
THE POLARIS INTERNAL REPRESENTATION

BY

KEITH AARON FAIGIN

B.A., Williams College, 1992

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

iii

ABSTRACT

The Polaris Program Manipulation System is a production quality tool for source-to-source

transformations and complex analysis of Fortran code. In this paper we describe the motivations

for and the design of Polaris' internal representation. The internal representation is composed of

a basic abstract syntax tree on top of which exist many layers of functionality. This functionality

allows complex operations on the data structure as well as allowing it to emulate other internal

representations. Further, the internal representation is designed to enforce the consistency

of the state of the internal structure in terms of both the correctness of the data structure

and the correctness of the Fortran code being manipulated. In addition, operations on the

internal representation result in the automatic updating of a�ected data structures such as ow

information.

We describe how the system's philosophies developed from its predecessor, the Delta pro-

totyping system, and how they were implemented in Polaris' internal representation. We also

provide a number of examples of using the Polaris system.

iv

ACKNOWLEDGEMENTS

I would like to o�er my sincerest thanks to my thesis advisor, David Padua, for his sub-

stantial role in the work involved in this thesis. I would also like to thank my co-authors of the

paper [3], of the same name as this thesis, from which this thesis was merely a slight extension.

These co-authors are Jay Hoeinger, David Padua, Paul Petersen and Stephen Weatheford.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION : 1

2 DEVELOPMENT OF POLARIS PHILOSOPHIES : 4
2.1 Delta : 4
2.2 Goals and Philosophies of the IR : 6

3 IMPLEMENTATION : 10
3.1 C++ : 10
3.2 Support Structures : 12

4 CLASSES OF THE IR : 15
4.1 Program Class : 15
4.2 ProgramUnit Class : 15
4.3 Statement Class : 17
4.4 StmtList Class : 22
4.5 Expression Class : 24
4.6 Symbol Class : 26
4.7 Symtab Class : 27

5 SAMPLE TRANSFORMATION CODE : 28
5.1 Simple Loop Distribution : 28
5.2 Code Instrumentation : 31
5.3 Loop Normalization : 33

6 INTER-COMPILER COMMUNICATION : 39
6.1 Delta : 40
6.2 Communication with Delta : 41

7 CONCLUSIONS : 44

APPENDIX A: CLASS METHODS : 46

REFERENCES : 53

vi

LIST OF TABLES

A.1: Many of the methods de�ned for the ProgramUnit class. : : : : : : : : : : : : : : : : : : : 47
A.2: Many of the methods de�ned for the StmtList class. : 48
A.3: Many of the methods de�ned for all Statement classes. : 49
A.4: Many of the methods de�ned for derived Statement classes. : : : : : : : : : : : : : : : : 50
A.5: Many of the methods de�ned for all Expressions classes : 51
A.6: Many of the methods de�ned for derived Expression classes. : : : : : : : : : : : : : : : : 52

0

LIST OF FIGURES

1

CHAPTER 1

INTRODUCTION

The goal of the Polaris system is to provide a new parallelizing compiler that is able to

e�ciently parallelize Fortran programs for a variety of machines, including massively parallel

systems and parallel workstations [6]. Polaris is based on our past experiences with the Cedar

Fortran project [2]. This project showed us that real programs can be parallelized e�ciently

and that the techniques needed to achieve good performance are natural extensions of tech-

nology available in current parallelizing compilers. Therefore, we decided to use a traditional

internal structure for our new compiler enhanced with some features that make it easy to extend

and experiment with transformation techniques. This allows us to capitalize on our previous

experiences with the KAP/Cedar parallelizing compiler and the Delta program manipulation

system (Delta) [7].

The implementation of Polaris is based on Delta which was created as an \open experimental

laboratory" [8] in which to prototype, develop and test new source-to-source transformations

for Fortran 77 parallelizing compilers. While Delta succeeded in providing an excellent research

environment, it was not practical as a production compiler.

2

Our experience with Delta taught us that many of the features found in the prototyping

paradigm are quite valuable. However, the ideal compiler for source-to-source transformations,

we believe, would combine the strengths of a prototyping system (its \usability") with the

strengths of a production system (its computational power). Polaris was designed with this in

mind.

This paper presents a description of Polaris' internal representation (IR). We consider the

IR to be more than just the structure of the data within the compiler. We also view it as

the operations associated with this data structure. Intelligent functionality can frequently go

a long way towards replacing complex data structures and it is usually more extensible. Thus,

we have chosen to implement the data-side of the IR in the traditional, straightforward form

of an abstract syntax tree. On top of this simple structure, however, we can build layers of

functionality which allow the IR to emulate more complex forms. Speci�cally, such forms could

include the constructs we found most useful in Delta and the language we used, SETL [9].

Delta, as an open system, provided the user with complete access to the internal representa-

tion. This was because the SETL implementation we used did not have a good data-abstraction

mechanism. Allowing users full access to the IR frequently resulted in the failure to properly

maintain the internal structure, which hindered program development. However, in Polaris,

access to the internal representation is controlled through a data-abstraction mechanism. Op-

erations built onto the IR are de�ned such that the programmer is prevented from violating the

3

structure or leaving it in an incorrect state at any point in a transformation. We chose to im-

plement Polaris in the object-oriented language C ++ as it allowed us both structural exibility

and gave us the desired data-abstraction mechanisms.1

Another aspect of the functionality of the IR|and another reason why we chose a relatively

simple IR structure|is the ability to work with other compiler systems. Through an interme-

diate communication language, Polaris can capitalize on the strengths of other systems, such

as Delta and KAP [4].

Polaris has been used, so far, to implement passes for array privatization, induction variable

substitution, forward substitution and inlining. Also, we are close to the completion of FORBOL

which is a C ++ extension built on top of our IR which allows complex pattern matching within

Polaris.

The rest of this paper is organized as follows: in chapter 2 we describe our goals for Polaris

and the general philosophies we employed in its design. In chapter 3 we present a description of

how these notions were actually implemented in the internal representation. The major classes

used on our IR are discussed in chapter 4. We then, in chapter 5, explore some simple examples

which demonstrate the use of Polaris. In chapter 6, Inter-compiler communication is discussed

and more detail of the Delta system is given.

1Another object-oriented transformation system is the Sage++ system [1]. In some respects there are simi-
larities between Sage++ and Polaris but there are also di�erences in terms of both the overall approach and the
implementation.

4

CHAPTER 2

DEVELOPMENT OF POLARIS PHILOSOPHIES

2.1 Delta

The design of Polaris' IR was heavily inuenced by its predecessor, Delta, which is imple-

mented in the language SETL (a very high level language with broad support for tuples, sets

and maps as intrinsic data types). Delta's IR is based loosely on the VDL[5] and is repre-

sented using labeled arcs. Statements, expressions and symbols are each given distinct labels

and stored in maps. Each of these structures are, themselves, maps of sub-structures. Delta is

described in more detail in chapter 6.

The major strengths of Delta could be summarized as follows

� Programming environment exibility | two separate versions of the system are available

(with fully automatic tools for translating between the two)

{ an interpreted system good for debugging with small program inputs for experimen-

tation and for incremental changes

5

{ a somewhat faster, compiled version capable of dealing e�ectively with much larger

program inputs

� Data structure exibility | Because the data structures can be changed dynamically,

simple changes or additions to a structure often require no change in other modules since

the new information can be safely ignored by these modules (if they see it at all). For

instance, a new �eld could be added to the end of a data dependence tuple or to a map

without needing to recompile or in any other way a�ect the workings of modules which

do not access this extra information.

The Delta system also had a number of serious weaknesses.

� Because of the exibility of the data structures, it is possible to add a new �eld or new

data at one point in the structure but to forget to process it elsewhere. No compiler help

is available to tell the programmer whether data-structure additions require changes to

the functionality elsewhere in the system. This eventually resulted in prototyping system

users each evolving their own forms of the system which were not completely compatible

with one another.

� Since the users have complete access to the data-structures, it is up to the user to ensure

they are kept in a consistent state. This proved to be a major di�culty made even more

complicated by the continually changing state of the internal structure.

� Delta lacks robustness. Many programming errors are only caught at run-time because

of incorrectly formed data structures.

6

� Much of the code is not very modular. It is easy for various programmers to write separate

utility functions which repeat functionality since no good modularity1 can be created for

each data structure and its basic manipulations.

� It is di�cult to keep documentation up to date since the data structures are exible or

\soft."

Delta's programming environment, itself, has proven to be the system's biggest weakness.

One of the biggest problems with the environment is that the run-time system is simply too

slow, even with the compiled version of SETL. This is most likely the result of the extensive use

of map look-ups (which occur internally in SETL as hash table look-ups). It is not uncommon

for a complicated set of transformations on a single large program unit to take an hour or

more to complete. This tends to make debugging a tedious chore, since it is practical only on

very small test �les. This is especially true since only the interpreted version of SETL contains

debugging support.

In addition, the environment is too ine�cient with memory. Much of the reason for this is

an extensive use of strings in the data structures as structure labels.

2.2 Goals and Philosophies of the IR

We wanted our IR to be a very general structure on top of which more complex structures

could be emulated. Thus, regardless of what form the IR takes, from the user's point of view,

the IR could seem to be one of nearly any traditional (or non-traditional) representation. This

general strategy is complemented by a number of additional philosophies.

1The language SETL2|the SETL compiler that Delta uses|does, in fact, support modules, but ISETL|the
interactive SETL interpreter|does not. In order for Delta to run interactively, as well as in compiled form, we
could not use features, such as modules, which are not found in ISETL.

7

The most pervasive philosophy in Polaris is that of consistency. In response to what proved

to be a substantial hurdle in developing transformations in Delta, Polaris was designed to

guarantee the correctness of the program representation as much as is e�ciently possible. Thus,

in general, it should not be possible for the internal structure to be compromised by incorrect

transformation code. In addition, the correctness of the Fortran program being manipulated

must be maintained. Transformations are, therefore, never allowed to let the code enter a state

which is no longer proper Fortran syntax. The system also guarantees the correctness of all ow

information. We are also working towards the guarantee that all data-dependence information

is kept correct, but these routines are not yet developed to the point where we can determine

whether this is actually feasible. This is realized through automatic incremental updates of this

information as a transformation proceeds.

We believe that automatic consistency-maintenance will drastically decrease the time re-

quired to develop new optimizations within Polaris' production system. Our experience with

the Delta system showed us that although greater exibility and some extra e�ciency may be

obtained by allowing the internal structure to temporarily fall out of a consistent state, too

often the internal structure was not properly restored. This often resulted in incorrect code

and time-consuming bugs. We believe that since less exibility is required in the production

system, this approach is merited by the decreased development time.

In addition to maintaining a consistent state, we also require a very robust system. In

general, we have tried to detect as many errors as is possible at compile time and, when

that was not possible, catch and explain run-time errors. Some of the features which we have

implemented in order to realize our goal of robustness|while maintaining consistency|include

8

� supplying many commonly-needed methods so that users would seldom feel the need to

duplicate code or meddle with the system.

� requiring all structures to be fully de�ned when they are created to avoid the dangers of

accidentally \forgetting" needed sub-structures.

� hiding internal structure details which are not necessary for the user to see or alter.

� the strict control over how the IR can be accessed and modi�ed. The Polaris user is only

allowed to make incremental changes which keep the system state consistent and correct.

For example, statements inserted into a Fortran program are required to be well-formed

with respect to multi-statement constructs. For instance, a DO statement cannot be

inserted separately from its matching ENDDO statement, since the statement list would

enter an incomplete and inconsistent state.

� the detection of aliased structures (structure sharing is not allowed) and the reporting of

their existence with a run-time error. For example, it would be an error to create a new

expression and insert it into two di�erent statements without �rst making a copy of the

object.

� freeing the programmer from worrying about tedious memory details through the clear

indication of ownership of structures and reference counting. The programmer should

always be able tell whether he owns a given structure and is, therefore, responsible for its

maintenance and deallocation. Further, dangling pointers and their associated problems

are avoided through reference counting.

9

� the detection of the premature destruction of any part of the IR. Data required by the

internal representation is protected from accidental deletion.

� extensive error avoidance and checking throughout the system through the liberal use of

assertions. Within Polaris, if any condition or system state is assumed, that assumption

is speci�ed explicitly in a p assert() (short for \Polaris assertion") statement which

checks the assumed condition and reports an error if the assumption is incorrect.

The most important aspect of a prototyping system which we wished to retain in Polaris

was its extensibility. Due to the nature of SETL's built-in map structures, Delta allowed new

information to be easily added to its internal representation. Unfortunately, this resulted in

many of the problems encountered in trying to maintain the structure's consistency. We felt

it was imperative for the production system to be similarly scalable, but that it be done in a

safe manner. As new needs and requirements are discovered, we must be able to safely add

additional structures to the IR just as Delta was able to simply add new arcs.

We also required that the IR's environment allow transformations to be expressed in a

simple and straightforward manner. It would not be enough to have a complete set of high-

level manipulation methods; we needed them to also have consistent and clear semantics. This

includes ideas as simple as rigorous naming conventions as well as more complex concepts such

as the indication of structure ownership. Our ultimate goal was to create a system where

the development and implementation of algorithms would not be hindered by the internal

representation.

10

CHAPTER 3

IMPLEMENTATION

In this section we describe the implementation of our IR. We begin by describing our moti-

vations for using the language C ++ as well as describing how we made use of the features the

language provides. This is followed by a discussion of the support structures used.

3.1 C++

We chose to implement Polaris in the object-oriented language C ++. The object-oriented

paradigm was perfect for supporting the philosophies of the system and C ++, speci�cally, was

chosen primarily for its popularity and exibility.

C ++ provides the modularity and e�ciency which was lacking in Delta's SETL implemen-

tation and, further, provided a superior environment for a team-developed project. C ++ was

also ideal in that it provided data-hiding mechanisms which allow us to keep tight control over

the interface to each structure. We were able to make the complete structure, as well as each

sub-structure, an object which could only be accessed through speci�c methods. Therefore, we

11

were able to specify all the methods for manipulating the statement list such that any a�ected

structures are updated and we are also able to ensure that the structure has not been violated.

Further, these methods allow needed functionality to be layered on top of the basic struc-

tures. Thus, on top of our relatively simple IR, we can emulate more complex structures.

Another important bene�t of using an object-oriented language is that it provides much of the

extensibility which we found so important in Delta. New structures can be added to objects in

the IR without a�ecting the original structures and adding new structures requires very little

reprogramming.

C ++ also allows the form of all constructors (the routines which instantiate new objects) to

be speci�ed. Thus, we are able to ensure that only well-formed and complete objects are created.

Further, all destructors (routines called when an object is deleted or falls out of scope) ensure,

through reference counting, that relevant parts of the data-structure are not being deleted or

are marked invalid and then trapped on reference. In addition, C ++ allows reference variables

as well as pointers. Throughout the system, a pointer indicates ownership of data, which, in

general, means the owner is responsible for its deallocation. A reference variable indicates that

the object is owned by another structure and, therefore, must not be deleted.

Many naming conventions are used in the system to promote internal consistency. Of

particular importance are those used in conjunction with ownership indication. In order to

comply with our ownership conventions, most functions which return an object whose ownership

is not being transferred do so by means of a C ++ reference. However, in certain instances it

must be possible for the function to indicate that the requested object does not exist. In this

situation, two corresponding methods are used. The �rst method has the post�x \ valid"

12

appended to it and indicates whether the requested object exists. The second method has the

post�x \ guarded" appended to it and returns a reference to the requested object.

For example, in a function call expression, the method parameters valid() returns true

if the call has parameters and the method parameters guarded() returns a reference to the

parameters. Calling a guarded method which is not valid results in a run-time error. However,

reference functions that always succeed do not have a su�x.

Although the above naming convention adheres to our ownership conventions, in some

cases it can be rather cumbersome. In a few speci�c situations we allow functions which do not

transfer ownership to return a pointer since it is useful to return a pointer to NULL to indicate

that the requested object does not exist. In these situations the post�x \ ref" is appended to

the function name to indicate that ownership is not being transferred and the object should be

treated as though it were a reference.

For example, there is a statement method, next ref(), which allows access to the statement

lexically following the given statement. This method should return a reference to the appropri-

ate statement since ownership of the statement is not being transferred. However, rather than

using the valid/guarded form, it is much more convenient to return a pointer and indicate that

no such statement exists by returning NULL. Thus, the \ ref" form is used

In general, C ++ provided us with an environment which allowed us to implement our

philosophies within Polaris.

3.2 Support Structures

The underlying support system for the IR is just as important as the representation itself. In

order to provide full support for the internal representation as well as user code, we have created

13

an infrastructure of support classes that are heavily used both internally and externally. These

structures conform to our conventions, such as ownership indication and naming conventions,

and help support many of our philosophies. Further, these structures also make use of the

p assert() command for assertion checking as well as perform reference counting.

This infrastructure currently includes a Collection class hierarchy which includes lists, sets

and a variety of maps. These structures each exist in two forms: ownership and reference. An

ownership structure takes control of|and responsibility for|all objects which are inserted into

it. Ownership structures insure, through reference counting, that, for instance, objects are

not prematurely deleted and that memory is properly deallocated when an object is deleted.

Once an object has been placed in an ownership collection, the collection is responsible for its

maintenance. An object can only be \owned" by one collection. If a collection is required to

contain elements already owned by other structures, a reference structure is used. Reference

structures do not take ownership of objects and, in fact, require that inserted objects are already

owned.

An example of the use of these structures can be seen in the representation of statements.

The statements of a program are kept in an ownership list (List). If this list were deleted,

the memory used by each statement would be freed. Each statement also contains information

on the set of statements which are reachable in the ow-graph. In this case a reference set

(RefSet) is used. Deleting the statement which contains this set|which would also delete the

set|would not a�ect the statements contained in the reference set. If, however, a statement

were deleted which was referenced in the RefSet, the statement would be marked invalid and

any attempt to reference it from the RefSet would result in a run-time error (a p assert()

14

would be tripped). Since an object can only be owned by single Collection, our policy of

disallowing structure-aliasing is automatically enforced.

There also exists an Iterator class for iterating through any of the collection or reference

collection classes. Since each of the collection classes are derived from a base Collection class,

some functionality is common to all of them. The iterators take advantage of this common

functionality. The bene�t of this is that an iterator declared as Iterator<Statement> could be

used to iterate over any collection of statements such as List<Statement> or Set<Statement>

as well as any reference collection such as RefList<Statement> or RefSet<Statement>.

A speci�c kind of iterator, called a KeyIterator, can be used for iterating over map struc-

tures. For example, the structure Map<Symbol, Statement>, which is a collection of tuples

representing maps of Symbols onto Statements, can be traversed by an iterator of the form

KeyIterator<Symbol, Statement>. KeyIterators di�er from Iterators in that they provide

methods for accessing the key of a map (in this case, the Symbol) as well as the data as the

iterator traverses the map structure.

Essentially all of the classes used in Polaris are derived from the class Listable which

contributes information necessary to indicate ownership of an object and allows the object

to be placed in any collection. However, all of the Collection classes, including the ref-

erence collections, are class templates. We rely heavily on templates for compile-time type

checking. For example, a type-error would result from trying to insert an Expression into a

RefList<Symbols>. A similar error would result from trying to traverse a List<Statement>

with an Iterator<Expression>. Without templates, this compile-time error detection would

not be possible.

15

CHAPTER 4

CLASSES OF THE IR

In this section we describe each of the major classes used in the IR in detail. We begin

with the basic program class in the �rst section. In subsections which follow we describe the

classes used for representing program units, statements, statement lists, expressions, symbols

and symbol tables.

4.1 Program Class

The Program class is nothing more than a collection of ProgramUnits. Methods are

included for reading complete Fortran codes as well as displaying them. There are also methods

for adding additional ProgramUnits as well as merging Programs.

4.2 ProgramUnit Class

The ProgramUnit class is mostly a holder for the various data structure elements which

make up a Fortran program unit. This form is, essentially, an abstract syntax tree. A Progra-

mUnit may be of any of the following types:

16

� BLOCK DATA PU TYPE | a BLOCK DATA program unit

� PROGRAM PU TYPE | a main program

� SUBROUTINE PU TYPE | a subroutine

� FUNCTION PU TYPE | an external function

The type of a ProgramUnit can be determined using the method pu class().

The ProgramUnit class contains and allows access to its component data structures, which

are instances of the following classes:

� StmtList | a list of all executable program unit statements, if any

� Symtab | a symbol table of all symbols used in the program unit

� DataList | a list of the information contained in this program unit's DATA statements

� CommonBlockDict | a dictionary of all common blocks referenced by this program

unit

� EquivalenceDict | a dictionary of this program unit's variable equivalence classes

� FormatDict | a dictionary of this program unit's FORMAT statement information

� WorkSpaceStack | a stack of temporary data structures associated with this program

unit which the user can de�ne and use for a speci�c transformation pass. These structures

will remain with the program unit until the pass has completed, una�ected by other

transformation passes.

In addition to functions for accessing these data structures inside a ProgramUnit object,

there are methods for such operations as

17

� printing or displaying the program unit on any C ++ stream (either in Fortran format or

with moderate or extensive debugging information)

� copying entire ProgramUnit objects

� translating ProgramUnit objects to and from the intermediate language format for

conversion between the Polaris internal representation and other compiler systems, such

as Delta.

� managing the WorkSpaceStack. This includes accessing data allocated by the current

transformation pass as well as deallocating all structures created by a given pass.

The form of many of the methods can be seen in Table A.1 in the appendix. We discuss some

of the more important class structures contained in the ProgramUnit class in the following

sections.

4.3 Statement Class

We have chosen to implement statements as simple, non-recursive structures kept in a sim-

ple statement list (which is described in more detail in the next section). Thus, we have not

implemented statement blocks directly. However, we have made the implementation exible

enough that methods which simulate the existence of statement blocks can easily be imple-

mented on top of the current Statement class. Furthermore, other more complex structures

could be emulated on top of this basic structure, such as control dependence graphs.

Statements are implemented by an abstract base statement class which contains the struc-

tures common to all statements. For each speci�c type of Fortran statement, a distinct class

is derived from the base class which contains additional structures speci�c to that statement.

18

This class hierarchy allows modi�cations of and additions to speci�c statements to be kept local

to the statement. In addition, however, if a new method is needed for all statement types, it

needs to be implemented only in the base class.

All of the �elds declared in the base class (and which, therefore, exist in all statements) are

accessed through public methods. Among these �elds are

� sets of successor and predecessor ow links which are implemented in the form of reference

sets of statements.

� sets of memory references. These include in refs, out refs and act refs which are re-

spectively memory reads, writes and actual parameters accessed by the statement.

� an outer link which points to the innermost enclosing DO loop or is null if there is no

enclosing DO loop.

� a WorkSpaceStack of temporary data associated with the Statement which used for

a speci�c transformation pass.

Whenever practical, we have implemented the methods such that any modi�cation to a

statement results in the updating of a�ected data, in order to retain consistency. Tables A.3

and A.4, in the appendix, specify many of the methods available to the statement classes.

Each derived statement class may declare additional �elds. Among the most common �elds

declared by derived statement classes are the follow and lead �elds. Since the statement list

is implemented as a singly-nested structure, compound statement types, such as block-IFs, are

implemented with multiple statements much like they are expressed in Fortran syntax. Thus,

a full block-IF (without an ELSEIF clause) is represented in the IR by an IfStmt class object

19

followed in the statement list by some number of statements delimited by an ElseStmt which is

itself followed by statements delimited by an EndIfStmt. The follow and lead �elds connect

the statements of these compound structures. For instance, the follow �eld found in an IfStmt

would point to the next unit of the block-IF which could be either an ElseStmt, an ElseIfStmt

or an EndIfStmt. The lead �eld points in the `other direction'.

TheDoStmt declares a number of �elds in addition to those declared by the base statement

type. The follow �eld within a DoStmt points to its corresponding EndDoStmt (the DO-

CONTINUE construct is not supported and is automatically converted to DO-ENDDO form

by the parser), and, likewise, the follow �eld of an EndDoStmt points to the corresponding

DoStmt. In addition, �elds are declared which specify the index of the loop as well as the

initial, limit and step expression. Each of these �elds is an Expression tree.

Another important method declared in the base class (but rede�ned by each derived class)

returns an iterator which traverses the expressions contained in that statement. This iterator

may traverse 0 expressions, as in an EndDoStmt statement, or up to 4, as exist in a DoStmt.

This method, along with similar methods in the expression class, make it quite easy to, for

instance, traverse all the expressions in a loop body statement by statement.

In order to increase the robustness of the structure, all methods which access data �elds

are declared within the base statement class and are overriden in the derived classes which

use them. For example, the methods which access the `step' �eld are only applicable to the

DoStmt but are declared in the base class. The base class de�nition of the step() method,

like all other base method de�nitions, calls an error-routine while the rede�nition in DoStmt

performs the speci�ed operation. With this scheme, if a method is called for a statement to

20

which it is not applicable, a Polaris error will be reported and the system can either try to

continue or can perform a controlled abort.

Although this design has the disadvantage of moving the detection of some errors from

compile-time to run-time, it has two hopefully larger advantages. The �rst is that this method

generally decreases the time required to compile routines developed using the production system,

due to the way C ++ compiles large systems. Speci�cally, the user, in general, only needs to

include the header �le of the base Statement class and not those of the classes derived for

particular statements, since all of the methods needed are already de�ned in the base class; this

reduces the compile time of user programs, which in turn makes the debugging process easier1.

The second reason has to do with the fact that the StmtList class contains a list of refer-

ences to the base Statement class. By the C ++ rules of typing, it is legal for a reference or

pointer to a base class to actually point to a derived class, and this capability is used exten-

sively throughout our system. While iterating through a list of Statements, for example, the

programmer will receive a reference to the base Statement class. Once he has determined the

type of Statement that reference refers to, he would normally have to then typecast the refer-

ence into the correct derived class in order to be able to access the methods appropriate to that

statement type. However, we believe that the large number and variety of typecasts required

by such a system creates an unnecessarily large possibility for errors made by programmers

typecasting to the wrong class type. (These types of errors are especially easy to make when

changes are made to the system or to the user program.) Such errors can neither be detected nor

controlled by a C ++ compiler or by the run-time system itself, and can be extremely di�cult

1The single exception to this rule is that if the user needs to create new statements rather than just modifying
current ones, that user must include the appropriate derived class header �les in order to access the constructors
for that class. Generally only a few such header �les, if any, need to be included by a user program.

21

to trace. However, by placing all possible methods directly into a base class, we gain complete

run-time detection and control of errors of this type. The cost of this technique, unfortunately,

is an abundance of virtual methods.

In order to ensure that no incomplete structures can exist within the program, the construc-

tors for statements require all �elds needed to completely de�ne the statement. For example,

the DoStmt constructor requires the statement tag|a unique string which identi�es the state-

ment which is used primarily for debugging|as well as expressions for the index, initial value,

limit and step of the loop. Exceptions are made to this rule for optional structures, such as the

optional argument in a return statement (and in these cases the methods to access them are in

\ valid" and \ guarded" forms).

As a simple example, the DO statement header

DO I = 1, 10, 2

can be created (given a ProgramUnit) with the following constructor call, which gives the

new DoStmt a tag of \S10":

ProgramUnit pgm;

...

Statement *stmt = new DoStmt("S10", id("I", pgm),

constant(1), constant(10), constant(2));

The call id("I", pgm) does a search for the symbol I in pgm's symbol table and returns an

IDExpr expression referring to the symbol. The constant(data) call creates a new constant

expression of the appropriate type. In this case an integer constant expression (IntConstExpr)

object with the speci�ed integer value is returned.

22

4.4 StmtList Class

The StmtList class is derived from the class template List<Statement>. The StmtList

class, however, overrides many of the basic list operations to include automatic updating of

the ow graph whenever any statement or block of statements is deleted, inserted or moved.

Currently, the information automatically updated includes the set of memory references, control

ow information and loop-nesting information. We are also working towards allowing data-

dependence information to be updated automatically, but the routines are not developed to the

point where we can determine whether this is e�cient.

In addition to this basic functionality expansion, additional operations are available, includ-

ing:

� returning an iterator over selected parts of the statement list such as the body of a DO

loop, all statements of a speci�c type or the entire program.

� �nding a statement by its tag

� copying, deleting, unlinking or moving any well-formed sublist of statements

� inserting any single statement or any well-formed list of statements

� inserting speci�c multi-block statement groups, such as a block-IF statement framework

or a DO-ENDDO group.

� print all statements in the list to any C ++ stream in either Fortran form or in a debugging

form which displays ow information, memory references and other internal �elds.

These and many of the other available methods are speci�ed in Table A.2, in the Appendix.

23

To maintain complete control of consistency inside the StmtList class, the insertion, dele-

tion, unlinking, moving and copying of statements or statement lists are all given a number of

restrictions. The �rst of these is that the block to be processed must be entirely well-formed

with regard to multi-block statements such as DO loops and block-IF statements. This restric-

tion is checked at run-time. (At the same time, the follow links, ow graph and other internal

structures are automatically updated.) In addition, some further restrictions are placed. For

example, deleting a block containing a statement which is referenced by another statement

outside of the statement block being deleted is agged at run-time as an error.

Because of these restrictions, it is not possible, for instance, to sequentially insert a DO

statement, followed by the statements inside the DO loop, followed separately by the ENDDO

statement. Instead, there are two options which provide plenty of exibility to the program-

mer. The �rst is to call one of the several intrinsic methods of StmtList to create an empty

DO loop (i.e. a header and an ENDDO), and then to singly insert the statements of the

body separately in-between these two delimiter statements. The second method is to create a

List<Statement> statement list (which has no restrictions whatsoever on the order or type

of insertions), and then to insert the entire List<Statement> into the StmtList at once. The

syntax of the new list of statements is checked as the list is inserted.

We have attempted to make the insertion, deletion, unlinking, copying and moving of state-

ments within a StmtList robust against errors and dangling pointers.

As a simple example of the use of a StmtList object, consider the following short C ++

code which iterates through all of the assignment statements in a StmtList and prints them

(by default with debugging information) to the standard output:

StmtList stmt_list;

24

...

for (Iterator<Statement> stmt_iter = stmt_list.stmts_of_type(ASSIGNMENT_STMT);

stmt_iter.valid();

++stmt_iter)

{

cout << stmt_iter.current();

}

Notice that the stmt iter.valid() expression returns true if the stmt iter iterator is

valid. That is, if there are still statements over which to iterate, and the ++stmt iter statement

causes stmt iter to update its current pointer to the next applicable statement.

4.5 Expression Class

Expressions are represented by a tree structure. They are implemented in much the same

way as statements, in that an abstract base Expression class declares structures common to

all expressions and speci�c expressions are derived from the base. However, most expressions

inherit from three intermediate derived classes: unary expressions (UnaryExpr class), binary

expressions (BinaryExpr class) and non-binary expressions (NonBinaryExpr class). These

are used to represent expressions with one, two and possibly more than two sub-expressions,

respectively. For example, a .NOT. expression is represented with a unary node; and subtrac-

tion, division and .EQ. are represented with a binary node. The non-binary class represents

expressions which can have an unlimited number of arguments. This is used mostly for op-

erators which are assumed to be commutative and associative by our symbolic simpli�cation

routines, such as addition, multiplication, and several logical operators. The non-binary class

is also used to represent lists of expressions, such as the list of actual or formal parameters to

a procedure.

25

Other expression classes are derived which describe speci�c expression types such as identi-

�er expressions (IDExpr class) and integer constant expressions (IntConstExpr class). Also,

many expressions are derived from UnaryExpr, BinaryExpr and NonBinaryExpr for the

sole purpose of de�ning methods with more readable names for accessing the sub-expressions.

For instance, since the FunctionCallExpr class is derived from BinaryExpr, from which it

inherits the functions left() and right() to access its two subexpressions, which are respec-

tively the function being called (represented by an IDExpr) and the parameter list. However,

instead of requiring the user to abide by this somewhat ambiguous notation, two new methods

named function() and parameters() are added to the FunctionCallExpr class to make the

accesses to these �elds clear and self-documenting. The parameters expression, as well as a

number of other cases where lists of sub-expressions are needed, are represented by a Comma-

Expr. In addition to parameter-lists, CommaExpr trees are also used to represent the list of

subscripts in an array reference.

The base Expression class includes �elds which specify the expression as well as type infor-

mation. A type includes the Fortran data type (integer, real, etc..) and the size, making types

such as \INTEGER*8" and \INTEGER*4" both possible and distinguishable. In addition,

�elds are declared which are used for expression simpli�cation. Finally, each Expression class

also has a method for traversing over all sub-expressions, much like we saw in the Statement

class.

Another example of an expression which derives from the BinaryExpr class is the expres-

sion to represent array references, ArrayRefExpr. The BinaryExpr class declares its two

�elds which are then accessed through ArrayRefExpr's methods array() and subscript().

One of the bene�ts of having a binary expression class is that methods which are applicable

26

to all expressions with two sub-expressions can be de�ned there and will be inherited by all

such expressions. Thus, in addition to simply contributing two �elds to an array reference, the

binary expression also contributes to the ArrayRefExpr class inherited methods which check

whether the expression has any side-e�ects, as well as numerous methods which help in such

operations as expression simpli�cation.

All of the safeguards which were implemented within the Statement class are also imple-

mented here. This includes the declaration of default methods at the base level which call error

routines. However, unlike the statement class, constructors are not available to the program-

mer. In place of the constructors, expressions are created through a complete set of functions

provided by the Expression class. These functions were designed to provide the user with a

simpler means of creating expressions. Frequently, these functions perform additional tasks in

creating the desired expression, such as determining the correct type based on the expression's

sub-expressions. Also, since the functions only create expressions on the heap, the programmer

is protected from mistakingly allocating these dynamic objects statically.

Many of the methods available to the Expression classes are enumerated in Tables A.5

and A.6, in the appendix.

4.6 Symbol Class

The Symbol class hierarchy is set up in a very similar manner to that of the Expression

and Statement class hierarchies. The abstract class Symbol de�nes all possible functions for the

derived classes, and the leaves of the Symbol class hierarchy correspond to the di�erent types of

symbols possible in a program unit. Six such symbol types are currently de�ned, represented by

27

the BlockDataSymbol, FunctionSymbol, ProgramSymbol, SubroutineSymbol, Sym-

bolicConstantSymbol and VariableSymbol classes. All such objects may be inserted into

the Symtab class (see below). As with all classes, all of the required �elds may generally be

given directly to the constructor. For example, to create a VariableSymbol to represent the

Fortran variable XY_ARRAY de�ned in the Fortran lines

DOUBLE PRECISION XY_ARRAY(0:100, -50:50)

SAVE XY_ARRAY

one could use the following C ++ code:

Symbol *new_symbol = new VariableSymbol(

"XY_ARRAY",

make_type(DOUBLE_PRECISION_TYPE),

NOT_FORMAL,

IS_SAVED,

new ArrayBounds(constant(0), constant(100)),

new ArrayBounds(constant(-50), constant(50)));

Of course, it is also possible to create assumed-size arrays.

4.7 Symtab Class

The Symtab class is our implementation of a symbol table. Its major component is a

dictionary of Symbol class objects. It provides methods for, among other things, inserting

new symbols (with automatic renaming, if desired, in the case of name conicts), deleting or

unlinking symbols, renaming symbols, �nding symbols by name, printing all the Fortran lines

necessary for specifying all the symbols, and creating an iterator to iterate over every symbol

in the symbol table.

28

CHAPTER 5

SAMPLE TRANSFORMATION CODE

Traditionally, only very brief examples would be given in a paper describing an IR. However,

since one of Polaris' greatest strengths is its \programmability" arising from the expressiveness

of the IR, we will present a few longer examples of programming transformations in Polaris.

Although these examples are still fairly simplistic, they should demonstrate the \feel" of Polaris

programming.

5.1 Simple Loop Distribution

We begin with a trivial routine which simply distributes a loop into two loops. The procedure

accepts the StmtList to be transformed, the loop to be distributed and a reference to the

statement which indicates where the loop should be split.

// Distribute the loop 'do_loop' such that the first loop

// contains the loop statements up to, but not including

// loop_bound, and the second loop contains the remaining

// statements.

void distribute_loop(StmtList & stmts, Statement & do_loop,

Statement & loop_bound)

29

{

p_assert(do_loop.type() == DO_STMT,

"distribute_loop(): the statement to be distributed is not"

"a DO statement.");

// Pull out statements which belong in the second loop

List<Statement> *second_block =

stmts.grab(loop_bound, *do_loop.follow_ref()->prev_ref());

// Insert a second loop after the original

Statement &second_do_loop =

stmts.ins_DO_after(do_loop.index().clone(),

do_loop.init().clone(),

do_loop.limit().clone(),

do_loop.step().clone(),

*do_loop.follow_ref());

// Insert the second block of statements into the second loop

stmts.ins_after(second_block, second_do_loop);

}

The procedure begins with a p assert call. A p assert(), as described earlier, is a Po-

laris assertion used for catching run-time errors. Here, it insures that the statement to be

distributed is, in fact, a DoStmt 1. The grab call speci�es that all statements beginning with

loop bound and ending with the statement proceeding the DO LOOP's \follow" statement (i.e.

the matching ENDDO statement) should be removed from the program and placed in the list

second block. Notice that this routine returns a pointer to the list of statements, as opposed

to a reference. This indicates that ownership of the list is being passed so the user function is

now responsible for deallocating the list. The ins DO after method speci�es that an empty

DO LOOP (both the DO as well as the ENDDO) speci�ed by the �rst four expression param-

eters (the index, initial value, limit, and step, respectively) should be inserted after the follow

1This check could be removed by changing the type of do loop from `Statement &' to `DoStmt &', but, as
explained earlier, this would lead to excessive type-casting which could produce errors.

30

statement of do loop, which is the ENDDO statement. Note that the call to follow ref()

returns a pointer (even though ownership is not being passed) and must be dereferenced. This

method returns a reference (since ownership is not being passed) to the new DO statement.

The ins after method simply inserts the removed statements into the second loop. Notice

that second block is being passed as a pointer. This indicates that control of the list is being

given to the method. Thus, the method, after inserting the statements into the StmtList, is

able to delete the empty list.

Consider, for example, the following Fortran code.

(S1) DO 10 I = 1,10,2

(S2) A(I) = B(I) - C(I)

(S3) B(I) = I

(S4) ENDDO

If the distribute loop procedure was called with the loop S1 and a loop bound of S3, the

result would be:

(S1) DO 10 I = 1,10,2

(S2) A(I) = B(I) - C(I)

(S4) ENDDO

(ST5) DO 10 I = 1,10,2

(S3) B(I) = I

(ST6) ENDDO

It is important to note that each method called in the distribute loop procedure guaran-

tees that, upon completion, the program is in a consistent state. Thus, structural information,

such as ow information, as well as Fortran syntax, is checked and updated. If an inconsistent

state is encountered, an error is raised. For instance, if the same call to distribute loop|also

with a loop bound of S3|was made on the following code

31

(S1) DO 10 I = 1,10,2

(S2) IF (I.LT.5) THEN

(S3) A(I) = B(I) - C(I)

(S4) ENDIF

(S5) ENDDO

an error would be raised by the call to grab since removing the statements S3 and S4 results

in incorrect Fortran syntax.

5.2 Code Instrumentation

The following is a slightly more complex example of Polaris programming.

//--

// Insert instrumentation into a program unit:

//

// Around each outer DO loop in the program unit, insert:

// CALL START_INTERVAL(#)

// and

// CALL END_INTERVAL(#)

// where # is a unique integer for each loop in the

// program unit

//

// Assume for simplicity's sake that there are no jumps out

// of DO loops

//--

instrument(ProgramUnit & pgm)

{

// Capture any p_assert() errors here

P_ASSERT_HANDLER(0);

// Create and insert the necessary symbols into the

// symbol table.

Symbol &start_interval = pgm.symtab().ins(

new SubroutineSymbol("START_INTERVAL", IS_EXTERNAL,

NOT_INTRINSIC, NOT_FORMAL));

Symbol &end_interval = pgm.symtab().ins(

new SubroutineSymbol("END_INTERVAL", IS_EXTERNAL,

32

NOT_INTRINSIC, NOT_FORMAL));

// Iterate over all of the DO statements.

int interval_number = 0;

for (Iterator<Statement> do_stmts =

pgm.stmts().stmts_of_type(DO_STMT);

do_stmts.valid();

++do_stmts) {

if (do_stmts.current().outer_ref() == NULL) { // If an outermost loop...

interval_number++; // Get the next intvl #

// Insert 'CALL START_INTERVAL(interval_number)'

// before the current DO statement.

pgm.stmts().ins_before(

new CallStmt(pgm.stmts().new_tag(), // Unique stmt tag

start_interval, // Subr. symbol being called

comma(// Actual parameter list

constant(interval_number))),

do_stmts.current());

// Find the matching ENDDO statement

Statement &end_do = *do_stmts.current().follow_ref();

// Insert 'CALL END_INTERVAL(interval_number)

// after the current ENDDO statement.

pgm.stmts().ins_after(

new CallStmt(pgm.stmts().new_tag(), // Unique stmt tag

end_interval, // Subr. symbol being called

comma(// Actual parameter list

constant(interval_number))),

end_do);

}

}

// Print the resulting program unit to standard output

// with debugging information.

cout << pgm << endl << endl;

// Print to standard output as Fortran code

pgm.write(cout);

}

33

This example is fairly straightforward and should be easily understood from its comments.

One feature, however, which merits some discussion is the call to P ASSERT HANDLER in the �rst

line of the routine. If a p assert() fails, Polaris performs some appropriate action, usually

resulting in the program being aborted. The P ASSERT HANDLER call speci�es the action which

should be taken if a p assert fails. If a failure is encountered, control is returned to the point of

the P ASSERT HANDLER and the action speci�ed by the handler is carried out. The 0 argument

speci�es that Polaris should abort with a description of the failed assertion. It is also possible to

specify the name of a routine to be called to act as a trap-handler. Multiple P ASSERT HANDLER

calls can exist within a single program specifying how errors should be handled at di�erent

stages of the program's execution.

5.3 Loop Normalization

Finally, we present an example of simple loop normalization. That is, we will normalize a

DO loop to have its lower bound be zero (0) and its step be one (1). This could be represented

as transforming the loop

DO i = e1, e2, e3

... i ...

ENDDO

into the form

DO i = 0, (e2 - e1)/e3, 1

... (i*e3 + e1) ...

ENDDO

34

if the bound expressions e1, e2 and e3 have no side e�ects, or else into a form with as much

precalculation of the loop bounds as necessary. For instance, if e1, e2 and e3 are function calls

which may have side e�ects, the output would be in the form

INIT = e1

LIMIT = e2

STEP = e3

DO i = 0, (LIMIT - INIT)/STEP, 1

... (i*STEP + INIT) ...

ENDDO

In either case we must also make sure to coerce the loop bound expressions e1, e2 and

e3 into the same Fortran type as that of the loop index variable before using them in other

expressions. For simplicity, we assume that loop index variables are never used outside of the

loop which they control.

The code to perform this transformation requires the ability to iterate over statements, as

we saw in the previous example, as well as over all expressions contained in a statement. It also

requires being able to replace all occurrences of a particular symbol inside of an expression.

The subroutine for this transformation follows.

void normalize(ProgramUnit &pgm, Statement &do_stmt) {

// Normalize loop do_stmt to have a lower bound of 0 and a step of 1

// Get new copies of the DO's init, limit and step expressions,

// and call them respectively e1, e2, e3

Expression *e1 = do_stmt.init().clone();

Expression *e2 = do_stmt.limit().clone();

Expression *e3 = do_stmt.step().clone();

// Get a reference to the index variable

Symbol &index_var = do_stmt.index().symbol();

// Coerce e1, e2 and e3 to the type of the loop index

// by applying intrinsic functions to the expressions

// (only if necessary)

e1 = coerce(e1, index_var.type(), pgm);

35

e2 = coerce(e2, index_var.type(), pgm);

e3 = coerce(e3, index_var.type(), pgm);

// If the bound expressions could have side effects, they must

// be precalculated.

e1 = get_precalc(e1, pgm, do_stmt, PRECALC_IF_SIDE_EFFECTS, "INIT");

e2 = get_precalc(e2, pgm, do_stmt, PRECALC_IF_SIDE_EFFECTS, "LIMIT");

e3 = get_precalc(e3, pgm, do_stmt, PRECALC_IF_SIDE_EFFECTS, "STEP");

// Replace the init expression with the constant 0

do_stmt.init(constant(0));

// Replace limit expression with (e2 - e1) / e3

do_stmt.limit(div(sub(e2, e1), e3));

// Replace the step expression with the constant 1

do_stmt.step(constant(1));

// Now find all occurrences of the use of the index variable

// inside the loop and replace them with the expression

// ((index_variable*e3) + e1)

// First we need to specify the replacement expression

Expression *replacement =

add(mul(id(index_var), e3->clone()), e1->clone());

// Loop through all statements within the loop body

for (Iterator<Statement> stmts =

pgm.stmts().iterate_loop(&do_stmt);

stmts.valid();

++stmts) {

// For all expressions to be iterated over, substitute

// all references to the index variable

// with a copy of the expression 'reference'

substitute_var(stmts.current().iterate_expressions(),

index_var, *replacement);

}

// We don't need this expression anymore--garbage collect it

delete replacement;

}

A number of support routines used in this program example need additional explanations.

36

� void substitute var(iterator, symbol, replacement-expr) |

searches through all the expressions speci�ed by iterator for references to symbol. Wher-

ever it �nds such a reference, it is replaced by a newly-created copy of replacement-expr.

Currently in development for the Polaris system are additional, even more powerful, ex-

pression pattern-matching and replacement routines.

� Expression *coerce(expr, type, program-unit) |

Returns a new expression which has been created by coercing the expression expr into

the type given by type. (Of course, if expr is already of the same type as type, expr is

returned unchanged.) The type coercion is achieved by adding a call to an appropriate

intrinsic function (for instance, INT() or DBLE()) with expr as its argument. If this

intrinsic function does not already exist inside program-unit's symbol table, it is added

automatically.

� get precalc(expr, program-unit, reference-stmt, precalc-condition, precalc-variable-name)

|

Does a precalculation (if necessary) of an expression and returns a new expression which

references this precalculated value. With precalc-condition set to PRECALC IF SIDE EFFECTS,

if expr could have side e�ects (that is, if it contains a call to an external function), this

function automatically creates a new variable and assigns this variable the value of the

expression expr. This assignment takes place in a newly-created assignment statement

which is placed in program-unit just before the statement reference-stmt. Of course, to

retain consistency, all ow-information is automatically updated.

37

The function returns an expression referring to the (possibly precalculated) value of expr.

This expression will be either the original expr expression (if no precalculation was nec-

essary) or a reference to the newly-created variable. The name of the new variable is

speci�ed by precalc-variable-name, which defaults to PC (for \precalc") if not speci�ed. If

a symbol with the speci�ed name already exists, it is automatically renamed to avoid any

conicts. Although this function seems fairly speci�c for a built-in utility, we have found

it to be useful for many transformations.

Also notice that, in the creation of the replacement expression, the expressions e1 and e3

are cloned. This is required because these two expressions have already been inserted into the

do stmt.limit �eld. Trying to directly insert these expressions in the replacement expression

(instead of inserting clones) would be caught by the Collection hierarchy as an attempt to

alias the expressions.

As an example of the output of normalize(), consider the following Fortran subroutine

SUBROUTINE SUB(INIT, ILIMIT, B)

EXTERNAL FUNC1, FUNC2

REAL*4 FUNC1, FUNC2, B

INTEGER*4 INIT, ILIMIT

DO I = FUNC1(INIT), ILIMIT, FUNC2(B)

PRINT *, I

ENDDO

RETURN

END

After normalize() has been applied to the single loop in this Fortran subroutine the fol-

lowing output is obtained:

SUBROUTINE SUB(INIT, ILIMIT, B)

38

INTRINSIC INT

EXTERNAL FUNC1, FUNC2

REAL*4 FUNC1, FUNC2, B

INTEGER*4 INIT, ILIMIT, I, STEP, INT, INIT0

INIT0 = INT(FUNC1(INIT))

STEP = INT(FUNC2(B))

DO I = 0, (ILIMIT-INIT0)/STEP, 1

PRINT *, I * STEP + INIT0

ENDDO

RETURN

END

Notice that this Fortran subroutine already contained a variable named INIT, so the new

variable created by normalize() was automatically renamed from INIT to INIT0 when it was

inserted into the symbol table.

39

CHAPTER 6

INTER-COMPILER COMMUNICATION

We have been describing the Polaris IR as consisting of many layers of functionality on top

of a simple data-structure. One aspect of this functionality which we have not yet described is

the ability to communicate with other compiler systems. The data in the IR can be translated

to and from an intermediate language representation. Using this intermediate form, Polaris can

work in conjunction with other systems. Currently, Polaris is able to fully communicate with

the Delta prototyping system and we are working towards allowing Polaris to work with KAP,

as well. Eventually, we hope to be able to perform transformations using other compilers|

communicating through the intermediate language|thereby taking advantage of the strengths

of other systems as well as avoiding the cost of the needless duplication of transformation code.

We will give an example of how Polaris communicates with Delta system, but, �rst, we need

to describe Delta in a little more detail.

40

6.1 Delta

As mentioned earlier, Delta is written in SETL, a language which allows a high-level, and

to some extent self-documenting implementation of many compiler-related algorithms. The

internal data structures in Delta make extensive use of string-labeled SETL maps and are

de�ned in a way which is both clear and extremely exible.

A Fortran program unit is represented as a map of program unit components. Maps are

sets containing only two-element tuples which represent a mapping from the �rst element to

the second element. Printing the domain of a program unit map will yield something like

{"statements", "initial_statement", "final_statement",

"expression", "symtab", "loop_info", "depend_count",

"routine_type", "depend_type"};

so that, for instance, pgm("statements") produces the set of statements for the program unit

pgm, and the expression pgm("statements")("S11") produces the statement S11 from the

program unit pgm. (The CSRD dialect of SETL allows the abbreviation @S11@statements[pgm]

for the same expression. This abbreviation possibility makes programs a bit easier to read since

expressions such as this are very common when working with Delta.) As an example of a

Fortran statement, consider the assignment statement

B(I) = C(I)*R

which could appear in Delta's program unit representation as the following SETL map 1 (the

output order of tuples in the map is arbitrary and unimportant):

1The integers are indices into an expression table.

41

{["successors", {"S28"}], ["out_refs", {49}],

["in_refs", {53, 54, 51, 47}], ["act_refs", {}], ["rhs", 55],

["next", "S28"], ["prev", "S10"], ["outer", "S8"], ["lhs", 49],

["predecessors", {"S10"}], ["st", "ASSIGNMENT"]};

You may recognize many of the �eld names from Polaris.

6.2 Communication with Delta

As described earlier, there are many strengths and weaknesses associated with Delta's open

and exible data-structure. We attempted to address Delta's weaknesses in Polaris|with

particular regard to its speed|while retaining as many of its strengths as possible. However,

we recognize that Polaris is no substitute for Delta if an open, interactive system is desired

for prototyping. When this is the case, but some of the computational power of Polaris is still

required, the inter-system communication is invaluable.

Within Polaris, the creation of an interface module is fairly straightforward. Consider the

following example:

extern "C" int

instrument_code(char **data, int *len)

{

// Capture any p_assert() errors here

P_ASSERT_HANDLER(0);

// Create a BinStr object and initialize it to 'data'

BinStr bin = *data;

// Create a ProgramUnit class object from the BinStr

ProgramUnit pgm("PGM1", bin);

// Insert instrumentation into pgm

instrument(pgm);

// Place the pgm into the global store

PUTag tag = global_store_ins(pgm);

42

return_handle(tag, data, len);

}

This is an example of a Polaris routine which can be called from delta. The routine re-

ceives as its parameters a program passed as an array of characters and the array's size. This

character array is assigned to a binary string of data or a BinStr. The BinStr is the simple

intermediate form used to represent Fortran programs between Polaris and other systems. This

example routine translates the BinStr into a Polaris ProgramUnit and then passes it to the

\instrument" routine. The instrumented code is then placed into the `global store'. The global

store is a depository of codes speci�ed by unique tags. The command \global store ins(pgm)"

places pgm in the global store and returns the tag now associated with the program. The

command \return handle" is a macro which sets \data" and \len" to return the program's tag.

The program above could be called from within Delta by calling it as a function. For

instance, suppose the user wrote a Delta program which reads a Fortran program from a �le,

performs a series of transformations on it, also within Delta, and then wanted to use the

instrumentation code to insert timing calls. Within Delta, this would appear as

pgm := read_program("fortran_program.f");

pgm := transform(pgm);

handle := dynamic_callout("instrument", "instrument.o", pgm);

pgm := retrieve_program(handle);

The \dynamic callout" command calls the \instrument" procedure with the argument \pgm"

and stores the result of the function in \handle". In this case, the result is the unique tag spec-

ifying the program in the global store. The next command retrieves the program, speci�ed by

its tag, from the global store, translates it and stores it in \pgm". Using the global store and

43

the intermediate program representation, Polaris is able to communicate with other compiler

systems.

The Polaris routine in the example, again, makes use of the P ASSERT HANDLER call. This

call provides additional support for inter-system communication. The 0 argument speci�es, as

before, that Polaris should abort if an assertion fails. However, rather than aborting entirely,

as before, in this case control would be returned to Delta (which is particularly useful if the

prototyping system is being used interactively).

Another important Polaris feature used in inter-system communication is the existence of

an \overow" �eld within, basically, every structure in the IR. The \overow" �eld is usually

empty. If, however, data is found in the intermediate language form which has no counter-part

in Polaris|for instance if a programmer has added special �elds to the Delta data-structure|it

is stored in the \overow" �eld. Then, if the program is translated back in order to return it

to the original system, the data from the \overow" �eld will be returned, unchanged.

In this fashion, users can still take advantage of some of Delta's strengths while working

within the Polaris system.

44

CHAPTER 7

CONCLUSIONS

The Polaris system's internal representation was designed with the belief that a source-to-

source transformation system, even a production quality system, should create an environment

which is practical but which still stimulates good programming practices. We have tried to

create a system which is robust, is rigorous in its maintenance of a correct structure and which

still allows transformations to be expressed clearly and easily.

The IR's structure, however, is a relatively simple one. We have only just begun to build

di�erent layers of functionality on top of the basic IR to provide more complex operations. It

was designed so that it can adapt and expand, incorporating new methods of analysis and new

forms of information, and emulating new representations of traditional information.

While Polaris' internal representation is far from revolutionary, in and of itself, we believe

that the concepts incorporated in its design are useful and important in the creation of trans-

formation system. An IR cannot be simply described as the layout of data within a computer's

memory. It is inseparable from the functions and philosophies which maintain it. We have

endevoured to take one of the most basic of the traditional IR forms and add concepts such

45

as consistency maintenance and layered functionality to create the heart of a complete and

powerful system which allows complex analysis techniques and transformations to be developed

quickly and easily.

46

APPENDIX A

CLASS METHODS

47

ProgramUnit::

stmts() Returns a reference to the statement list
clone() Returns a copy of this ProgramUnit
pu tag ref() Returns the unique tag identifying the

ProgramUnit
pu class() Returns the type of the ProgramUnit
routine name ref() Returns the name of ProgramUnit (if applicable)
symtab() Returns the symbol table
data() Returns the data from all DATA statements
common blocks() Returns the dictionary of common blocks refer-

enced in this ProgramUnit
equivalences() Returns the dictionary of variable equivalence

classes
formats() Returns the dictionary of all FORMAT

statements
overow ref() Returns a dictionary of syntax tree labels of un-

recognized structures found in the intermediate
language

work stack() Returns a reference to the stack of transforma-
tion pass-speci�c structures associated with this
ProgramUnit

clean workspace(pass tag) Delete all WorkSpaces designated for the speci-
�ed pass

display(out stream) Display with moderate debugging information
display debug(out stream) Display with all debugging information
write(out stream) Display in FORTRAN format

Table A.1: Many of the methods de�ned for the ProgramUnit class.

48

StmtList::

�rst ref() Returns a pointer to the �rst statement
last ref() Returns a pointer to the last statement
prev ref(stmt) Returns a pointer to the statement lexically

before `stmt'
next ref(stmt) Returns a pointer to the statement lexically

after `stmt'
entries() Returns the number of statements in the

StmtList
�nd ref(stmt tag) Returns a pointer to the statement with the

tag `stmt tag'
iterate entry points() Returns an Iterator over all entry points in

the StmtList
ins before(new stmt, ref stmt)
y

Inserts `new stmt' before `ref stmt'

ins before(stmt list, ref stmt)
y

Inserts all statements in `stmt list' before
`ref stmt'

ins IF ELSE after(: : :) Inserts a (possibly empty) block IF-ELSE-
ENDIF around existing statements in the
StmtList

ins IF after(: : :) Inserts a (possibly empty) block IF-ENDIF
around existing statements in the StmtList

ins ELSEIF after(: : :) Appends an (possibly empty) ELSEIF clause
to an existing block IF statement.

ins ELSE after(: : :) Appends an (possibly empty) ELSE clause to
an existing block IF statement.

ins DO after(: : :) Inserts a (possible empty) DO statement after
`ref stmt'

move block before(: : :) y Moves a block of statements to before a given
statement

move before(: : :) y Moves a statement to before a given statement
del(stmt) Delete `stmt'
del(stmt1, stmt2) Deletes all statements from stmt1 to stmt2
copy(: : :) Returns a copy of a block of statements
stmts of type(: : :) Returns an Iterator over all statements of

speci�ed types
iterate loop body(do stmt) Returns an Iterator over all statements in

`do stmt's' body
iterator() Returns an Iterator over the entire StmtList
iterator(stmt1, stmt2) Returns an Iterator over all statements from

stmt1 to stmt2 lexical order
new tag() Returns a unique statement tag
new label() Returns a new label

Table A.2: Many of the methods de�ned for the StmtList class. y indicates that there also
exists an \ after" form of the method.

49

Statement::

clone() Returns a copy of the statement
stmt class() Speci�es what kind of statement this is
next ref() Returns a pointer to the lexically next statement
prev ref() Returns a pointer to the lexically previous

statement
succ() Returns the set of successor statements in the

control-ow graph
pred() Returns the set of predecessor statements in the

control-ow graph
in refs() Returns the set of variables read by the statement
out refs() Returns the set of variables written by the

statement
act refs() Returns the set of actual parameters accessed by

the statement
outer() Returns the innermost enclosing DO loop
line() Returns the line number in the source code
overow ref() Returns a dictionary of syntax tree labels of un-

recognized structures found in the intermediate
language

tag() Returns a unique tag indentifying this statement
assertions() Returns the list of assertions associated with the

statement
relink ptrs(program unit) Change all identi�ers within subexpressions to re-

fer to `program unit's' symbol table
work stack() Returns the stack of WorkSpaces associated with

the statement

Table A.3: Many of the methods de�ned for all Statement classes. These methods are de�ned
in the base Statement class and are available to all derived statements.

50

: : :Stmt::

lhs() y Returns a reference to the expression on the left hand
side of an AssignmentStmt

rhs() y Returns a reference to the expression on the right
hand side of an AssignmentStmt

follow ref() Returns a pointer to the next statement of a com-
pound structure

lead ref() Returns a pointer to the previous statement of a com-
pound structure

matching if ref() Returns a pointer to the corresponding IfStmt of an
EndIfStmt

matching endif ref() Returns a pointer to the corresponding EndIfStmt of
an IfStmt

expr() y Returns a reference to the expression of a
statement with one expression (i.e. IfStmt,
ComputedGotoStmt)

index() y Returns a reference to the the index expression of a
DoStmt

init() y Returns a reference to the the init expression of a
DoStmt

limit() y Returns a reference to the the limit expression of a
DoStmt

step() y Returns a reference to the the step expression of a
DoStmt

target ref() y Returns a pointer to the target statement of a
GotoStmt

label list() Returns a reference to the list of targets of a state-
ment with multiple jumps

s control guarded() Returns a reference to the control information list of
an I/O statement

s control valid() Returns true if there exists control information in an
I/O statement

io list guarded() y Returns a reference to the expressions read and writ-
ten in an I/O statement

io list valid() Returns true if there are any expressions in an I/O
statement

routine ref() y Returns a pointer to the symbol of a subroutine call
statement or a subroutine entry statement

parameters guarded() y Returns a reference to the parameters of a call state-
ment or an entry statement

parameters valid() Returns true if there exist any parameters in a call
statement or an entry statement

Table A.4: Many of the methods de�ned for derived Statement classes. These methods are
de�ned in the base Statement class to call error routines and are rede�ned for the
derived classes which use them. y indicates that there exist corresponding methods
which insert data into these �elds.

51

Expression::

clone() Returns a copy of the expression
op() Returns the operator of the expression
type() Returns the Type object of the expression
arg refs() Returns a list of references to all of the expres-

sion's sub-expressions
arg list() Returns the list of the expression's sub-

expressions
overow ref() Returns a dictionary of syntax tree labels of un-

recognized structures found in the intermediate
language

relink ptrs(program unit) Change all identi�ers within subexpressions to re-
fer to `program unit's' symbol table

is wildcard() Returns true if this is an expression used for pat-
tern matching

possible values() Returns a list of values this expression may
assume

is side e�ect free() Returns true if this is known to be free of side-
e�ects

operator== Compare expressions|also used for pattern
matching

Table A.5: Many of the methods de�ned for all Expressions classes. These methods are de�ned
in the base Expression class and are available to all derived expressions.

52

: : :Expr::

data ref() y Returns a pointer to the character data of a string
constant expression

value() y Returns the integer of an integer constant or argu-
ment number expression

real part() y Returns a reference to the real part of a
ComplexExpr

imaginary part() y Returns a reference to the imaginary part of a
ComplexExpr

array() y Returns a reference to the array speci�ed in an array
reference

subscript() y Returns a reference to the subscript speci�ed in an
array reference

string() y Returns a reference to the string speci�ed in a
SubStringExpr

bound() y Returns a reference to the bounds speci�ed in a
SubStringExpr

left guarded() y Returns a reference to the left hand side of a
BinaryExpr

left valid() Returns true if the left hand side of a BinaryExpr
exists

right guarded() y Returns a reference to the right hand side of a
BinaryExpr

right valid() Returns true if the right hand side of a BinaryExpr
exists

function() Returns a reference to the function of a function call
parameters guarded() y Returns a reference to the parameters of a function

call
parameters valid() Returns true if there exist parameters in a function

call
expr guarded() y Returns a reference to the expression of an

UnaryExpr
expr valid() Returns true if there exists an expression in an

UnaryExpr
iterator symbol() y Returns a reference to the symbol of an identi�er

expression

Table A.6: Many of the methods de�ned for derived Expression classes. These methods are
de�ned in the base Expression class to call error routines and are rede�ned for the
derived classes which use them. y indicates that there exist corresponding methods
which insert data into these �elds.

53

REFERENCES

[1] F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. Srinivas. Sage++: A Class Library
for Building Fortran 90 and C++ Restructuring Tools. Drafter version 0.1.

[2] Rudolf Eigenmann, Jay Hoeinger, Greg Jaxon, Zhiyuan Li, and David Padua. Restruc-
turing Fortran Programs for Cedar. Concurrency: Practice and Experience, 5(7):553{5737,
October 1993.

[3] Keith A. Faigin, Jay P. Hoeinger, David A. Padua, Paul M. Petersen, and Stephen A.
Weatherford. The polaris internal representation. Submitted for publication.

[4] Kuck and Inc. Associates. KAP for SPARC Fortran User's Guide, beta version 1.0, docu-
ment 9308006 edition, 1993.

[5] P. Lucas and K. Walk. On the formal description of pl/i. Annual Review in Automatic

Programming, 6, Part 3, 1969.

[6] D. Padua, R. Eigenmann, J. Hoeinger, P. Petersen, Peng Tu, S. Weatherford, and K. Faigin.
Polaris: A new generation parallelizing compiler for mpps. Technical report, Univ. of Illinois
at Urbana-Champaign, Center for Supercomputing Res. & Dev., June, 1993. CSRD Report
808.

[7] David Padua. The Delta Program Manipulation System. Preliminary Design. Technical
report, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev.,
June 1989. CSRD Report 880.

[8] Paul M. Petersen, Greg P. Jaxon, and David A. Padua. A Gentle Introduction to Delta.
University of Illinois at Urbana-Champaign, Center for Supercomp. Res. & Dev., June 1992.

[9] J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets: An

Introduction to Setl. Springer-Verlag, 1986.

