built-in state if it is
in the pre-defined list of valid MATLAB built-in
functions.

2. An identifier k will start in the M-file state if
there is an M-file k.m in the user’s path or in
MATLAB’s path.

3. If the identifier is neither a Built-in nor an M-file,
then it starts in the Empty state.

After defining the initial state of all identifiers, the
MATLAB program is traversed in lexicographic order.
Every identifier occurrence (read or write) causes a
transition in the state diagram. The state at the end of
the program is the kind of the identifier. An identifier
will be in the state Multiple if at some point in the pro-
gram it represented a function (Built-in or M-file) and
became a variable later in the program. An example of
an identifier of the kind Multiple is “i” in Figure 1.

2.2 Internal Representation

Our static inference algorithms are applied to a Static Single As-
signment (SSA) representation [7] of the MATLAB program. In
the SSA representation, each variable is assigned a value by at most
one statement. When several definitions feed a single use of a vari-
able, one or more � function operators are inserted at the points
of confluence in the control flow graph to merge the different def-
initions into a single variable. SSA is a convenient representation
for our analysis algorithms because it is evident which definitions
affect (or cover) a particular use of a scalar variable. Because the
only control structures in MATLAB are IF statements and loops
(the language does not include “goto” statements), the SSA rep-
resentation of a MATLAB program is very simple. In fact, the �
functions are always at the confluence of two control arcs, which
means � functions always have two parameters. Each parame-
ter can have a backward definition if it corresponds to a variable
previously defined in lexicographic order, or a forward definition

R/WMultiple

R/WVariable

R

Function

Start M-File

Built-in

Empty

R

W

W

W

R

R/W

3

1

2

Figure 3: State diagram for differentiation between functions and
variables.

otherwise. We call the � functions at the end of IF statements �
functions, and those at the beginning of a loop ' functions. Notice
that in � functions, both parameters have backward definitions; in
' functions, one parameter has a forward definition and the other a
backward definition.

2.2.1 Extension of the SSA Representation to Support
Indexed Assignments

Whereas renaming variables for single assignment is easy in the
case of scalars and full array assignments, indexed array assign-
ments require a more complex approach involving a new function.
Consider, for example, the MATLAB code segment presented in
Figure 4, and assume that A is assigned in statements S2 and S4
only. If statement S4 did not involve subscripts and were of the
form A = Z, the SSA representation would be obtained by simply
renaming A in S2 and S4 and renaming the corresponding uses.
However, since S4 updates only a part of A, a simple renaming
of A would not be correct. In situations like this, we use the
standard approach and transform indexed assignments of the form
A(R) = ...;, where R is an arbitrary range, into

Ai+1 = �(Ai, R, RHS);

The � function we use is similar to the “Update” function
described in [7], but extended for assignments to a matrix range.
In the case of MATLAB, an � function may return an array with
dimensions larger than that of the parameter array. In this case, if
the array section R completely covers the old range of A, the values
and shape of A are those of the RHS. Otherwise, array A will have
to be expanded in one or both dimensions 5, and the unassigned
elements are given the value zero. Using this extension, the SSA
representation for the code presented in Figure 4 will be as shown
in Figure 5, where the assignments to A have been renamed and
merged in the same manner as for scalar assignments.

2.3 Intrinsic Type Inference

Although MATLAB operates on REAL and COMPLEX values only,
our inference mechanism also considers INTEGER and LOGICAL val-
ues. That is, it considers all Fortran 90 intrinsic data types except
for CHARACTER.

The static intrinsic type inference mechanism propagates types
through expressions using a type algebra similar to that described
in [19] for SETL. Tables containing for each operation the type
of the result as a function of the type of the operands are used to

5All matrices in MATLAB have lower dimension 1. Hence, only the upper dimen-
sion of a range is considered for matrix expansions.

S0: load %(n,m)
S1: Z = zeros(n,m);
S2: A = rand(n,m);

...
S3: while (...)

...
S4: A(i:n,j:m) = Z(i:n,j:m);

...
S5: end

...

Figure 4: MATLAB code with indexed array assignment

S0: load %(n,m)
S1: Z1 = zeros(n1,m1);
S2: A1 = rand(n1,m1);

...
S3: while (...)
S4: A3 = '(A2, A1);

...
S5: A2 = �(A3, (i1:n1,j1:m1), Z1(i1:n1,j1:m1));

...
S6: end
S7: A4 = �(A1, A2);

...

Figure 5: SSA representation for indexed array assignments.

Type of first Type of second parameter
parameter Ø L I R C ?

EMPTY (Ø) Ø L I R C ?
LOGICAL (L) L L I R ? ?
INTEGER (I) I I I R ? ?
REAL (R) R R R R ? ?
COMPLEX (C) C ? ? ? C ?
UNKNOWN (?) ? ? ? ? ? ?

Table 1: Type of � and ' as a function of their parameters.

implement this algebra. In some cases, the type of an expression
depends on the values of the operands. For example, the computa-
tion of

p
i� j may result in INTEGER, REAL, or COMPLEX output,

depending on the values of i and j. To deal with these cases, we
apply a value propagation analysis to keep track of the minimum
and maximum values of the variables at each point in the program.
For each assignment, we infer the range for the output value by
performing the operation using the minimum and maximum values
of the operands. Whenever these values cannot be inferred stati-
cally, the minimum and maximum values are assigned to �1 and
+1 respectively, and the static type inference promotes the output
of the expression to be of a type that subsumes all possible output
types.

If the intrinsic type can be determined statically, a Fortran dec-
laration is generated. Otherwise, if an expression is inferred to be
of UNKNOWN type, then the assignment corresponding to the AST
node is left to be resolved at execution time.

The propagation of type information requires some consider-
ation in the presence of �, ', and � functions. In the case of
� functions, both parameters have backward definitions. Hence,
when the inference system reaches a � function, the type inference
system simply compares the types of parameters and assigns the
output type according to Table 1.

The static inference of a ' function is also based on Table 1;
however, the inference mechanism must iterate becausethe forward
definition has yet to be analyzed when it is encountered for the first
time. To this end, the forward definition is assumed to be EMPTY

Type of previous definition
RHS Type Ø L I R C ?

EMPTY (Ø) Ø L I R C ?
LOGICAL (L) L L I R C ?
INTEGER (I) I I I R C ?
REAL (R) R R R R C ?
COMPLEX (C) C C C C C C
UNKNOWN (?) ? ? ? ? C ?

Table 2: Resulting types for � functions.

the first time, and the inference mechanism iterates to a fixed point.
Note that because of the assumption that no variable may have the
empty vector as a value when it is used, for �, ', and � functions,
combining an EMPTY type with any other non-EMPTY type results
in the non-EMPTY type. Notice also that in Table 1, the confluence
of REAL and COMPLEX is UNKNOWN rather than COMPLEX. In this
way, if a variable can contain both REAL and COMPLEX values at
execution time, complex operations will be executed only when the
variable has a complex value. Whether this is better than assigning
COMPLEX intrinsic type to the variable is still an open question.

Finally, in the case of� functions, the type inference mechanism
compares the type of the RHS with that of the previous definition of
the variable being assigned. The resulting type is computed using
Table 2. As can be observed in this table, to avoid the overhead of
copying the array at execution time, whenever the RHS type differs
from that of the previous definition, we promote the resulting �
function type to one that subsumes both types. Thus, if an �

function output is inferred to be of a more general type than its
previous definition, then the intrinsic type of the previous definition
is set with this more general type and a backward inference process
is activated to update the previous definition and the subsequent
variables that use it.

2.4 Shape and Rank Inference

Shape inference is very important for the efficiency of the code.
If the dimensions of the variables are known during compile time,
they can be statically declared and the overhead of dynamic allo-
cation can be avoided. However, in some cases, it is impossible to
statically determine the shape of a variable as it can depend on the
input data. Thus, the only alternative is to dynamically allocate the
variable. In this case, as discussed in Section 3, we try to predict
the maximum size of an array in order to avoid the overhead of
multiple execution time tests and reallocations.

Rank inference could be avoided by assuming, as MATLAB
does, that all variables (even scalars) are matrices. However, this
approach has a negative impact on performance because the unnec-
essary use of indices and the over-dimensioning of variables will
cause poor memory and cache utilization. Therefore, it is important
to have the capability to recognize scalars and vectors.

For each variable, the outcome of the static inference mecha-
nism is one of the following:

Exact rank: When all dimensions are known, the result is one of the
following ranks: MATRIX, ROWVECTOR, COLUMNVECTOR, or
SCALAR.

Exclusive rank: When only one dimension is known, if the known
dimension is 1, the variable is inferred to have a NOTMATRIX
rank. Otherwise, it is inferred to have a NOTSCALAR rank.

Unknown rank: Variables for which the static inference mecha-
nism cannot infer any of the dimensions are considered to
have UNKNOWN rank.

A � B B
A S V(p,1) V(1,q) M(p,n)

SCALAR S V(p,1) V(1,q) M(p,n)
VECTOR(p,1) V(p,1) error M(p,q) error
VECTOR(1,q) V(1,q) S1 error V(1,n)1

MATRIX(m,q) M(m,q) V(m,1)1 error M(m,n)1

1Only if p = q; otherwise error.

Table 3: Exact rank and shape inference for the multiplication
operator.

S1: if (A D1 .ne. B D1 .or. &
A D2 .ne. B D2) then

S2: if (ALLOCATED(A)) DEALLOCATE(A)
S3: A D1 = B D1
S4: A D2 = B D2
S5: ALLOCATE(A(A D1,A D2))
S6: end if
S7: A = B + 0.5

Figure 6: Example of shadow variables for shape.

Although compiled languages, such as C and Fortran, do not
differentiate between row vectors and column vectors, we need to
make this distinction because in MATLAB the semantics of some
operators are different in each case. Variables that are not inferred
to have an exact rank are assumedto be two-dimensional allocatable
arrays.

The algorithms for propagation of rank and shape information
are very similar to the algorithms for intrinsic type inference, as
described in Section 2.3. In fact, rank and shape inference are
integrated with intrinsic type inference and are implemented in
the same compiler pass. The algebra used by the rank and shape
inference algorithm is illustrated for the product operator in Table 3.
In this table, the shape information is represented with letters (m, n,
p, and q), and ROWVECTORS and COLUMNVECTORS are represented
as VECTOR(p,1) and VECTOR(1,q) respectively. During this phase of
the analysis, the shape information is obtained only from constants.
A symbolic analysis for shape inference is performed during the
dynamic inference phase, as described in Section 3.

3 Dynamic Inference Mechanism

When the static inference mechanism is unable to infer some prop-
erties of a particular variable, the translator generates code to make
the inference at execution time. We follow an approach similar
to that used in many systems: associating tags with each variable
of UNKNOWN intrinsic type or shape. Based on these tags, which
are stored in shadow variables, conditional statements are used to
select the appropriate operations based on the intrinsic type, and
to allocate arrays based on the dynamically computed shape. For
example, if the shape of B in an assignment of the form A=B+0.5
were UNKNOWN at compile time, the system would generate the
code in Figure 6, where shadow variables A D1, A D2, B D1,
and B D2 are used to store the execution time information about
the dimensions of A and B. Similar shadow variables are generated
for dynamic intrinsic type inference.

One problem with this approach is that the number of pos-
sible type combinations grows exponentially with the number of
operands. To reduce this problem, the dynamic analysis sys-
tem for intrinsic type considers only REAL and COMPLEX types,
and all expressions with more than two operands are transformed
into a sequence of triplets using three-address code in the form:
t x OP y. Hence, for an expression with n operands, there

S1: for k=1:n
S2: P(k,k)=4;
S3: end
S4: for j=1:n-1
S5: P(j,j+1)=-1;
S6: P(j+1,j)=-1;
S7: end

Figure 7: Part of a MATLAB code to generate a Poisson matrix.

if (k .gt. P D1 .or. k .gt. P D2) then
if (ALLOCATED(P)) then
T0 D1 = P D1
T0 D2 = P D2
ALLOCATE(T0 R(T0 D1, T0 D2))
T0 R = P
DEALLOCATE(P)
P D1 = MAX(P D1, k)
P D2 = MAX(P D2, k)
ALLOCATE(P(P D1, P D2))
P(1:T0 D1, 1:T0 D2) = T0 R
P(1:T0 D1, T0 D2+1:P D2) = 0.
P(T0 D1+1:P D1, :) = 0.
DEALLOCATE(T0 R)

else
P D1 = k
P D2 = k
ALLOCATE(P(P D1, P D2))
P = 0.

end if
else

if (.not. ALLOCATED(P)) then
P D1 = k
P D2 = k
ALLOCATE(P(P D1, P D2))
P = 0.

end if
end if

S2: P(k , k) = 4

Figure 8: Fortran 90 allocation test for the MATLAB expression
P(k,k)=4.

will be at mostn�1 triplets with at most 4 cases each ([REAL,REAL];
[COMPLEX,REAL]; [REAL,COMPLEX]; and [COMPLEX,COMPLEX]).
That is, we consider at most 4(n � 1) cases as opposed to the 2 n

cases that would arise if the expression were not decomposed.

3.1 Support for Dynamic Shape Inference

Using shadow variables makes the generation of dynamic code
straightforward. However, in the case of shape inference, some
optimizations are necessary to avoid the excessive number of tests
and allocations. To illustrate this, consider the code segment of
Figure 7, which computes the tridiagonal part of a Poisson matrix.
Let us assume that the value of n is not known at compile time.
The program resulting from a naive compilation of this code would
contain allocation tests just before statements S2, S5, and S6. For
example, the allocation test corresponding to statement S2 would
be as shown in Figure 8.

The allocation tests before S2, S5, and S6 can be avoided if
an allocation of P with shape n�n were placed before statement
S1. Avoiding the allocation tests is particularly important if there
is no definition of P before S1. In fact, if P were defined before
S1, each allocation test will cause only a small overhead from the
conditional statements. On the other hand, if P is first referenced in

statement S2, loop S1 will produce a very large overhead because
P will have to be reallocated at each iteration.

This simple example illustrates two static techniques needed to
support dynamic shape inference: use-definition coverage analysis
and efficient placement of dynamic allocation. The objective of the
first technique is to determine whether an indexed array assignment
may increase the size of the array. If this information is known
at compile time, it is not necessary to generate an allocation test
for the indexed assignment. Otherwise, the allocation test must be
generated and the second technique is used to place the test where
it will minimize the overhead.

To determine whether there is definition coverage we use a
dimension propagation algorithm with symbolic capabilities. This
algorithm is similar to the range propagation algorithm used by
Blume and Eigenmann for the Range Test [3]. Since all matrices in
MATLAB have lower dimensions set to 1, our problem is simplified
to determining whether the maximum value that an array index will
reach is larger than the corresponding dimension in the previous
assignment of the variable. If it is larger, then reallocating the
array is necessary; otherwise, no dynamic test is necessary for the
assignment being considered.

Our dimension propagation algorithm symbolically computes
the maximum value of each scalar subscript expression which can
be used to generate ALLOCATE statements. Consider, for example,
the code presented in Figure 7. From the scalar assignment in S1,
the compiler determines that the maximum value of the variable
k will be n. Using this information, the compiler determines that
S2 creates a matrix P with shape n�n. From S4, the compiler
determines that the maximum value of j will be n-1. Notice
that, by using simple symbolic algebra capabilities, it is possible to
determine that j+1 is � n and that the shape of P is not expanded
in S5 or S6. Therefore, it is not necessary to generate dynamic
allocation tests for these statements. All this information is obtained
by tracing the indices of P to their previous definitions in the SSA
representation of the program, following an on-demand approach
similar to that introduced in [20]. In some situations (such as non-
scalar indices or indirections), this symbolic inference is unable to
determine the maximum value. In this case, the compiler sets the
corresponding information as UNKNOWN, and dynamic allocation
is required.

The technique for the placement of dynamic allocation traces
the SSA representation from a variable assignment to its previous
definition (D) and to the definition of the variable that determines
the symbolic dimension (S)6. If there is no previous definition for
the assigned variable, the ALLOCATE can be placed at any point
between S and the assignment. Otherwise, if an allocation test is
required after D, it can be placed after both S and the last use of D.
In both cases, if possible, the dynamic allocation is placed outside
of the outermost loop, to avoid overhead.

Rank and shape can be propagated through matrix construc-
tors, through built-in functions that construct matrices based on the
parameters (e.g. rand, zeros), through built-in functions that
return matrices with the same shape as the input parameter (e.g.
sin, sqrt), and through expressions in general. However, this
propagation is not always straightforward. Consider, for example,
the multiplication C = A * B, where A and B are n�q and p�m
respectively. We cannot infer that C will be an n�m matrix without
knowing the actual values of n, q, p, and m. If n and q are both
equal to 1, then C will be a p�m matrix. Similarly, if p and m
are both equal to 1, then C will be a n�q matrix. Thus, without
further information about n, q, p, and m, it is impossible to infer
the symbolic information for the variable C.

6S refers to the last definition, in lexicographicorder, in which two variables define
the symbolic dimension of an array.

Problem From Problem size
Adaptive Quadrature

using Simpson’s rule (AQ) a 1 Dim. (7)
Conjugate Gradient method (CG) b 420� 420
Generation of a 3D-surface (3D) c 41�21�11
Dirichlet Method for

Laplace’s Equation (Di) a 40� 40
Finite difference solution

to the wave equation (FD) a 451� 451

Sources: a - From [17]; b - From [2]; c - Colleagues

Table 4: Test programs.

4 Experimental Results

To measure both the effectiveness of the internal phases of the in-
ference mechanism and the overall effectiveness of the compiler,
we performed two sets of experiments. In the first set, we measured
the importance of each of the major phases of the inference sys-
tem. In the second set, we compared the performance of compiled
codes with their interpreted MATLAB versions and with Fortran 90
hand-written versions of the same algorithms. For both sets of
experiments, we ran five MATLAB programs on an SGI Power
Challenge using one processor. To avoid large execution times,
especially in MATLAB, the time required for experiments was con-
trolled by setting the problem size7 and the numerical resolution (in
the case of iterative problems).

A brief description of the test programs is presented in Table 4.
These programs can be classified into three groups, depending upon
certain characteristics of the MATLAB code and its execution. CG
and 3D spend most of their time executing built-in functions. AQ is
placed in the group that requires dynamic reallocation of matrices
during execution time. Finally, Di and FD are loop-based programs
requiring element-wise access of arrays. A particular characteristic
of CG is that it has no indexed array assignments.

4.1 Evaluation of the Inference Phases

With the use of compiler flags, we independently deactivated intrin-
sic type inference, shape and rank inference, and symbolic dimen-
sion propagation. When type inference was deactivated, all vari-
ables, with the exception of do loop indices and temporaries used
for conditional statements, were declared COMPLEX. When shape
and rank inference were deactivated, all variables, with the same
two exceptions just mentioned, were declared as two-dimensional
allocatable arrays. For all runs where shape and rank inference were
deactivated, dimension propagation was also deactivated since it is
an optimization of shape and rank inference. Figure 9 presents the
execution times in seconds for each of the programs 8 running with
all six possible combinations.

We observe that 3D is the program having the least variation in
performance between the different inference phases. This behavior
results from the fact that this program spends most of its time
executing a library function to calculate eigenvalues. Furthermore,
3D uses a COMPLEX array during this computation, thus, minimizing
the effect of intrinsic type inference. Its overall improvement in
performance from no inference to all phases being used was on the
order of 25%. For all other programs, at least one of the inference
phases produced a significant performance improvement.

Shape and rank inference had a large influence on performance
for all other programs, with improvements ranging from 3 times

7A more detailed study is underway to determine how problem size affects the
relative speed of the programs.

8For each individual test, the time presented in the graph represents the best time
out of five runs.

11.21.4

0.03

0.10

0.30

1.00

3.00

10.0

30.0

a b c

s
e

c
o

n
d

s
 (

lo
g

 s
c
a

le
)

a b c a b c a b c a b c

with type inference
no type inference

SGI Power Challenge

a: no shape inf. b: no symb. prop. c: with shape inf. & symb. prop.

AQ

Di

CG

FD

3D

Figure 9: Inference phases comparison.

faster for CG to almost 30 times faster for Di. The main reason for
this improvement is the reduction in overhead for dynamic shape
inference, especially for scalars. When dynamic shape inference
is necessary for a matrix, the overhead generated by the compiler
may be amortized by the subsequent operation and assignment to
the matrix, depending on its size and the number of floating point
operations performed by the expression. On the other hand,a typical
scalar assignment doesn’t require enough work to compensate the
overhead.

As expected, only the loop based programs requiring element-
wise access of arrays (Di and FD) benefited from the dimension
propagation. AQ requires reallocation of arrays; hence, the dimen-
sion propagation has no effect on the program. Since CG has no
indexed assignments and spends most of its time computing library
functions, dimension propagation also has a very small effect on
the generated program.

Type inference generated the biggest improvements for the com-
putational bounded problems (CG, Di, and FD). In these cases,
when shape inference and dimension propagation were activated,
the speedup resulting from type inference ranged from 3.8 to 5. On
the other hand, type inference had very little effect on AQ since it
spends most of its time performing data movements.

4.2 Comparison to MATLAB and hand-written Fortran 90
programs

Our experimental results, presented in Table 5, show that for all
five programs the performance of the compiled code is better than
the respective interpreted execution, and the range of speedups is
heavily dependent on the characteristics of the MATLAB program.
Programs in the first group have a relatively small speedup com-
pared to MATLAB, since they spend most of their execution time
performing the same library functions. The speedup obtained is
primarily attributed to the overhead of interpretation.

The speedup obtained by AQ resulted from the better handling
of indexed assignmentsand the reallocation of matrices by the com-
piled program. However, according to preliminary experiments to

Program MATLAB Compiled Speedup Hand coded
AQ 19.98 1.637 12.2 0.875
CG 5.30 0.589 9.0 0.542
3D 36.04 3.161 11.4 3.130
Di 44.78 0.052 861.1 0.050
FD 31.82 0.031 1026.5 0.031

Table 5: Execution times (in seconds) running on the SGI Power
Challenge.

determine how problem size affects the relative speed of the pro-
grams, this improvement varies considerably, depending upon the
number of reallocations required by the program, which is in turn
dependent upon the input data set and the function being used for
the numerical integration. Finally, loop-based programs requiring
element-wise access of arrays are the programs that benefit the most
from compilation. due to the more efficient loop control structure
of the compiled code and the larger overhead of the indexed assign-
ments within the interpreted code.

When comparing the hand-coded Fortran 90 programs with the
compiler generated versions, we observe that for these programs
the performance of the compiled versions is very close to the per-
formance of the hand-written programs. The largest performance
difference occurs with AQ, primarily because of the reallocation
of matrices by FALCON, as presented in Figure 8. In the hand-
written code, due to a better knowledge of the algorithm, we can
avoid part of the copy of the old values to the expanded matrix, and
the initialization of the expanded part to zero.

5 Related Work

In this section, we will briefly discuss a few other approaches for
the compilation of MATLAB or MATLAB-like languages. These
approaches range from research projects to commercial products.

CONLAB [13] is an interactive environment for developing
algorithms for parallel computer architectures. It uses a subset of
the MATLAB language, with extensions for expressing parallelism,
synchronization, and communication. A translator from CONLAB
to C was developed by Drakenberg et al. [10]. Some sort of type
inference system is alluded to by the authors in their papers, but it
is not described.

A simple approach for the translation of MATLAB programs
into C++ is presented in [14]. In this work, a matrix class was
created to take care of all type and shape inference decisions during
execution time. This class is then utilized by the generated C++. Ef-
fectively, the control structure is compiled, but all the mathematical
operations are still interpreted within this matrix class.

Recently, MathWorks releasedMCC, a MATLAB compiler [16]
that translates MATLAB programs into C for stand-alone external
applications, or into C MEX-files9, which are called within the
MATLAB environment. From [16], it appears that MCC performs
only simple inference and relies upon user-provided flags, pragmas,
and assertions, that specify the type or rank of variables, to opti-
mize the generated code. Using the MATLAB programs described
above, we compared the performance of C MEX-files generated
by MCC10 and the programs briefly described in Table 6 with the
performance of Fortran 90 programs generated by FALCON, on a
SPARCstation 10. Due to the lack of a native Fortran 90 compiler
on our SPARCstation, the Fortran 90 programs were first translated
to Fortran 77 with the use of VAST-90 [18], and then compiled

9MEX-files are MATLAB-callable C or Fortran dynamically linked subroutines
that are built with a special interface module.

10At this time we have only the MathWorks compiler available on a SPARCstation.
We are in the process of obtainingthe necessary software to perform these experiments
on an SGI Power Challenge.

Problem From Problem size
Successive Overrelaxation

method (SOR) b 420� 420
Quasi-Minimal Residual

method (QMR) b 420� 420
Crank-Nicholson solution

to the heat equation (CN) a 321� 321
Two body problem using

4th order Runge-Kutta (RK) d 3200 steps
Two body problem using

Euler-Cromer method (EC) d 6240 steps

Sources: a - From [17]; b - From [2]; d - From [11]

Table 6: Additional test programs.

11.21.4
CG AQ SOR QMR 3D FD CN RK Di EC

 1

 4

 10

 40

 100

 400

S
p

e
e

d
u

p
 o

ve
r

M
A

T
L

A
B

(l
o

g
 s

ca
le

)

(2.8) (1) (2.7) (5.5) (2.9) (3.8) (5.1) (84) (17) (91)

MCC

FALCON

SPARCstation 10

Figure 10: Speedup comparisons. FALCON’s speedup over MCC
in parenthesis.

with the Sun Fortran 77 compiler using the optimization flag “O3”.
The MEX-files generated by MCC were compiled with the GNU
C compiler using the optimization flag “O3”. MCC does not sup-
port the load statement; hence, the input data was loaded using
interpreted MATLAB commands (not timed) and provided to the
MEX-files as function parameters. To provide MCC with the same
information that was extracted by FALCON from the loaded vari-
ables, assertions were added to the M-files.

Figure 10 presents the speedups of the codes generated by
both compilers over MATLAB. It also includes, in parenthesis, the
speedup of FALCON’s generated codes over MCC’s codes. With
the exception of AQ that, as described previously, spends most of its
time performing reallocations and data movements, all other codes
generated by FALCON ran at least 2.7 times faster than their MCC
counterparts. We observe that in three cases (CG, SOR, and QMR),
MCC generated a program that ran slower than MATLAB.

Three programs generated by FALCON (RK, EC, and Di) had
significantly better performance than the corresponding MCC ver-
sions. RK and EC perform several elementary matrix operations
on 2� 2 matrices. The code generated by MCC appears to be very
inefficient for these kinds of operations. Furthermore, the lack of
“preallocation” of variables in the MATLAB code is also respon-
sible for the degradation of the performance of these MCC codes
whereas because of our dimension propagation, FALCON is able
to allocate all matrices outside the main loop. Finally, the better

performance from Di results from our value propagation analysis.
In this case, the type inference can determine that the expression:

r
4�

h
cos

�
�

n � 1

�
+ cos

�
�

m� 1

�i2

will always return a REAL value, whereas MCC assumes the output
of a square root to be of type COMPLEX. Thus, the code generated by
MCC for Di uses COMPLEX variables for most of its computations,
whereas ours uses only REAL variables.

6 Conclusions

We are building a programming environment for the development
of scientific libraries and applications. By using MATLAB as the
source language and producing Fortran 90 as output, this envi-
ronment takes advantage of both the power of interactive array
languages and the performance of compiled languages. In order to
generate code from the interactive array language, we developed a
translator that combines static and dynamic inference methods for
type, shape, and rank inference, and is optimized with value and
symbolic dimension propagation.

As shown by our experimental results, the compiled programs
performed better than their respective interpreted executions, with
performance improvement factors varying according to the charac-
teristics of each program. For certain classesof programs, our trans-
lator generates code that executes as fast as hand-written Fortran 90
programs, and more than 1000 times faster than the corresponding
MATLAB execution.

Further performance improvements will be possible by inte-
grating FALCON with a parallelizing compiler, as planned for the
second phase of this project. In order to facilitate the work of
the parallelizer, we will include in this integration the generation
of directives for parallelization and data distribution through the
exploitation of the high-level semantics of the array language.

References

[1] AHO, A., SETHI, R., AND ULLMAN, J. Compilers: Principles,
Techniques and Tools. Addison-Wesley Publishing Company,
1985.

[2] BARRETT, R., BERRY, M., CHAN, T., DEMMEL, J., DONATO, J.,
DONGARRA, J., EIJKHOUT, V., POZO, R., ROMINE, C., AND VAN
DER VORST, H. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, 1993.

[3] BLUME, W., AND EIGENMANN, R. The Range Test: A Depen-
dence Test for Symbolic, Non-linear Expressions. In Proceed-
ings of Supercomputing ’94 (November 1994), pp. 528–537.

[4] BLUME, W., EIGENMANN, R., FAIGIN, K., GROUT, J., HOE-
FLINGER, J., PADUA, D., PETERSEN, P., POTTENGER, B.,
RAUCHWERGER, L., TU, P., AND WEATHERFORD, S. Polaris:
Improving the Effectiveness of Parallelizing Compilers. In
Languages and Compilers for Parallel Computing (August
1994), K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau, and
D. Padua, Eds., Lecture Notes in Computer Science, vol. 892,
Springer-Verlag, pp. 141–154. 7th International Workshop,
Ithaca, NY, USA.

[5] BUDD, T. An APL Compiler. Springer-Verlag, 1988.

[6] CHING, W.-M. Program Analysis and Code Generation in an
APL/370 Compiler. IBM Journal of Research and Develop-
ment 30:6 (November 1986), 594–602.

[7] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,
AND ZADECK, F. K. Efficiently Computing Static Single As-
signment Form and the Control Dependence Graph. ACM
Transactions on Programming Language and Systems 13, 4
(October 1991), 451–490.

[8] DEROSE, L., GALLIVAN, K., GALLOPOULOS, E., MARSOLF,
B., AND PADUA, D. FALCON: A MATLAB Interactive Re-
structuring Compiler. In Languages and Compilers for Par-
allel Computing (August 1995), C.-H. Huang, P. Sadayap-
pan, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,
Eds., Lecture Notes in Computer Science, vol. 1033, Springer-
Verlag, pp. 269–288. 8th International Workshop, Columbus,
Ohio.

[9] DEROSE, L., GALLIVAN, K., GALLOPOULOS, E., MARSOLF, B.,
AND PADUA, D. FALCON: An Environment for the Devel-
opment of Scientific Libraries and Applications. In Proc. of
the KBUP95: First international workshop on Knowledge-
Based systems for the (re)Use of Program libraries (Sophia
Antipolis, France, November 1995).

[10] DRAKENBERG, P., JACOBSON, P., AND KAGSTROM, B. A CON-
LAB Compiler for a Distributed Memory Multicomputer. In
Proceedingsof the 6th SIAM Conference on Parallel Process-
ing for Scientific Computing, Norfolk Va (March 1993).

[11] GARCIA, A. L. Numerical Methods for Physics. Prentice Hall,
1994.

[12] GILMAN, L., AND ROSE, A. APL : An Interactive Approach.
Wiley, 1984.

[13] JACOBSON, P., KAGSTROM, B., AND RANNAR, M. Algorithm
Development for Distributed Memory Multicomputers Using
CONLAB. Scientific Programming 1 (1992), 185–203.

[14] KEREN, Y. MATCOM: A MATLAB to C++ Translator and
Support Libraries. Technion, Israel Institute of Technology,
1995.

[15] THE MATH WORKS, INC. MATLAB, High-Performance Nu-
meric Computation and Visualization Software. User’s Guide,
1992.

[16] THE MATH WORKS, INC. MATLAB Compiler, 1995.

[17] MATHEWS, J. H. Numerical Methods for Mathematics,Science
and Engineering, 2nd ed. Prentice Hall, 1992.

[18] PACIFIC-SIERRA RESEARCH CORPORATION. VAST-90 Fortran
90 Language System: User guide, 2.1 ed., 1993.

[19] SCHWARTZ, J. T. Automatic Data Structure Choice in a Lan-
guage of a Very High Level. Communications of the ACM 18
(1975), 722–728.

[20] TU, P., AND PADUA, D. Gated SSA-Based Demand-Driven
Symbolic Analysis for Parallelizing Compilers. In Proceed-
ings of the 9th ACM International Conference on Supercom-
puting (Barcelona, Spain, July 1995), pp. 414–423.

