
In C.-H. Huang, P.Sadayappan, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua

(Editors), Languages and Compilers for Parallel Computing, pages 269-288.

Springer-Verlag, August 1995. (8th International Workshop, LCPC'95, Columbus OH.)

FALCON: A MATLAB Interactive Restructuring
Compiler

L. DeRose, K. Gallivan, E. Gallopoulos, B. Marsolf and D. Padua

September 1995

CSRD Report No. 1448

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign
1308 West Main Street
Urbana, Illinois 61801





FALCON: A MATLAB Interactive
Restructuring Compiler

L. De Rose? K. Gallivan?? E. Gallopoulos??? B. Marsolf?? D. Paduay

Center for Supercomputing Research and Development
and Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

fderose, gallivan, stratis, marsolf, paduag@csrd.uiuc.edu

Abstract. The development of e�cient numerical programs and library
routines for high-performance parallel computers is a complex task re-
quiring not only an understanding of the algorithms to be implemented,
but also detailed knowledge of the target machine and the software en-
vironment. In this paper, we describe a programming environment that
can utilize such knowledge for the development of high-performance nu-
merical programs and libraries. This environment uses an existing high-
level array language (MATLAB) as source language and performs static,
dynamic, and interactive analysis to generate Fortran 90 programs with
directives for parallelism. It includes capabilities for interactive and auto-
matic transformations at both the operation-level and the functional- or
algorithm-level. Preliminary experiments, comparing interpreted MAT-
LAB programs with their compiled versions, show that compiled pro-
grams can perform up to 48 times faster on a serial machine, and up to
140 times faster on a vector machine.

1 Introduction

The development of e�cient numerical programs and library routines for high-
performance parallel computers is a complex task requiring not only an under-
standing of the algorithms to be implemented, but also detailed knowledge of
the target machine and the software environment. Today, few e�ective tools are
available to help the programmer of high-performance computers perform the
transformations necessary to port parallel programs and library routines across

? Supported by the CSRD A�liates under grant from the U.S. National Security
Agency.

?? Supported by the National Science Foundation under Grant No. US NSF CCR-
9120105 and by ARPA under a subcontract from the University of Minnesota of
Grant No. ARPA/NIST 60NANB2D1272.

??? Supported by the National Science Foundation under Grant No. US NSF CCR-
9120105.

y Supported in part by Army contract DABT63-92-C-0033. This work is not necessarily
representative of the positions or policies of the Army or the Government.



machines. This task is made even more di�cult by the great diversity in overall
organization between the di�erent classes of parallel computers. This di�culty
holds true even when the objective is to develop code for a single target machine.

Several approaches to facilitate the development and maintenance of parallel
code are currently under study. One approach is the automatic translation of con-
ventional programming languages, notably Fortran, into parallel form. SUIF [2],
a compiler developed at Stanford, and Parafrase-2 [27] and Polaris [25], devel-
oped at Illinois, are examples of this �rst approach. Another approach is to
extend conventional languages with simple annotations and parallel constructs.
This second approach also involves the development of translation techniques for
the extensions. Examples include High Performance Fortran [19] and pC++ [7].
Finally, a third approach is to accept a very high-level description of the math-
ematical problem to be solved and automatically compute the solution in paral-
lel. Examples of this approach are //ELLPACK [20], developed at Purdue, AL-
PAL [12], developed at Lawrence Livermore Laboratories, and EXTENT [15],
developed at Ohio State University.

FALCON is a programming environment that includes capabilities for in-
teractive and automatic transformations at both the operation-level and the
function- or algorithmic-level. This environment supports the development of
high-performance numerical programs and libraries, combining the transforma-
tion and analysis techniques used in restructuring compilers with the algebraic
techniques used by developers to express and manipulate their algorithms in an
intuitively useful manner [16]. As we envision it, the development process should
start with a simple prototype of the algorithm and then continue with a sequence
of automatic and interactive transformations until an e�ective program or rou-
tine is obtained. The prototype and the intermediate versions of the code should
be represented in an interactive array language. The interactive nature of the
language is important to facilitate development and debugging. Array operations
are the natural components of most numerical code; therefore, including array
extensions in the base language should make the programs easier to develop and
modify.

The ideal interactive array language should be easy to learn and capable
of accessing powerful graphics and other I/O facilities. We are using an exist-
ing language in order to shorten the learning curve for our system and give
us immediate access to existing support routines. APL and MATLAB [22] are
the most widely used interactive array languages today. We have chosen MAT-
LAB because it is the more popular of the two and has a conventional syntax
that facilitates learning it. In MATLAB, as in any interactive array language,
the type, rank and shape of variables are dynamically determined. However, for
the generation of e�cient code, static declarations are necessary. In our system,
declarations are inserted automatically by the compiler. If the compiler is un-
able to determine type, rank, or shape statically, code is generated to make the
determination at runtime. To facilitate code development, the system will also
provide capabilities for the user to insert optional declarations. By compiling
the array language, we expect to improve the performance of the programs by



eliminating ine�ciencies caused by the interpretation. As discussed in Section 3,
our preliminary experiments show, that for programs that require certain types
of operations, the compiled version performed up to 140 times faster than the
MATLAB version.

Another e�ort in this research is devoted to the development of the interac-
tive restructuring system which, through correctness-preserving transformations,
will lead to e�cient code from the original prototype. Our system includes capa-
bilities for interactive restructuring of both expressions and program statements
via standard restructuring techniques, algebraic restructuring techniques, and
the combination of the two. We designed a uniform transformation system based
on an extensible collection of rewriting rules. Some transformations will oper-
ate on a single expression, while others, such as data structure selection, have a
global e�ect on the code. Also, transformations for library routine selection are
part of the interactive transformation. Library selection will help the program-
mer take advantage of a library of routines highly tuned for a particular target
machine. Many other transformations, including those to enhance locality and
exploit implicit parallelism, are also being developed.

As discussed in more detail below, we take advantage of the collection of
functions and operations in MATLAB to facilitate the translation process. Our
programming environment incorporates knowledge of the algebraic and compu-
tational properties of many MATLAB functions. This enables us to perform
complex algebraic transformations on the source program. The availability of
information at this semantic level will substantially increase the chances of suc-
cess where traditional high-level language restructurers fail, due to their almost
exclusive focus on low-level operations. The chances of successfully transforming
MATLAB programs are further increased by the simplicity of the language. In
our experience, Fortran restructurers often fail because of aliasing or the undis-
ciplined use of GO TOs.

The rest of this paper is organized as follows. In Section 2, we present a
more detailed description of the system. The current status and some experi-
mental results are presented in Section 3. Finally, our conclusions are presented
in Section 4.

2 System Description

In this section, we describe the overall organization of the system as it was de-
signed, and then present additional information about the techniques already
implemented. As mentioned in the Introduction, our objective is to develop a
programming environment for implementing, maintaining, and extending scien-
ti�c programs and numerical library routines. Our long-term goal is to generate
code for a variety of machines, including conventional workstations, vector su-
percomputers, shared-memory multiprocessors, and multicomputers. However,
to be able to solve several di�cult problems that arise in the translation of
MATLAB codes, we concentrated our initial e�orts on a conventional worksta-
tion and vector supercomputers.



The main target language of the system is Fortran 90, which is very conve-
nient for our purposes because of its similarities with MATLAB. Later, we plan
to also generate pC++ as a target language in order to explore object-oriented
issues that arise in numerical programming.

The environment consists of four main modules, namely the Program Anal-
ysis module, the Interactive Restructuring and Routine Selection module, the
Code Generator module, and the Parallelizer module. Figure 1 presents the 
ow
of information between the main system components. The process starts with
a prototype in the form of a MATLAB program. This prototype is analyzed to
infer information such as type, shape, and dependences. Whenever this informa-
tion cannot be determined statically, the program analysis phase generates code
to make the determination at runtime. Hence, after this transformation, the type
and shape of each variable in the program are known. This is necessary before
proceeding to the next phase: interactive restructuring. The reason is that, as
discussed below, runtime type checking usually involves code replication and
each copy should be available for transformation.

Making use of a collection of transformation rules in the database and the
information gathered by the program analyses, the user can interactively trans-
form the original program by changing the structure of the code, selecting data
structures for variables, and selecting library routine implementations for each
invocation. In Figure 1, control 
ows back and forth between restructuring and
analysis because, after the structure of the code has changed, it might be neces-
sary to repeat the analysis. The user could extend the database of transformation
rules and library routine information as new transformations are conceived or
new library routines are incorporated into the system.

The code generator makes use of the information gathered by the program
analysis phase to generate a Fortran 90 program or routine. Furthermore, the
code generator will also produce a MATLAB program. The actual generation
of parallel code will be done by a restructuring compiler, such as Polaris [25]
or KAP [21]. Our system facilitates the translation into parallel form by an-
notating the target Fortran program and by using array operations whenever
possible. Furthermore, the Fortran restructurer should be capable of applying
transformations automatically whenever possible, thereby saving the user of the
interactive restructurer additional work.

In the rest of this section we discuss the program analysis and the restruc-
turing modules.

2.1 Program Analysis Module

The Program Analysis Module reads in the MATLAB program and converts it
into an abstract syntax tree (AST). During this process, the system performs
program analysis to identify parallelism and to determine variable properties,
such as type, rank (e.g vector, square matrix, scalar, etc.), shape (i.e. size of
each dimension), and structure (e.g. upper triangular, diagonal, Toeplitz). Pre-
vious work on type inference has been done for several high-level languages. In
particular, type inference techniques developed for SETL [28] and APL [8, 11]



Interactive
restructuring
and routine
selection

code
MATLAB

Executable

code

code
MATLAB

Program

analysis

program +

Parallelizer

Compiler +

Linker
Library

User interface

rules and
Transformation

library routines
information on

Code generator

assertions

Fortran 90

(Polaris)

Fig. 1. Program development environment.



are most relevant to our work. These two languages are similar to MATLAB in
that they can be executed interactively, are usually interpreted, and operate on
aggregate data structures. We make use of some of the techniques developed for
these two languages and extend them, with techniques originally developed for
Fortran, to analyze array accesses within loops and represent the information
gathered in a compact form [29]. These techniques are necessary for MATLAB,
since arrays are often built using Fortran-like loops and assignments that may
be distributed across several sections of the code. In contrast, the techniques
developed for APL assume that arrays are usually built by a single high-level
array operation. Determining variable properties automatically should facilitate
the program development process. Even though the system also accepts user as-
sertions, the users may prefer to leave the determination of the properties to the
system, especially when the program under development makes use of routines
whose local variables have di�erent shapes and types, depending on the context
in which they are invoked.

To determine variable properties, we make use of high-level summary infor-

mation on the behavior of the MATLAB built-in functions. For example, the
system will take into account the fact that the function lu returns triangular
matrices; using this information, it is able to utilize optimized functions, instead
of generalized methods, on these returned matrices in the compiled code. The
use of this high-level information should greatly increase the accuracy of the
analysis over the approach used in conventional high-level language compilers,
where only the information from elementary operations is used.

Use-De�nition Coverage The MATLAB program is internally represented in
Static Single Assignment (SSA) form [14]. This is a convenient representation
for many of the analysis algorithms that are implemented. In the SSA represen-
tation, it is evident which de�nitions a�ect (or cover) a particular use of a scalar
variable. Using this information, it is easy to perform variable renaming and pri-
vatization. The usefulness of renaming to improve the accuracy of the analysis
is illustrated in the following pseudocode, which uses i as the imaginary unit.

a = 2 � i

b = exp(a)

a = pi / 4.

z = sin(a)

In this example, the variable a is used for two di�erent purposes. Giving a
di�erent name to the second use of amakes it possible to assign the type complex
to the �rst use of a, and type real to the second. In the absence of renaming, it
would be necessary either to perform dynamic analysis, as discussed below, or
to assume a to be complex all the time. While either alternative would produce
a correct program, the code would clearly be more e�cient if the correct type of
every use were determined statically.

While it is easy to determine which de�nitions cover a given use in the case
of scalars using the SSA representation, a more complex approach is necessary



A = ...
if (cond)

k = ...
else

k = ...
end
A(i:k) = ...

(a)

for i=1:n
k = function(i)
...
A(k) = ...

end

(b)

Fig. 2. Examples requiring use-de�nition coverage analysis

in the case of arrays. For arrays, this information is useful not only to determine
whether di�erent types of values are assigned to array elements in di�erent
sections of the code, but also to determine where to allocate and reallocate
arrays and how much storage is required in each case.

This last problem, which seems to be ignored by current APL compilers [8,
11], is illustrated by the pseudocode segment in Figure 2. In this case, the com-
piler needs to determine if the partial assignment to A is a subrange of the
previous de�nitions of the variable. If not, reallocating A may be necessary.

As a second example, consider the pseudocode segment in Figure 2(b). In
this case, the compiler needs to estimate the maximum value of k to avoid the
overhead of dynamic allocation for every iteration of the loop.

We plan to attack the problem of array de�nition coverage using the analysis
techniques described in [29]. These have proven quite e�ective in detecting pri-
vatizable arrays in Fortran programs and should be at least equally e�ective in
this context. The strategy uses data 
ow analysis to determine which de�nitions
cover the uses of array elements. It also makes use of a number of conventional
analysis algorithms, including induction variable recognition [18] to compute up-
per and lower bounds of these variables, and propagation of the range of values of
scalars and of those arrays used as subscripts [6, 13]. This analysis is performed
interprocedurally whenever the modules referenced in the program are available
to the system. In the case of intrinsic functions, information on the elements
accessed are available in a database that is consulted during the computation of
ranges. The analysis of ranges and induction variables is facilitated by the use
of the SSA representation.

Type Inference To generate Fortran declarations and to support structure se-
lection, the system infers variable properties. Although described separately here,
shape and structure inference work in coordination with the coverage analysis
discussed in the previous subsection. Variable properties are estimated using a
forward/backward scheme [1].

For type inference, we use a type algebra similar to the one described in
[28] for SETL. This algebra operates on the type of the MATLAB objects and is



implemented using tables for all operations. Each node, of the graph representing
the program, contains attribute �elds to store inference information. These �elds
are �lled during the static inference phase and propagated through the graph
whenever a new attribute is synthesized. If these attributes are inferred to have
di�erent (or unknown) types, then the node is marked to be resolved during the
dynamic phase, or a type that subsumes all possible types is assigned to the
variable.

Array shapes are estimated using the induction variable and range propaga-
tion algorithms mentioned in the previous subsection. Structural information is
computed in similar ways. Again, in the case of rank and shape, code to apply
dynamic analysis is generated whenever the static analysis fails. For structural
inference, the system uses semantic information to identify special matrix struc-
tures, such as diagonal and triangular. This structural information is propagated
using an "algebra of structures" which de�nes how the di�erent structures in-
teract for the various operations. This information will be used by the compiler,
or by the interactive restructurer, to replace general methods that operate on
regular dense matrices with specialized functions for structured sparse matrices.
For example, consider the following MATLAB code for the solution of a linear
system Ax = b, using a LU decomposition:

[L, U, P] = lu(A);

y = L n (P � b);

x = U n y;

The �rst statement calls a built-in function (lu) that returns a lower trian-
gular matrix L, an upper triangular matrix U, and a permutation matrix P. For
a regular compiler, the second statement should perform a matrix-vector multi-
plication (Pb) and solve the linear system Ly = Pb. Finally, the last statement
should solve the linear system Ux = y. However, by taking into consideration
the semantics of the array language and knowing the properties of L, U, and
P, the system will infer that the matrix-vector multiplication (P � b) is only a
permutation on the vector b, and that the two linear systems to be solved are
triangular systems. Using this information, the multiplication operation and the
general linear system solve can be replaced by specialized algorithms during the
restructuring phase.

As mentioned above, a facility for user interaction is an important component
of the analysis phase. To simplify the interaction, the system will internally
record how the properties of a variable a�ect other variables. The objective is to
create a hierarchy of information interdependence and use it to query the user
only about the topmost level of the hierarchy.

Dynamic Analysis In some cases, when the static information is insu�cient,
the user may not be able (or willing) to provide enough information to determine
variable properties. In those cases, the system generates code to determine these
properties at runtime and, based on this determination, allocates the necessary
space and selects the appropriate code sequence. We follow an approach similar



to that used in many systems: associating tags with each array of unknown type
or shape. Based on these tags that are stored in shadow variables, conditional
statements are used to select the appropriate operations and to allocate the
arrays. Similar shadow variables are generated for dynamic type inference. For
example, if the type of A in an assignment of the form B = A + 0.5 were un-
known at compile-time, the system would generate two variables for A (Acomplex

and Areal) along with a shadow variable for the type of A (A type) and similar
variables for B. Then the assignment is transformed into:

B type = A type

if(A type == t complex)

Bcomplex = Acomplex+ 0:5

else

Breal = Areal + 0:5

end if

Clearly, such transformations cannot be indiscriminately applied. For exam-
ple, if A is a scalar, it may be faster to assume throughout the program that
it is a complex variable and generate code accordingly. However, if A is a large
array, or if it is a scalar that is operated with large arrays, the overhead of the
if statement will be minimal compared to the extra cost of the assignment,
assuming that A is often a real.

Also, in the case of right-hand sides with many operands, or in the case
of loops containing many statements, the number of possibilities would grow
exponentially. This problem is reduced by transforming the long expressions
into shorter ones, or by distributing the loop; in some cases, however, the best
strategy may be to assume that the variable is complex. In any case, in our �nal
version, a cost model that incorporates information from typical input data sets
will be de�ned to decide the best strategy in each case. In the current version,
static analysis techniques are used to minimize the number of tests applied at
runtime.

2.2 Interactive Restructuring and Routine Selection Module

Code restructuring will be done within this module by applying transformations
to expressions and blocks of statements. The system will have the necessary inter-
face mechanisms to accommodate the use of automatic transformation modules.
Initially, however, we are focusing on interactive transformations based on an
easy-to-extend database of rewriting rules. The user will be able to mark any
section of the program, including compound statements, subexpressions, and
function invocations, for restructuring. The system will then determine which
of the transformations in the database apply to the code segment marked by
the user. To make such a determination, it will use information automatically
inferred from the code, such as dependence graphs, and properties of variables
and expressions in the code. The system will then allow the user to select which
applicable transformations to perform.



During code restructuring, the user will select the implementation to be used
for each function invocation in the �nal version of the program. This selection
process could be done automatically, based upon target machine characteristics.
When the selection is done interactively, the user will be able to target speci�c
libraries to be used in the implementation and to select a version of the im-
plementation to be used for a speci�c function invocation. There will also be
a facility that allows the user to query the system's database, which contains
information about the library for particular target machines. This information
will include: version descriptions; performance information and tuning recom-
mendations; the type of processing used (parallel on all processors, parallel on a
subset of processors, vector, scalar); and possible rewriting of the library routine
in terms of other lower-level library routines.

There has been some work on interactive program restructuring and there are
some commercially available interactive Fortran restructurers, such as FORGE [3].
Also, restructuring of high-level operators has been discussed in the litera-
ture [4, 12], although there are no widely-used systems that apply these types of
transformations, as no system today includes capabilities for algebraic, control
structure, and library selection transformations.

We are planning on implementing several restructuring techniques for com-
plex transformations on the code. These transformations will be used either to
improve the performance of the code or to enhance the numerical properties of
the algorithm. These techniques can be divided into two groups: algebraic re-

structuring, based on the algebraic information, and primitive-set restructuring,
based on the primitives being used.

Algebraic Restructuring This part of the system will use the algebraic rules
de�ned for the variables, whether they are scalars, vectors, or matrices, to re-
structure the operations performed on the variables. To perform such manip-
ulations, symbolic computation tools, such as Maple [10], can be employed. In
some cases, applying these rules may be similar to the standard loop-based re-
structuring strategies used by conventional restructuring compilers, such as loop
blocking. However, we also want to be able to handle special matrix classes and
more complex operators. Our goal in applying the algebraic rules to matrices
and vectors will be to achieve better restructuring than when the rules are only
applied to scalar operations. For the interactive application of transformations,
algebraic restructuring may provide a more convenient form for the user than
loop-based restructuring, even when the e�ect on the resulting code is the same.

The main rules that will be considered for these transformations are the
algebraic properties of associativity, distributivity, and commutativity for vectors
and matrices. These properties for vectors and matrices are not as simple as for
scalars. For instance, the multiplication operations are not commutative and,
with matrices, the commuted operation may not even be possible. For example,
A � B may be possible whereas B � A may not be possible. Furthermore, the
order in which matrix operations are performed can have a signi�cant e�ect on
the number of operations to be performed [24]. Consider the multiplication of



xTi = vTi A

Yi = 2vix
T
i

A = A� Yi

xTj = vTj A

Yj = 2vjx
T
j

A = A� Yj

(a)

xTi = vTi A

Yi = 2vix
T
i

xTj = vTj A

Yj = 2vjx
T
j

� = vTj vi

Zj = 2�vjx
T
i

A = A� Yi � Yj � Zj

(b)

Fig. 3. Two examples of the application of two Householder transforms.

three vectors, v1 � vt2 � v3, where each vector contains n elements. If the matrix
operations are grouped as (v1�v

t
2
)�v3, the calculation takes O(n

2) 
oating point
operations whereas, if the operations are grouped as v1 � (vt2 � v3), it only takes
O(n) operations.

In addition to the simpler properties, the system will attempt to understand
more complex operators, such as the Gauss transform and the Householder trans-
form. These types of transformations are used to build matrix factorization al-
gorithms: the Gauss transform for the LU factorization and the Householder
transform for the QR factorization. By examining the properties of the trans-
formations, we can reach an understanding of how these properties can be used
for restructuring. For example, consider how the Householder QR factorization
could be blocked. By examining the code, the application of two Householder
transforms, Hi and Hj to the matrix A, could be viewed as Hj(HiA). Using
the de�nition of the Householder transform, Hi = (I � 2vivTi ), the operations
normally required in the code would be as presented in Figure 3(a). This code
requires the use of 6 O(n2) operations. If, however, the transforms are combined
before they are applied, (HjHi)A, then the operations presented in Figure 3(b)
are required.

With this code there are now 8 O(n2) operations and a new O(n) operation
for the calculation of �. Although this new code requires additional operations
and memory storage, in practice it provides better locality thus resulting in im-
proved performance. These additional operations were generated by utilizing the
de�nition of the transform; they would not have been apparent by just exam-
ining the code. This utilization of algebraic information is being performed not
only by algorithm developers, but is also being explored by compiler writers [9].

The transformations will be based on patterns that the system can recognize
in the code and on the replacements for these patterns. The developer will be able
to select a segment of code and the system will indicate which patterns match
the segment. The developer will then select which transformation to apply from
those possible. For example, consider some replacement patterns for statements
involving the MATLAB solve operation, \n", in Figure 4.

These patterns consist of two main parts: the pattern to be replaced and



REPLACE

INTEGER n
REAL M(n; n); b(n); x(n)
x = M n b;

WITH

REAL L(n;n); U(n;n)
REAL y(n)
[L;U ] = lu(b);
y = L�1 � b;
x = U�1 � y;

END

REPLACE

INTEGER n
REAL M(n;n)fDIAGONALg
REAL b(n); x(n)
x = M n b;

WITH

x = b := diag(M);
END

Fig. 4. Sample restructuring patterns for MATLAB solve operation.

!
!
!

!
!

!
!

!
!!

a
a
a
a
a
a
a
a
aa

a
a
a
a
a
a
a
a
aa

!
!
!
!
!

!
!
!
!!

Square

Lower Triangular Upper TriangularBanded

Diagonal

Fig. 5. Partial ordering of matrix types.

the resulting code. Within the pattern, it is important to match not only the
operation, but also the characteristics of the operands. For instance, in the �rst
pattern, the matrixM is a square matrix; but, for the second pattern, M must
be a diagonal matrix. In order to reduce the number of patterns required, we
will attempt to order the matrix types according to their characteristics.

The structured sparse matrix characteristics form a lattice through which
properties are inherited from the original square matrix. For instance, operations
on a square matrix will work on a lower triangular matrix, and operations on a
lower triangular matrix will also work on a diagonal matrix. A partial ordering
of these types is presented in Figure 5.

In order to support complex algebraic transformations, it is sometimes nec-
essary to match code segments according to characteristics of the operations
instead of exactly matching the operations. In Figure 6, a pattern for inter-
changing loops shows how certain dependence conditions can be placed on the
matching of the loop body. In this example, the loops can be interchanged only
if the data dependences do not contain a direction vector of the form <,> [26].



REPLACE

INTEGER i,j

do i = 1:n

do j = 1:n

<BODY>
WHERE

no-match-direction-vector("<; >", dependence(<BODY>))
END

end

end

WITH

INTEGER i,j

do j = 1:n

do i = 1:n

<BODY>
end

end

END

Fig. 6. Pattern for loop interchange.

Primitive-set Translation Primitive-set translation can also be used to trans-
late the code to the level of numerical operations that work best for the target
machine and application [17]. Instead of dealing with the code only at a matrix
operation level, this phase will be able to decompose the algorithms to matrix{
vector operations and vector{vector operations; or, in some circumstances, it
will form higher-level operations by combining multiple lower-level operations.
This optimization technique should be guided by factors such as the machine
architecture, availability of low-level libraries, and problem size, with the goal
of achieving the best performance. This technique also allows the selection of
library routines to implement the operations in the code.

These translations can be viewed in two ways: in an algebraic sense and in
a library sense. In the algebraic sense, primitive levels will be switched via the
combination or decomposition of matrix and vector operations. In the library
sense, primitive levels will be switched via modifying the code so that it maps
to the subroutines in a speci�c library. The end results, however, will be similar
regardless of which of the two views is used.

When mapping an operation to the subroutines in a library, the subroutines
may be at the same primitive level, at a lower level, or at a higher level. Switching
to a lower primitive level will involve taking an operation and decomposing it
into multiple operations. This will be achieved by decomposing one, or both,
of the operands into substructures and then applying the operation with these
substructures. For instance, matrix multiplication can be performed by: using
the Level-3 BLAS subroutine DGEMM once; using the Level-2 BLAS subroutine
DGEMV in a loop; or, using the Level-1 BLAS subroutine DDOT in a doubly nested
loop. The code can be transformed using patterns similar to those used for the



REPLACE

INTEGER n

REAL A(n,n), B(n,n), C(n,n)

C = A * B;

WITH

INTEGER i

SUBROUTINE DGEMV(P_IN,P_IN,P_IN,P_IN,P_IN,P_IN,P_IN,P_IN,P_IN,P_OUT,P_IN)

for i = 1:DIM(B,2)

C(1,i) = DGEMV('N',DIM(A,1),DIM(A,2),1.D0,A,DIM(A,1),B(1,i),1,0.D0,1);

end

END

Fig. 7. Pattern for mapping matrix multiplication to level-2 of the BLAS.

algebraic restructuring, as shown in Figure 7 for the Level-2 BLAS subroutine.
As with algebraic restructuring, it will be necessary for the code developer to

specify which transformation to use when multiple patterns match the operation.
It will be possible for the developer to select the patterns from a speci�c library
to use for all operations, or to examine the code and select a pattern for each
speci�c operation. For each library the system will support, replacement patterns
must be developed to map the MATLAB operations to subroutines in the library.

Moving to a higher primitive level, therefore, would involve �nding multi-
ple primitives that can be combined into a single operation. However, for the
transformation system to do this, it needs to search the program for multiple
statements that �t a known pattern, typically a loop of operations, or to react
to the user's directions.

2.3 Support for Parallelism

In the initial implementation, the primary support for parallelism will be the
ability to place data dependence assertions within the code using directives.
Such directives can be used to supply information, such as interprocedural anal-
ysis and the independence of data accesses. For instance, the calls to built-in
functions in MATLAB are known to be side-e�ect free by the semantics of the
language. However, if the calls to the built-in functions are translated to subrou-
tine calls for a speci�c library, the semantics of the calls may no longer guarantee
that the operation is side-e�ect free. Consider the example in Figure 8, where
the matrix multiplication C = A � B has been decomposed into a series of inde-
pendent matrix-vector products to allow parallel execution. In this example, the
left side shows the original code, and the right side shows the code after it has
been translated to use a level-2 BLAS primitive. A traditional compiler would
not be able to determine if the loop is parallel without performing analysis of
the DGEMV code. However, our system will be able to assert that the calls can be
performed in parallel since the functionality of the original code was parallel.



for i = 1:n

C(:,i) = A * B(:,i);

end

for i = 1:n

call DGEMV('N',n,n,1.0D0,A,n,

B(1,i),1,0.0D0,C(1,i),1);

end

Fig. 8. Two implementations showing the loss of dependence information.

for i = 1:n

B(i) = A(i) + B(i);

end

ind = nonzeros(A);

len = size(ind);

for i = 1:len

B(ind(i)) = A(ind(i)) + B(ind(i));

end

Fig. 9. Two vector additions showing the loss of dependence information.

A second example of dependence information involves the use of sparse data
structures. The code in Figure 9 shows a code segment for adding two vectors
together and the resulting code when one of the vectors, A, is changed to a sparse
vector. A traditional compiler would not be able to determine that the indices
contained in ind vector of the transformed code are unique. Our system, however,
would be able to assert that the indices are unique because it understands the
semantics of the nonzeros function.

3 Current Status and Experimental Results

Presently we have a compiler that can parse MATLAB code into the AST and
generate Fortran 90 for most operations and built-in functions. This current ver-
sion of the compiler supports: the static analysis for type, rank, and shape; the
utilization of shadow variables for dynamic inference; the generation of code for
the dynamic allocation of variables; and the interactive replacement of MAT-
LAB statements using simple patterns. Future work on the compiler includes:
the implementation of the structural inference; an optimization of the dynamic
analysis for indexed variables; and the expansion of the pattern matching system.

Currently, the primitive{set translation system supports translating simple
MATLAB operations into subroutine calls for a speci�c library. The transforma-
tion system is being modi�ed to support other combining rules for mapping the
MATLAB operations to subroutine calls. The new rules allow one MATLAB op-
eration to be mapped to multiple subroutine calls as well as multiple MATLAB
operations to be mapped to a single subroutine call.

Figure 10 shows an example of the code generated by the transformation
system which used the replacement pattern from Figure 7. In this �gure, the
original MATLAB code segment is presented, followed by the code segment that
would utilize a level-2 BLAS library. Other libraries, such as a level-3 BLAS or
a sparse library, can be supported.



MATLAB code:

D = rand(4);

F = D * D;

Translated Fortran 90 code:

call RANDOM NUMBER(D)

do T 3 = 1,4

call DGEMV('N', 4, 4, 1.0D0, D, 4,

D(1, T 3), 1, 0.0D0, F(1, T 3), 1)

end do

Fig. 10. Example of code translation for matrix multiplication, using level-2 BLAS.

Fortran 90
Algorithm Iterations MATLAB Generated Hand coded
CG 103 11.2 4.8 4.6
QMR 54 12.3 4.8 4.4
SOR 40 15.9 6.8 2.0

Table 1. Execution times in seconds using optimized MATLAB code.

We used two sets of programs to test the performance of the compiler. The
�rst set contains three MATLAB code segments provided in Netlib. These pro-
grams were written for general use; hence, they were not completely optimized
for speci�c matrix structures. However, for our tests, we hand-optimized these
MATLAB programs, and also wrote a Fortran 90 version of the same algorithms
for comparison with the compiler generated codes. The main characteristic of
these programs is that none of the variables are referenced or assigned using
indices (i.e. only array operations on whole arrays are present).

These code segments correspond to the following algorithms presented in [5]
for the iterative solution of linear systems: the Conjugate Gradient method (CG),
the Quasi-Minimal Residual method (QMR), and the Successive Overrelaxation
method (SOR). The programs were tested using a 420�420 sti�ness matrix from
the Harwell-Boeing Test Set. To control the time required for the experiments,
the tolerance was set to 10�5 for the CG and QMR algorithms, and 10�2 for
the SOR. The experiments were conducted on a SPARCstation 10. The times
are presented in Table 1.

When comparing the timing results presented in Table 1, we observe that the
compiled programs are almost three times faster than the interpreted programs.
Since both versions use BLAS and LINPACK routines to perform the numerical
operations on the matrices, this di�erence in performance is attributed to the
overhead of the interpretation of the MATLAB code. However, since most of the
hand optimizations used to improve the performance of the MATLAB execution
will be done automatically by the compiler with the structural inference, we
can expect an even greater improvement in performance, when comparing with
programs that were written for general use.

When comparing the hand-coded Fortran 90 programs with the compiler
generated versions, several observations can be made. First, in the CG case, the
performance of the compiled version was very close to the performance of the



hand-coded program. This 5% di�erence is attributed to the overhead of the
runtime inference. Second, in the QMR program we observed a di�erence in
performance on the order of 10%. This larger performance di�erence is because,
in the current version of the static inference mechanism, operations (such as
square root), that rely upon the value (in addition to the type) of the input
variable to determine the resulting type, are always considered to result in a
complex variable. Since the QMR program had a square root operation, some of
the variables in the compiled program were de�ned to be of type complex. The
operations with these complex variables generated a second source of overhead,
due to the larger number of computations required by complex operations. We
are extending our inference mechanism for this kind of function, by trying to
keep track of each variable's sign.

Finally, in the SOR case, we observe that the hand-coded version is almost
four times faster than the compiled code. The main reason for this di�erence
is because the hand-written Fortran 90 code takes advantage of certain matrix
structures to call specialized routines to perform operations on these matrices.
The compiled version, as well as MATLAB, uses more expensive routines that
try to detect such structures at runtime only when it is pro�table. Otherwise,
they operate on full matrices. We observe that, after the structural inference
process is complete, the compiler will be able to detect some specialized matrix
structures, and the performance of the generated code will be closer to the hand-
optimized code.

The second set of test programs were performed using code segments that
contain indexed variables. A brief description of these programs is presented
in Table 3. These programs were run on a SPARCstation 10, and on a Convex
C-240 compiling for vector optimization.

We can classify the programs in Table 3 into three groups, depending upon
certain characteristics of the MATLAB code and its execution. The �rst group
consists of programs that spend most of their time executing built-in functions
(i.e. QL, 3D-Surface, and Cholesky). In this case, the performance improve-
ments are similar to those of the previous test, and are attributed mainly to
the overhead of interpretation. We place in the second group the program that
requires dynamic allocation of matrices inside of a loop (i.e. Adaptive Quadra-
ture). In this case, for the data set used, we observed an improvement for the
serial execution on the order of 20. However this improvement varies consid-
erably, depending upon the number of reallocations that are required by the
program, that is in turn dependent upon the function that is being used. Fi-
nally, the third group contains loop-based programs that require element-wise
access of arrays (i.e. Dirichlet, Crank-Nicholson, Finite Di�erence, and Inverse
Hilbert). In this case, we observed a very good performance improvement (close
to 50 on the workstation, and up to 140 on the vector supercomputer). This
performance improvement is attributed, in part, to the loop control structure of
the compiled code, that is far more e�cient than the interpreted code (especially
for doubly-nested loops), and to the overhead of the indexed assignments within
the interpreted code.



Problem Source Problem size
QL method for �nding eigenvalues a 50 � 50
Generation of a 3D-surface b 41 � 21 � 11

Incomplete Cholesky factorization b 200 � 200
Adaptive quadrature using Simpson's rule a 1 Dim. (7)
Dirichlet solution to Laplace's equation a 26 � 26

Crank-Nicholson solution to the heat equation a 321 � 321
Finite di�erence solution to the wave equation a 321 � 321
Computation of the inverse Hilbert matrix c 180 � 180

Source:
a - From [23]; b - Colleagues; c - The MathWorks Inc, as a M-File (invhilb.m).

Table 2. List of test programs for indexed variables

SPARCstation 10 Convex C-240
Algorithm MATLAB F 90 Speedup MATLAB F 90 Speedup

QL method 8.8 3.17 2.8 NA NA NA
3D-Surface 17.1 2.95 5.8 NA NA NA
Inc. Cholesky Fact. 2.1 0.35 6.0 6.3 0.49 12.9
Adaptive Quadrature 1.4 0.07 20.0 4.5 0.06 68.8
Dirichlet Method 20.7 0.61 33.9 71.8 0.99 72.5
Crank-Nicholson 61.7 1.46 42.2 237.7 2.50 95.0
Finite Di�erence 25.2 0.55 45.8 98.4 0.82 120.0
Inv. Hilbert matrix 5.8 0.12 48.3 21.2 0.15 141.3

Table 3. Execution times (in seconds) for programs using indexed assignments.

4 Conclusions

This system creates an environment that is useful for researchers in compu-
tational sciences and engineering for the rapid prototyping and development
of numerical programs and libraries for scienti�c computation, an environment
that takes advantage of both the power of interactive array languages and the
performance of compiled languages. This environment provides capabilities for
interactive and automatic transformations at both the operation-level and the
function- or algorithmic-level.

In order to generate code from the interactive array language, this system
combines static and runtime inference methods for type, shape, and structural
inference. Research is also being performed into the application of high-level
optimizations, that take into consideration the semantics of the array language
to improve the performance of the target code.

As shown by our preliminary results, by compiling the interpreted language
we can generate a code that executes faster than the interpreted code, especially
for loop-based programs with element-wise access. Also, we observe that in some
cases the performance of the compiled code is very close to the performance of
the hand-optimized Fortran 90 program.

Finally, exploitation of parallelism will be enhanced, because the utilization



of a high-level array language (Fortran 90) as output will facilitate the generation
of code for a parallel machine by a parallelizing compiler. Moreover, the possi-
bility of adding directives for parallelization, and data dependence assertions,
will further improve parallelism.

References

1. Aho, A., Sethi, R., and Ullman, J. Compilers: Principles, Techniques and

Tools. Addison-Wesley Publishing Company, 1985.
2. Amarasinghe, S. P., Anderson, J. M., Lam, M. S., and Lim, A. W. An

Overview of a Compiler for Scalable Parallel Machines. In Languages and Compil-

ers for Parallel Computing (August 1993), U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, Eds., Springer-Verlag, pp. 253{272. 6th International Workshop,
Portland, Oregon.

3. Applied Parallel Research. FORGE Explorer User's Guide. Placerville, Cal-
ifornia, 1995. Version 2.0.

4. Backus, J. Can Programming Be Liberated from the Von Neumann Style? A
Functional Style and Its Algebra of Programs. Communications of the ACM 21, 8
(August 1978), 613{641.

5. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra,

J., Eijkhout, V., Pozo, R., Romine, C., and van der Vorst, H. Templates

for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM,
1993.

6. Blume, W., and Eigenmann, R. The Range Test: A Dependence Test for Sym-
bolic, Non-linear Expressions. In Proceedings of Supercomputing '94 (November
1994), pp. 528{537.

7. Bodin, F., Beckman, P., Gannon, D., Narayana, S., and Yang, S. Dis-
tributed pC++: Basic Ideas for an Object Parallel Language. In OON-SKI'93 Pro-
ceedings of the First Annual Object-Oriented Numerics Conference (April 1993),
pp. 1{24.

8. Budd, T. An APL Compiler. Springer-Verlag, 1988.
9. Carr, S., and Kennedy, K. Compiler Blockability of Numerical Algorithms. In

Proceedings, Supercomputing '92 (November 1992), pp. 114{124.
10. Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan,

M. B., and Watt, S. M. Maple V Language Reference Manual. Springer-Verlag,
New York, 1991.

11. Ching, W.-M. Program Analysis and Code Generation in an APL/370 Compiler.
IBM Journal of Research and Development 30:6 (November 1986), 594{602.

12. Cook Jr., G. O. ALPAL A Tool for the Development of Large-Scale Simula-
tion Codes. Tech. rep., Lawrence Livermore National Laboratory, August 1988.
Technical Report UCID-21482.

13. Cousot, P., and Halbwachs, N. Automatic Discovery of Linear Restraints
Among Variables of a Program. In Proceedings of the 5th Anual ACM Symposium

on Principles of Programming Languages (1978), pp. 84{97.
14. Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck,

F. K. E�ciently Computing Static Single Assignment Form and the Control De-
pendence Graph. ACM Transactions on Programming Language and Systems 13,
4 (October 1991), 451{490.



15. Dai, D. L., Gupta, S. K. S., Kaushik, S. D., Lu, J. H., Singh, R. V., Huang,
C.-H., Sadayappan, P., and Johnson, R. W. EXTENT: A Portable Pro-
gramming Environment for Designing and Implementing High-Performance Block-
Recursive Algorithms. In Proceedings of Supercomputing '94 (November 1994),
pp. 49{58.

16. DeRose, L., Gallivan, K., Gallopoulos, E., Marsolf, B., and Padua, D.

An Environment for the Rapid Prototyping and Development of Numerical Pro-
grams and Libraries for Scienti�c Computation. In Proc. of the DAGS'94 Sympo-

sium: Parallel Computation and Problem Solving Environments (Dartmouth Col-
lege, July 1994), F. Makedon, Ed., pp. 11{25.

17. Gallivan, K., and Marsolf, B. Practical Issues Related to Developing Object{
Oriented Numerical Libraries. In OON-SKI'94 Proceedings of the Second Annual

Object-Oriented Numerics Conference (April 1994), pp. 93{106.
18. Gerlek, M. P., Stoltz, E., and Wolfe, M. Beyond Induction Variables:

Detecting and Classifying Sequences Using a Demand-driven SSA Form. ACM

TOPLAS (to appear).
19. High Performance Fortran Forum. High Performance Fortran Language

Speci�cation, May 1993. Version 1.0.
20. Houstis, E. N., Rice, J. R., Chrisochoides, N. P., Karathanasis, H. C., Pa-

pachiou, P. N., Samartzis, M. K., Vavalis, E. A., Wang, K. Y., and Weer-

awarana, S. //ELLPACK: A Numerical Simulation Programming Environment
for Parallel MIMD Machines. In Proceedings 1990 International Conference on

Supercomputing (1990), pp. 96{107.
21. Kuck and Associates, Inc. KAP User's Guide, 4th ed. Savoy, IL 61874, 1987.
22. The Math Works, Inc. MATLAB, High-Performance Numeric Computation

and Visualization Software. User's Guide, 1992.
23. Mathews, J. H. Numerical Methods for Mathematics, Science and Engineering,

2nd ed. Prentice Hall, 1992.
24. Muraoka, Y., and Kuck, D. J. On the Time Required for a Sequence of Matrix

Products. Communications of the ACM 16, 1 (January 1973), 22{26.
25. Padua, D., Eigenmann, R., Hoeflinger, J., Petersen, P., Tu, P., Weath-

erford, S., and Faigin, K. Polaris: A New-Generation Parallelizing Compiler
for MPP's. Tech. rep., Univ. of Illinois at Urbana-Champaign, Center for Super-
computing Research and Development, June 1993. CSRD Report No. 1306.

26. Padua, D., and Wolfe, M. Advanced Compiler Optimizations for Supercom-
puters. Communications of the ACM 29, 12 (December 1986), 1184{1201.

27. Polychronopoulos, C., Girkar, M., Haghighat, M. R., Lee, C.-L., Leung,

B., and Schouten, D. Parafrase-2: A New Generation Parallelizing Compiler.
In Proceedings of 1989 Int'l. Conference on Parallel Processing, St. Charles, IL

(August 1989), vol. II, pp. 39{48.
28. Schwartz, J. T. Automatic Data Structure Choice in a Language of a Very High

Level. Communications of the ACM 18 (1975), 722{728.
29. Tu, P., and Padua, D. Automatic Array Privatization. In Languages and

Compilers for Parallel Computing (August 1993), U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, Eds., Springer-Verlag, pp. 500{521. 6th International
Workshop, Portland, Oregon.

This article was processed using the LaTEX macro package with LLNCS style


