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To e�ectively translate real programs written in standard, sequential languages into parallel

computer programs, parallelizing compilers need advanced techniques such as powerful de-

pendence tests, array privatization, generalized induction variable substitution, and reduction

parallelization. All of these techniques need or can bene�t from symbolic analysis.

To determine what kinds of symbolic analysis techniques can signi�cantly improve the ef-

fectiveness of parallelizing Fortran compilers, we compared the automatically and manually

parallelized versions of the Perfect Benchmarks. The techniques identi�ed include: data depen-

dence tests for nonlinear expressions, constraint propagation, interprocedural constant prop-

agation, array summary information, and run time tests. We have developed algorithms for

two of these identi�ed symbolic analysis techniques: nonlinear data dependence analysis and

constraint propagation.

For data dependence analysis of nonlinear expressions, we developed a data dependence test

called the Range Test. The Range Test proves independence by determining whether certain

symbolic inequalities hold for a logical permutation of the loop nest. We use a technique called

Range Propagation to prove these symbolic inequalities.

For constraint propagation, we developed a technique called Range Propagation. Range

Propagation computes the range of values that each variable can take at each point of a pro-

gram. A range is a symbolic lower and upper bound on the values taken by a variable. Range
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propagation also includes a facility to compare arbitrary expressions under the constraints im-

posed by a set of ranges. We have developed both a simple but slow algorithm and a fast and

demand-driven but complex algorithm to compute these ranges.

The Range Test and Range Propagation have been fully implemented in Polaris, a paralleliz-

ing compiler being developed at the University of Illinois. We have found that these techniques

signi�cantly improve the e�ectiveness of automatic parallelization. We have also found that

these techniques are reasonably e�cient.
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Chapter 1

INTRODUCTION

1.1 Parallelizing compilers

In response to the need for faster, more-powerful machines, parallel architectures were intro-

duced by the high performance computing industry. Unfortunately, to fully utilitize these

machines, users needed to write explicitly parallel programs. This posed several di�culties for

the user community. First, they had to rewrite their existing programs (a.k.a dusty decks)

to use the parallel machine. Second, most of the resulting explicitly parallel programs were

not portable. Third, writing e�cient parallel programs often required optimizations that need

intimate knowledge of the machine's architecture and the programs' access patterns, (e.g., data

distribution, prefetching, or blocking). To address these di�culties, parallelizing compilers were

developed to transform sequential programs to parallel ones.

Parallelizing compilers can be broken into two components; a component that identi�es

parallelism in a program, and a component that exploits this parallelism. The component that

identi�es parallelism attempts to determine what parts of a program can be run in parallel.
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The component that exploits parallelism determines which of these parallel parts should be run

in parallel, as well as how to generate e�cient code for them. In this dissertation, we will only

concentrate upon the �rst component: the identi�cation of parallelism.

To identify parallelism in programs, parallelizing compilers perform data dependence anal-

ysis. Data dependence analysis determines all the pairs of array or scalar accesses in a program

that may touch the same memory location. If two array or scalar accesses may touch the same

memory location, they are said to be data dependent. A loop can be run fully in parallel if

there are no data dependences from one iteration to another iteration, ignoring dependences

between read accesses. Because of the importance of data dependence analysis, there has been

much research in this �eld [3, 25, 37, 42, 50].

Because a loop cannot be executed fully in parallel if it has cross-iteration dependences,

many techniques have been developed to eliminate such dependences. Two techniques that are

implemented in nearly all commercial parallelizing compilers are induction variable substitu-

tion, and scalar privatization. Induction variable substitution, which is the reverse of strength

reduction [2], replaces induction variables in loops, (e.g., i = i + 2) with assignments whose

right-hand-sides use only loop-invariant variables and loop indices, (e.g., i = 2*j, where j is

the index of an enclosing loop). Scalar privatization recognizes scalars that act as temporary

variables in a loop iteration, (i.e., they are always written before read in an iteration), and gives

each processor a local copy of these scalars.

Introductions to and summaries of the research performed on parallelizing compilers can be

found in Banerjee, Eigenmann, Nicolau, and Padua [5], Padua and Wolfe [40], or the textbook

by Zima and Chapman [51].
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1.2 E�ectiveness of late '80s parallelizing compilers

As described in the previous section, much research has been done in developing techniques to

identify and exploit parallelism in programs. Many of these techniques have been implemented

in research or commercial parallelizing compilers. However, around 1989{1991, there were few

studies on the e�ectiveness of these techniques. Additionally, almost all of these studies used

only small, synthetic kernels.

To determine the e�ectiveness of parallelizing compilers on real programs, we measured

the speedups of the Perfect Benchmarks that were parallelized by the 1988 versions of the two

commercial parallelizing compilers: Kap and Vast [20, 8, 10]. We also measured the e�ectiveness

of the individual restructuring techniques used by these compilers. By speedup, we mean the

time taken by the original sequential code divided by the time taken by the parallelized version of

the code. The Perfect Benchmarks is a suite of 13 Fortran 77 programs representing applications

in a number of areas in engineering and scienti�c computing [6]. The measurements were made

on an Alliant FX/80, which is an 8 vector-processor machine. Since the pipeline of each vector

unit is four deep, the theoretical achievable speedup from both vectorization and parallelism is

32. The practical maximum speedup is more around 16 to 20.

The results of this study were very poor. Figure 1.1 shows the speedups of the vector,

concurrent, and vector-concurrent versions of the Perfect Benchmarks, as produced by Kap,

as well as the vector-concurrent versions produced by Vast. Out of the thirteen codes, only

two had a speedup of 8 or more. Seven of the thirteen codes had speedups of 1.5 or less. The

other four codes had speedups between 2 and 4.5. The speedups for Kap and Vast were nearly

identical. In addition to these results, we found that most of the restructuring techniques

applied by these parallelizing compilers had little e�ect on the programs' performance.
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Figure 1.1: Speedups of the Perfect Benchmarks transformed by the 1988 versions of Kap and
Vast for the Alliant FX/80.
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Figure 1.2: Speedups of automatically and manually parallelized versions of the Perfect Bench-
marks on Cedar.

1.3 Improving the e�ectiveness of parallelizing compilers

In response to this poor e�ectiveness of the then state-of-the-art parallelizing compilers, we

asked ourselves: are these results due to the fact that these programs contain little paral-

lelism, or is it because parallelizing compilers are not su�ciently powerful enough to identify

and exploit the parallelism in the programs? To answer this question, our research group

at the Center of Supercomputing Research and Development decided to manually parallelize

the Perfect Benchmarks, using only those techniques that are likely to be implementable in a

parallelizing compiler [23, 22, 21].
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The results of this manual parallelization e�ort were very heartening. From the twelve

codes in the Perfect Benchmarks that were hand-parallelized, we were able to achieve a mean

speedup of ten to twenty on the Cedar multiprocessor, which consists of four clusters of Alliant

FX/8's. The speedups of these manually parallelized codes versus the speedups of Kap/Cedar

is shown in Figure 1.2. The Automatic bars represents the speedups achieved by Kap/Cedar,

which is based upon the 1988 version of commercially available parallelizer named Kap. The

Automatable bars represent the speedups of the hand transformed codes. Remember that only

those transformations that were theoretically implementable in a compiler were applied to

these codes. These results indicate that it is possible to automatically parallelize real programs

e�ectively. Hence, there exists signi�cant room for improvement for parallelizing compilers.

Although the speedups achieved by this manual parallelization e�ort were impressive, the

main lesson that we learned from this e�ort was that only a few additional techniques were

needed to achieve these speedups for most of the codes [23, 22, 21]. These techniques were:

� Interprocedural analysis

� Nonlinear dependence analysis

� Array privatization

� Generalized induction variable substitution

� Reduction parallelization

Interprocedural analysis is needed since the important1 parallel loops in many programs con-

tain procedure calls. Additionally, data such as symbolic constants is often needed to be passed

1We say that a loop or loop nest is important if that loop or loop nest takes up a signi�cant fraction of the
program's execution time.
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across procedure boundaries to provide enough information to disprove data dependences. This

data is also needed to determine and compare the sections of arrays that are written or read

by a loop, which is needed for techniques such as array privatization.

Nonlinear dependence analysis is required since some programs contain nonlinear array

subscripts or loop bounds in important parallel loop nests. Most existing data dependence

tests assume that all array subscripts and loop bounds are linear, (i.e., a�ne). Hence, such

tests would fail when they encounter a nonlinear expression.

Array privatization is needed since the iterations of many large loops in real programs use

arrays as temporary workspaces. That is, no data is passed between iterations for such arrays.

Array privatization simply gives each processor a local copy of these arrays, thus breaking the

dependences due to the sharing of memory locations by such arrays [43].

Generalized induction variable substitution is simply induction variable substitution ex-

tended to handle cases such as triangular loop nests, multiply nested loop nests with symbolic

bounds, or loop nests with coupled induction variables [28].

Finally we have seen that a large number of important loop nests have cross-iteration de-

pendences from reduction statements. Reduction statements are statements that update the

value of some scalar or array element using an associative operation, (e.g., s = s + a(i) or

b(i) = b(i) � x). For such cases, a compiler can extract such statements from a loop and replace

them with a parallel version, similar to a parallel-pre�x computation [41].

Because of the potentially great impact that these additional transformations would have on

the e�ectiveness on parallelizing compilers, our research group has developed and implemented

these transformations in Polaris, a state-of-the-art research parallelizing compiler being devel-
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oped at the University of Illinois. A description of Polaris and algorithms for these techniques

can be found in [24, 9, 7].

Many of these additional techniques must perform some sort of symbolic analysis to be

e�ective. The goal of this dissertation is to identify and develop symbolic analysis techniques

that will improve the e�ectiveness of these techniques, with the emphasis upon data dependence

analysis. Additionally, because these symbolic analyses will be applied upon real programs that

are tens-of-thousands of lines long or longer, the algorithms developed for these analyses must

be both robust and e�cient.

1.4 Role of symbolic analysis in parallelizing compilers

Many restructuring techniques used by parallelizing compilers need some sort of symbolic anal-

ysis to be e�ective. By symbolic analysis, we mean any kind of analysis that can manipulate or

propagate values that contain symbolic terms (e.g. program variables). In this section, we will

describe how symbolic analysis can aid data dependence testing. The symbolic analysis needed

by other transformations used by parallelizing compilers is often very similar.

Typically, data dependence tests for parallelizing compilers demand that loop bounds and

array subscripts are a linear (a�ne) function of loop index variables. That is, they are of the

form

c0 +
nX
j=1

cjij

where cj are integer constants and ij are loop index variables. Some tests are more lenient,

allowing some ij 's to also be loop invariant variables [42]. Unfortunately, array subscripts

and loop bounds in real programs are not always in this format. Instead, the coe�cients

may not be integer constants, or the subscripts or array bounds may contain loop variant
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variables or subscript array references. We will call such expressions nonlinear. In response to

such unmanageable expressions, a variety of symbolic analyses and transformations have been

developed. These analyses and transformations handle the o�ending expressions in one of two

ways:

1. Eliminate the o�ending variable or subexpression from the subscript expression.

2. Extend data dependence analysis to cope with such expressions.

The most straightforward, and usually the easiest, way to handle nonlinear subscript ex-

pressions or expressions containing loop variant variables is to eliminate these nonlinearities

or loop variants. Constant propagation [46] and induction variable substitution [28, 48] are

the most common methods used to transform array subscripts into testable linear expressions.

Symbolic simpli�cation of expressions [14, 29, 32] is also important for canceling common terms

and eliminating complex expressions.

Although transforming a subscript expression or loop bound into a testable linear form

is preferred, it is not always possible. We have seen examples in several of the codes in the

Perfect Benchmarks that had array subscripts which could not be transformed into a linear

form or which contained loop-variant expressions or subscript array references that could not

be eliminated. Additionally, some common compiler transformations introduce nonlinearities

to subscript expressions. The two most common o�enders are linearization of arrays,2 which is

often needed for inlining or interprocedural analysis, and generalized induction variable substi-

2By the linearization of an array, we mean the transformation of two or more dimensions of an array into a
single dimension. For example, if the array a, which was originally declared to be a(n,m), was linearized, its
declaration will be changed to a(n*m), and a reference a(i,j) will be changed to a(i + n*j). Do not confuse
the term \array linearization" with the terms \linear" or \nonlinear". The similarities between these terms are
purely accidental.
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tution. In these cases, dependence analysis techniques must be modi�ed to cope with nonlinear

expressions and loop variant variables.

The symbolic analysis techniques developed in this dissertation handle nonlinear expressions

and loop variant variables by extending data dependence analysis. Because of this, we had to

develop a data dependence test to handle such nonlinear expressions, (called the Range Test,

which will be described in Chapter 3), and develop techniques to manipulate and reason about

nonlinear expressions, (called Range Propagation, which will be described in Chapters 4 and 5).

1.5 Foreshadowing

To wet the reader's appetite for the analysis techniques developed in this paper, Figure 1.3

displays the speedups achieved by Polaris versus the speedups achieved by PFA, which is a

commercial parallelizing compiler that is based on Kap and is for the SGI Power Challenge.

These speedups were collected on a 8 processor set on a SGI Power Challenge. The codes listed

are six codes from the Perfect Benchmarks plus three application codes used by the National

Center of Supercomputing Applications. As shown, the programs parallelized by Polaris were

able to match or exceed the performance of the codes parallelized by PFA, with one exception.3

In fact, the speedups of two-thirds of the Polaris transformed codes are at least double the

speedups of the PFA transformed codes.

Now, the increase in the performance of the Polaris transformed codes is not solely due to

the analysis techniques developed in this dissertation. Instead, they are due to a combination of

the analysis techniques developed in this dissertation and the additional techniques described

3Polaris did not do as well as PFA on ARC2D only because PFA interchanged some loops to increase data
locality while Polaris did not. Polaris did not perform these loop interchanges because the component responsible
for exploiting parallelism is under development. No speedup was shown for PFA on CLOUD3D because PFA
crashed while compiling this code.
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Figure 1.3: Speedups of codes transformed by PFA and Polaris on an 8 processor set on an
SGI Power Challenge in ash mode.

in the previous section. However, for some of the codes shown in Figure 1.3, our techniques had

a profound impact on the e�ectiveness of Polaris. More speci�cally, if the analysis techniques

developed in this dissertation were not applied by Polaris, the performance of the Polaris

transformed codes would have been the same as the PFA transformed codes for TRFD and

OCEAN and the increase in performance by the Polaris transformed codes would have been

signi�cantly diminished for CMHOG and MDG.

Additionally, our analysis techniques were reasonably e�cient for these nine codes. Polaris

took about 2{15 minutes on a single processor of the SGI Power Challenge to compile the codes

shown in Figure 1.3. At most a third of these compilation times were spent in the symbolic

analysis techniques developed in this dissertation. These codes are about 600{14000 lines long.
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Hence, we feel con�dent to claim that the symbolic analysis techniques developed in this

dissertation are e�cient and have a signi�cant impact on the e�ectiveness of parallelizing com-

pilers.

1.6 Organization of dissertation

This dissertation is organized as follows. Chapter 2 will describe what symbolic analysis tech-

niques should improve the e�ectiveness of parallelizing compilers. These techniques are iden-

ti�ed by an in-depth study of the manually parallelized versions of the Perfect Benchmarks.

The rest of this dissertation will then describe the implementations of two of three most im-

portant symbolic analysis techniques identi�ed by this study. We call these two techniques the

Range Test and Range Propagation.4 Chapter 3 will describe the implementation of the Range

Test, a symbolic data-dependence test designed to handle nonlinear array references and loop

bounds. Range Propagation will then be described in Chapter 4. Range Propagation derives

inequality relationships, called ranges, from a program's text, then uses these ranges to prove

or disprove inequality relationships between two arbitrary symbolic expressions. A more e�-

cient and demand-driven version of Range Propagation will be described in Chapter 5. Finally,

chapter 6 will summarize the results of this dissertation.

4The third of the three most important symbolic analysis techniques is interprocedural constant propagation
with procedure cloning. Although we have implemented this technique in Polaris, it is a faithful implementation of
the algorithm described by Callahan et. al. [13]. Because this technique and its e�ectiveness has been thoroughly
discussed by others, we will not discuss it in this dissertation.
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Chapter 2

SYMBOLIC ANALYSIS

TECHNIQUES NEEDED FOR

EFFECTIVE PARALLELIZATION

OF THE PERFECT

BENCHMARKS

2.1 Motivation for symbolic analysis

To allow the user community to write programs that run e�ciently on a parallel architec-

ture without needing to write explicitly parallel code, parallelizing compilers were developed to

transform sequential programs into parallel ones. Unfortunately, an e�ectiveness study of par-

allelizing compilers performed by our research group in 1989-1992 on the Perfect Benchmarks
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found that parallelizing compilers are not very e�ective at parallelizing real programs, (i.e., the

transformed programs do not get good speedups from the original sequential codes.) [20, 8, 10].

In response to this, our research group manually parallelized the Perfect Benchmarks, using

only those transformations that are theoretically implementable in a compiler, to determine

how e�ective a parallelizing compiler can be [23, 22, 21]. This manual parallelization e�ort

shown that it was possible for parallelizing compilers to transform programs into a parallel

form that gets good speedups from the original sequential code. Additionally, it found that

only a few restructuring techniques beyond those already implemented in parallelizing compilers

were needed to achieve these good speedups for many of the codes.

Many of the additional restructuring techniques identi�ed by this manual parallelization

e�ort need to perform some sort of symbolic analysis to be e�ective. The manual parallelization

e�ort have also seen several important cases where data dependence tests need to be done

symbolically to prove independence. In this chapter we will identify which symbolic analysis

techniques will improve the e�ectiveness of these techniques, with the emphasis upon data

dependence analysis.

The study described in this chapter was important preliminary work that led to the devel-

opment of the two symbolic analysis techniques, called the Range Test and Range Propagation,

which we have developed in this dissertation. More speci�cally, this study have shown us that

analyses like the Range Test and Range Propagation are needed to e�ectively parallelize a

signi�cant fraction of the Perfect Benchmarks. Additionally, the study provided us with cases

that these techniques must handle. Descriptions of these two techniques would be given in later

chapters.
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2.2 Analysis of the Perfect Benchmarks

To identify symbolic analysis techniques that are useful for aiding parallelizing techniques, we

have compared real applications that were restructured by current parallelizing compilers with

their manually parallelized counterparts. Only transformations that can be considered to be

\automatable", or theoretically implementable in a compiler, were used on these manually

parallelized codes. These transformations typically consisted of one or more of the following:

marking a loop as parallel, privatizing one or more arrays, eliminating induction variables, and

transforming reduction statements into a parallel form. We then examined these manually

parallelized loop nests to determine what kinds of symbolic analysis are required to guarantee

that the applied transformations are legal.

We have chosen the Perfect Benchmarks [6] for our analyses. The Perfect Benchmarks is a

suite of 13 Fortran 77 programs that total about 60,000 lines of source code. They represent

applications in a number of areas of engineering and scienti�c computing. In many cases, they

represent codes that are currently used by computational research and development groups.

Our analyses will only use 12 of the 13 programs. The 13th code, named SPICE, was not

examined for we did not have access to a manually parallelized version of the code.

In our comparisons, we will assume that the parallelizing compiler can do certain transforma-

tions well, although these transformations may not yet exist in current commercial compilers.

These assumptions are needed to prevent one from incorrectly concluding that all symbolic

analysis techniques are ine�ective for a code just because some other part of the parallelizing

compiler is not su�ciently powerful enough to e�ectively parallelize it. We will assume that

the compiler can privatize arrays [43], parallelize loops containing reduction statements, and

perform interprocedural dependence analysis to parallelize loops with function calls [13, 12]. We
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will also assume that the compiler is capable of performing symbolic analysis techniques that

already have been well covered by others. This includes the constant propagation of symbolic

expressions [46], the elimination of induction variables [28, 48], and symbolic simpli�cation of

expressions [14, 26]. However, we will mention cases where the transformations or analysis

techniques above need minor modi�cations or more accurate information.

In our analysis of the Perfect Benchmarks, we have found a variety of symbolic analy-

sis techniques needed by the transformations described above to achieve the speedups of the

manually parallelized versions. Except for FLO52, every code required some sort of symbolic

analysis technique to improve its performance. However, the distribution of these techniques

was quite uneven. Some codes, such as BDNA and MDG, required only a few techniques to

allow parallelizing compilers to match the speedups attained from the manually parallelized

versions. Other codes, most notably QCD and TRACK, need a long succession of complex

analysis techniques just to parallelize a single important loop nest.

Rather than examining each code and describing what additional techniques will be needed

to e�ectively parallelize it, we will present the symbolic analysis techniques we have identi�ed,

and give examples showing why these techniques are important.

2.3 Symbolic, nonlinear dependence analysis

As mentioned in Chapter 1, current dependence tests can only handle expressions of the form

c0 +
Pn

j=1 cjij , where cj are integer constants and ij are loop index variables. However, ex-

pressions with cj 's that are arbitrary symbolic expressions do exist in important loop nests of

the Perfect Benchmarks. Current tests are unable to prove independence for these cases since

they are unable to handle the symbolic coe�cients and, as a result, consider the expression
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nonlinear. However, for many of the nonlinear expressions that we have seen, the compiler can

�nd some permutation of the loop nest, by examining the steps and bounds of the nested loops,

where the total range of values that can be accessed by the innermost j of the permuted loops

�ts within the stride of (j + 1)th innermost loop. For such cases, all the loops may be run

in parallel. (We will describe an algorithm that can perform such a test in Chapter 3). For

example, there cannot be any output dependences in the following loop:

do i = 0, n

do j = 1, m

x(m*i + j) = ...

end do

end do

We have seen several cases in our examination of the Perfect Benchmarks where such depen-

dence analysis of nonlinear expressions is needed. In some cases, the nonlinear expressions were

introduced by the compiler. In MDG and TRFD, nonlinear subscript expressions appeared in

array subscripts after the elimination of an induction variable in a multiply nested loop. In

ADM, nonlinear subscript expressions were the result of the linearization of a two dimensional

array when a subroutine was inlined in an important loop. For example, the following important

loop nest in MDG has an induction variable in the following doubly nested loop:

do i = 1, nt

jj = i

do j = 1, nor1

var(jj) = var(jj) + ...

jj = jj + nt

end do

end do

After induction variable recognition, the loop is transformed into:

do i = 1, nt

do j = 1, nor1

var(nt*j + i - nt)

. = var(nt*j + i - nt) + ...

enddo

enddo
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Current data dependence tests would not be able to detect independence of this loop because

of the nt*j term, but by examining the ranges of elements accessed by the outer loop and the

stride of the inner loop, a compiler should be able to prove both loops as independent without

too much di�culty. Nonlinear expressions can also occur naturally in programs. For example,

nonlinear expressions occurred in many of the important loop nests in OCEAN. A simpli�ed

version of one of the most important of these loop nests, which takes 20% of the code's sequential

execution time, is shown below. Only a symbolic data dependence test that can handle nonlinear

expressions can identify all the nested loops as independent.

do jl = 1, i2k

exj = ...

do jj = jl, 64, 2*i2k

do mm = 1, 129

js = 129*jj + mm - 129

js2 = js + 129*i2k

h = data(js) - data(js2)

data(js) = data(js) + data(js2)

data(js2) = h * exj

end do

end do

end do

The need for a such a dependence test was �rst discussed by Eigenmann et. al. [23].

Maslov [36] presented the delinearization algorithm, which can handle any subscript expression

c0+
Pn

j=1 cjij with symbolic loop-invariant expressions for the cj 's. Essentially, the delineariza-

tion algorithm partitions the array expression into several independent subexpressions, and

tests these partitions separately for dependences. Haghighat [27] describes how to prove that a

subscript expression is strictly increasing or decreasing. By proving that a subscript expression

is strictly increasing or decreasing, one can eliminate all self-dependences on the array access

with the subscript expression. It can handle a more general class of symbolic expressions than

Maslov's. For example, it can prove that there are no output dependences for the array write
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a((i � i � i)=2 + j) = � � �, where 1 � j � i. Unfortunately, it cannot eliminate dependences

between two array accesses with unequal array subscripts.

2.4 Constant propagation

One of the fundamental techniques needed for e�ective symbolic analysis is constant propa-

gation. Constant propagation is a data-ow analysis pass which attempts to determine the

constant value of each variable reference, where this value is valid along all execution paths.

The constant propagation of integer constants aids analysis of symbolic expressions by eliminat-

ing some of the symbolic terms. Constant propagation of symbolic expressions helps analysis by

removing loop-variant variables from the subscript expressions. Also, the constant propagation

of symbolic values of two or more variables may allow the compiler to determine additional

relationships between these variables. The constant propagation of symbolic expressions is

sometimes called forward substitution by the parallelizing compiler community.

2.4.1 Interprocedural constant propagation with procedure cloning

From our experience with the Perfect Benchmarks, we have found that a constant propagation

pass, whether it is for integers or for symbolic expressions, must work interprocedurally [13] to

allow many of the codes to be parallelized. Many more constants can be found if the propagator

is allowed to pass constants across procedure boundaries. To do this e�ectively, procedure

cloning[12] is often required. One good example for interprocedural constant propagation is the

code OCEAN, which requires extensive amount of interprocedural constant propagation, along

with some procedure cloning, to parallelize seven of its most important loop nests. These loop

nests together account for 60% of OCEAN's sequential execution time and at least 84% of its
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parallel execution time if they are not parallelized. For example, one important loop in OCEAN

is below. (Loop normalization, induction variable substitution, forward substitution (constant

propagation of symbolics expressions), and dead code elimination was needed to transform the

loop nest into the form below.)

do j = 0, mtrn-1

work(1) = c1 * ac(n + q*j + 1)

do i = 2, m/2, 1

temp1 = ac(p*(2*i - 1) + q*j + 1)

. - ac(p*(2*i - 3) + q*j + 1)

temp1 = c2 * temp1

temp2 = ac(p*(2*i - 2) + q*j + 1)

work(i) = temp1 + temp2

work(m-i+2) = temp1 - temp2

enddo

work(m/2 + 1) = c3

. * ac(p*(2*(m/2) - 1) + q*j + 1)

do i = 1, m, 1

ac(p*(i-1) + q*j + 1) = work(i)

enddo

enddo

Without constant propagation, this loop is unparallelizable because of the index expressions

of array ac are of the form similar to p*i + q*j. Traditional dependence analyses cannot handle

these subscripts because of the non-integer coe�cients, and symbolic, nonlinear expression

data dependence test cannot handle them because the variables p, q, mtrn, and m are not

comparable. The array privatization pass would also have di�culties in proving that array work

is privatizable because the variable m must be evenly divisible by 2 for the entire array to be

de�ned by the loop. However, interprocedural constant propagation can assign integer constant

values to p, q, mtrn, and m. With these constant values, traditional data dependence tests can

prove that there are no cross iteration dependences for array ac, and the array privatizer can

identify the array work as privatizable. Thus, interprocedural constant propagation allows all

loops in the example above to be identi�ed as parallelizable.
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One example of where interprocedural constant propagation of symbolic expressions is

needed is the outermost loops in the two most important loop nests in TRFD, which to-

gether take more than 99% of the code's sequential execution time. Although the inner loops

can be parallelized, the outermost loops must be parallelized to get good speedups from this

program. One of these loop nests, which account for 69% of the code's sequential execution

time, is shown below. (Induction variable substitution, forward substitution, and dead code

elimination was needed to transform the loop nest into the form below.)

...

call olda(x, num, num)

...

subroutine olda(x, num, morb)

do mrs = 1, (num*(num + 1))/2

...

do mi = 1, morb

do mj = 1, mi

xrsij((mi*(mi-1) + mj)/2 + (mrs-1)*((num*(num + 1))/2)) = ...

end do

end do

end do

...

To parallelize this loop nest, one needs to use a nonlinear data dependence test. To prove that

the outermost loop is parallel, the test must prove that the range of all elements spanned by

the inner loops falls within the stride made by the outermost loop. The innermost loops access

(morb*(morb + 1))/2 adjacent array elements while the outermost loop jumps in strides of

(num*(num + 1))/2. Now, with interprocedural constant propagation of symbolic constants,

the nonlinear dependence test would be able to see that num = morb and thus (morb*(morb +

1))/2 = (num*(num + 1))/2 and that the outermost loop is parallel. However, without inter-

procedural constant propagation, it would not be able to determine any relationship between

morb and num and thus wouldn't be able to prove that the range spanned by the inner loops is
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less than or equal to the stride of the outermost loop. Hence, without interprocedural constant

propagation, the outermost loop of this loop nest cannot be identi�ed as parallel.

2.4.2 Guarded constant propagation

In some cases, the control ow of a program must be taken into account to discover some con-

stants. More speci�cally, some variables can take on one of several constant values, dependent

upon the values of one or more boolean variables or expressions. We call such constants as

guarded constants. We have found one code (ARC2D) where �nding guarded constants are

essential for parallelization of an important subroutine (filerx) which takes a small but sig-

ni�cant amount of the code's parallel execution time (10% if outermost loop is not parallelized).

The de�nition of these constants are:

L1 do j = 1, jmax

jplus(j) = j+1

jminu(j) = j-1

enddo

S1 if (.not. peridc) then

jplus(jmax) = jmax

jminu(1) = 1

jlow = 2

jup = jmax-1

else

jplus(jmax) = 1

jminu(1) = jmax

jlow = 1

jup = jmax

endif

And the simpli�ed body of routine filerx is:

L2 do n = 1, 4

L3 do j = jlow, jup

work(j) = ...

enddo

S2 if (.not. peridc) then

work(1) = ...

work(jmax) = work(jmax-1)
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endif

L4 do j = jlow, jup

... = work(jplus(j)) - 2*work(j)

. + work(jminu(j))

enddo

...

enddo

To parallelize the loop L2, the compiler must be able to identify that array work is priva-

tizable. To do this, it must be able to prove that every access of an array element returns a

value generated by a de�nition of that same element in the same iteration. In another words,

the de�nitions of work cover all subsequent uses. By using array range propagation, described

later, the compiler can determine that the values of subscript arrays jplus and jminu range

between the values 1 and jmax. Therefore, it can show that the loop L4 can use any of the

elements in the range work(1:jmax). The compiler can also easily determine that the range

work(jlow:jup) is de�ned from loop L3. However, the compiler cannot prove that the array

work is privatizable because it is unable to determine whether there are any overlaps between

the range de�ned and the range used because it is unable to compare the variables jlow and jup

with 1 or jmax. Additionally, the compiler must ignore the two de�nitions of work in the body of

the if statement S2. However, if control ow is taken into account, it can be seen that jlow and

jup take one of two constant values depending upon the value of the constant boolean peridc.

More speci�cally, jlow = peridc ? 1 : 2 and jup = peridc ? jmax : jmax-1, (borrowing

the ?: expression from the C language). Using this information, the compiler can determine

that the range work(1:jmax) is de�ned at the start of L4. Thus, the de�nitions of work covers

every use in the same iteration and array work can be privatized.

Tu and Padua [43] o�er an e�cient algorithm to propagate guarded constants. We have

also seen several examples in ARC2D, MDG, and QCD where control ow must be taken into

account in array def/use analysis for array privatization if some important arrays is to be
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parallelized. That is, the compiler must be able to identify as privatizable a certain class of

arrays that are conditionally de�ned or that have its de�nitions and uses in separate conditional

statements. For example, the conditional de�nition of work at S2 in the example above must

be taken into account to determine that the entire array is de�ned at the start of L4. Tu and

Padua discuss these di�culties in more detail.

2.5 Symbolic constraint propagation

In our opinion, one of the most useful and general of these techniques that we identi�ed was sym-

bolic constraint propagation. Symbolic constraint propagation is the determination of equalities

and inequalities between program variables (e.g. a < b) at speci�c points in the program unit.

This information can then be used to determine the relationship between two arbitrary expres-

sions. We have found that this ability to determine whether one symbolic expression is less

than another is very useful for a variety of compiler passes.

Constraint propagation can be used for a variety of purposes, including:

� Data dependence analysis

� Array privatization

� Dead code elimination

Constraint propagation is needed by symbolic data dependence analysis for several purposes.

One common need for constraint propagation are queries whether certain variables are non-zero.

For example, in the loop:

do i = 1, 100

S1 a(n * i + c) = ...

end do
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there are no cross-iteration output dependences from S1 to S1 if and only if n 6= 0. Con-

straint propagation can also be very useful at identifying that there is no dependence for array

subscripts containing loop variant variables. The code TRACK has several important loops

that need such an analysis. A greatly simpli�ed version of one of these loops is:

ntrold = lsttrk

do k1 = 1, nm1

do kt = 1, ntrold

S1 if (k1 .ne. ihits(kt)) then ...

end do

if (...) then

lsttrk = lsttrk + 1

S2 ihits(lsttrk) = ...

endif

end do

Current data dependence tests are unable to compare the use of ihits(kt) at statement

S1 with the de�nition of ihits(lsttrk) at statement S2. Therefore, these tests would have to

assume that a dependence exists. However, constraint propagation can determine that lsttrk

> ntrold at S2. With this information, a compiler can determine that there is no dependence

between S1 and S2. Constraint propagation can also be part of the dependence test itself. For

example, Banerjee's Inequalities Test can be extended to work with symbolic expressions with

the additional information calculated by constraint propagation [26].

Constraint propagation can also be used for array privatization. An array privatizer often

needs to determine whether a range of array elements that are de�ned (a(1:m)) covers another

constraint of elements used (a(1:n)). This requires the comparison of the bounds of these

ranges. (e.g. is m � n?). Constraint propagation can improve the accuracy of these tests. One

example for constraint propagation occurs in the code BDNA. This loop, if not parallelized,

would account for 60% of the code's parallel execution time.
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do i = 1, n

do k = 1, i-1

S1 xdt(k) = ...

end do

l = 0

do j = 1, i-1

if (...) then

l = l + 1

S2 ind(l) = j

end if

end do

do j = 1, l

S3 ... = xdt(ind(j))

end do

end do

To identify array xdt as privatizable, the compiler must show that the de�nition of xdt at

S1 covers all uses of xdt at S3. Unfortunately, the presence of the subscript array ind would

prevent the privatizer from determining any relationship between S1 and S3. However, analysis

of the de�nition of ind at S2 can easily determine that ind(1:l) � i-1. By propagating this

relationship to S3, the compiler will be able to determine that the xdt is privatizable.

Constraint propagation can also be used for dead code elimination of conditional state-

ments. Such an extension to dead code elimination has shown to be very useful to handle last

value assignments generated by induction variable substitution. When an induction variable is

eliminated in a loop, it is sometimes desirable to place an assignment of the last value of that

induction variable after the loop. However, because the loop may be a zero-trip loop, (i.e., it

has no iterations), this last assignment must be protected by a conditional statement. This

conditional statement prevents the forward substitution of this last value, and thus hinders

further analysis. However, by using constraint propagation to prove that the loop is not a zero

trip loop, conditional may be eliminated. A good example of this occurs in one of the two

important loop nests in TRFD. This loop has an induction variable (mijkl) in a loop nest that

is nested four deep. The innermost two loops of the nest used wrap-around variables, which
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prevent the elimination of the induction variable from all four nests. However, after peeling

o� the �rst iteration, eliminating the wrap-around variables with forward substitution, and

induction variable recognition, we get the code below.

do mi = 1, morb

do mj = 1, mi

...

do ml = mj, mi

xijkl(mijkl + ml - mj + 1) = ...

end do

if (mj - 1 .le. mi)

S1 mijkl = mijkl + mi - mj + 1

end if

...

do mk = mi + 1, morb

...

do ml = 1, mk

xijkl((mk*mk - mi*mi

. - mi - mk)/2

. + ml + mijkl) = ...

end do

end do

if (mi .le. morb) then

S2 mijkl = mijkl + morb

. + (morb*morb - mi*mi

. - mi - morb)/2

end if

end do

end do

Right now, the conditional statements surrounding the last values for mijkl at S1 and S2

prevent induction variable substitution from eliminating mijkl entirely from the loop. By using

constraint propagation, the compiler can determine that both tests are always true, and can

eliminate the conditionals. Without the conditionals, we can forward substitute the value of

mijkl at S1 into the subsequent uses, then use induction variable recognition to eliminate mijkl

from the entire loop nest, allowing the outermost loop to be parallelized.

There has been some work in the determination of variable constraints. Much work has

been spent in determining the possible range, or interval, of values that variables can take,
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for the purpose of array bounds checking or program veri�cation [31, 11]. These algorithms,

however, only propagate integer ranges. Cousot and Halbwachs [17] o�er a powerful algorithm

for determining symbolic linear constraints between variables. Their algorithm is based upon the

calculation, intersection, and merging of convex polyhedrons in the n-space of variable values.

However, their algorithm cannot handle nonlinear expressions such as a < b � c. Although it is

not too common, we have seen cases where nonlinear bounds must be propagated or nonlinear

expressions must be compared.

We have developed a technique, called Range Propagation, that can compute the symbolic

constraints of variables in a program and use these constraints to compare arbitrary expressions.

Range Propagation can handle constraints containing nonlinear expressions. Chapter 4 will

describe Range Propagation in detail.

2.6 Subscript array analysis

Of all the kinds of symbolic expressions that are di�cult to handle by a dependence test,

expressions containing array references are usually the worst. This is because the compiler

cannot determine any information on the reference pattern of the expression without having

some knowledge of the contents of the array. For example, the compiler cannot determine

what elements of array a are accessed in the expression a(x(i)) without knowing the value of

the subscript array element x(i). Essentially, this problem is similar to the pointer aliasing

problem of other languages, such as C.
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2.6.1 Array constant propagation

In our analysis of the Perfect Benchmarks, we have found that a small but signi�cant fraction

of subscript arrays are constant. That is, they are initialized at the beginning of the program

to values that are simple, easily representable expressions, and are not modi�ed afterwards.

Thus, we can replace these constant array accesses with their values. To our knowledge, there

has not been any previous published work in this area. One example is a loop nest in TRFD

which, if not parallelized, accounts for 25% of the parallel execution time.

L1: do i = 1, num

ia(i) = (i * (i - 1)) / 2

end do

...

L2: do i = 1, num

do j = 1, i

S1: x(ia(i)+j) = ...

end do

end do

Left as is, the loop nest L2 cannot be parallelized because of a potential output dependence

caused by the subscripted subscript ia. However, if we propagate the constant value of array ia,

we would be able to transform the subscript expression ia(i)+j into (i*(i-1))/2 + j. Using

a symbolic nonlinear expression data dependence test and algebraic simpli�cation, the compiler

will be able to prove that there are no output dependences and will be able to parallelize the

loop.

2.6.2 Analysis of subscript arrays

Although array constant propagation is a very desirable method to handle subscript arrays, it

is appliable in only a few cases. However, the compiler may still be able to prove independence

or identify an array is privatizable if it had some additional information about the subscript

arrays. Some useful properties we would like to determine for subscript arrays are:
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� Is the array singly valued?

(x(i) = x(j) if and only if i = j)

� Is the array monotonically increasing/decreasing?

(x(i) � x(j) if and only if i � j) or (x(i) � x(j) if and only if i � j)

� What is the forward di�erence (x(i+ 1)� x(i)) between elements of the array?

� What is the minimum or maximum value of the array elements.

Knowledge whether the array is singly valued or monotonically increasing or decreasing is very

useful for eliminating false dependences [38]. Knowing the forward di�erence between elements

also aids dependence analysis, which will be shown in the example below. The minimum or

maximum value of the array is very useful for array privatization, as shown previously in the

example for the usefulness of constraint propagation in BDNA.

One code that would bene�t greatly with subscript array information is DYFESM. Many

of the important loops in DYFESM are of the form:

do iblock = 1, nblock

do i = 1, iblen(iblock)

... x(pptr(iblock) + i - 1) ...

end do

end do

Now, the array pptr is initialized at the beginning of the program in the following loop:

iptr = 1

do i = 1, nblock

pptr(i) = iptr

iptr = iptr + iblen(i)

end do

A su�ciently powerful compiler should be able to determine that pptr(i+1) - pptr(i)

= iblen(i). Now, if the compiler can determine that the minimum value of the elements of

iblen is greater than zero, the compiler can prove that array pptr is strictly increasing and
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that all loops like the one above is parallelizable. An additional complication is that the value

of the array iblen is dependent on input variables, thus requiring a runtime test to allow the

transformation.

2.7 Generating runtime tests

Sometimes, to prove a loop is parallelizable at compile time is impossible or too expensive.

In these cases, only runtime tests with two version loops can feasibly parallelize them. That

is, suppose that a given loop cannot be parallelized unless a certain condition is true. To

handle this, the compiler inserts a conditional statement that tests this condition. If it is

true, a parallelized version of the loop nest is executed. Otherwise, the program executes the

sequential version.

There are several examples in the Perfect Benchmarks where runtime test can improve the

compiler's e�ectiveness on the parallelization of the codes. The code DYFESM needs runtime

tests to get a signi�cant speedup from it. As described in example in the previous section, the

minimum value of the array iblen needs to be proven to be greater than zero to determine that

many loops do not have cross iteration dependences. Since the value of iblen is dependent

on input variables, only a runtime test can prove this condition. The cost of this runtime test

would be insigni�cant, since iblen is only modi�ed once in the program, and therefore needs

to be tested only once.

Another example of the usefulness of runtime tests can be found ADM and MG3D. Both of

these codes need to simplify an expression of the form (a=b)�b to a to prove some crucial arrays

as privatizable. Unfortunately, the expression a=b is an integer division, so (a=b) � b equals a

only if b is evenly divides a. A simpli�ed version of the o�ending code segment in ADM is shown
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below. The important loop nests that call the routine containing this code segment account for

43% percent of the sequential execution time. In this code fragment, we wish to prove that all

n elements of the array ch are de�ned before used in the loop so that it can be privatized in

these unseen calling loop nests. If not privatized, these loops must be left serial.

na = 0

l1 = 1

do k1 = 1, ifac(2)

ip = ifac(k1+2)

l2 = ip*l1

ido = n/l2

if (na .eq. 0) then

call radbg (ido, ip, l1, c, ch, ...)

else

call radbg (ido, ip, l1, ch, c, ...)

endif

na = 1-na

l1 = l2

enddo

...

subroutine radbg (ido, ip, l1, cc, ch, ...)

dimension cc(ido,ip,l1)

dimension ch(ido,l1,ip)

define (ch(:,:,:))

use (cc(:,:,:))

return

end

Because of the redimensioning of array cc and ch by radbg, we need to prove that the

elements of the three dimensional arrays cc and ch that were accessed in radbg access all

n elements in the caller. This translates to proving that n = ip � ido � l1. With a bit of

aggressive analysis and expression simpli�cation, this can be reduced to proving that n =

(n=
Qk1
i=3 ifac(i)) �

Qk1
i=3 ifac(i). Now, to simplify down the right hand side down to n, we

need to prove that
Qk1
i=3 ifac(i) evenly divides n. This constraint holds for ADM, since the

array ifac is initialized to contain all the factors of n. To prove this at compile time, however,

is complex. The subroutine that initializes ifac is very di�cult to analyze, mainly because
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of unstructured control ow. However, if the compiler assumes that n is evenly divisible by

Qk1
i=3 ifac(i) and inserts a runtime test to verify this assumption, it will be able to simplify the

expression down to n and thus determine ch as privatizable. The cost of this test would be

insigni�cant, since the array ifac is small and the time by the loop is large. The code MG3D

su�ers from a problem almost identical to this example.

2.8 Other techniques

There were a few other important symbolic analysis techniques that were necessary for the

e�ective parallelization of the Perfect Benchmarks. Because of these techniques are computa-

tionally expensive and/or have limited applicability, we do not plan on spending much time on

�nding solutions to these problems. However, we do believe they are worth mentioning.

2.8.1 Compile time interpretation of programs

One important, but potentially expensive technique is the compile time interpretation of pro-

grams. Essentially, the idea is to execute the program without input data. Or in another words,

to perform abstract interpretation [16] where the abstractions in the algorithm are kept to a

minimum. One example that needs such an analysis is the determination that an array is �lled

with the factors of some scalar, as described in the example for ADM in Section 2.7. Another

example occurs in QCD, where much of the code cannot be parallelized unless the control ow

of a speci�c routine can be determined. A simpli�ed version of this routine is shown below:

subroutine syslop (ptr, nn, ...)

integer ptr(*), nn

nn = 1

do while (ptr(nn) .ne. 14)

select case (ptr(nn))

case (1:4)
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ind = ptr(nn)

...

case (5:8)

ind = ptr(nn) - 4

...

case (15:18)

ind = ptr(nn) - 14

...

...

end select

nn = nn + 1

end do

...

return

end

Each case in the case statement above makes modi�cations to several important arrays

that are not shown. The scalar ind is used for indexing for some of these arrays. Hence, to

determine exactly how these arrays are being modi�ed, exact knowledge of what cases are taken

is needed. However, this requires exact knowledge of the contents of the array ptr. (In a way,

the array ptr can be seen as an instruction stream that this routine interprets to determine

what operations it should perform on other inputs.) In some cases, the passed in value of ptr

is constant. For these cases, the compiler can \run" this routine to determine the sequence

of operations to perform on the other arrays. In other cases, ptr is not constant. However,

compile time interpretation may still work since the calculated values of the elements of ptr

are simple enough to summarize at compile time. For example, ptr may have r1 elements of

value 5+dir, then r2 elements of value 1+dir, then the value 14.

2.8.2 Algorithm recognition

Another expensive technique required by some codes is algorithm recognition. Basically, the

compiler needs to be able to recognize that a given code fragment implements a certain algorithm

so that it may replace it with a parallel version. Algorithm recognition and replacement can be
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feasible if the code fragments are small and relatively simple. For example, some commercial

parallelizing compilers can replace matrix multiplies or recurrences with library calls. However,

when the algorithms to be replaced are longer and more complicated, performing algorithm

recognition becomes impractical.

We have seen two examples in the Perfect Benchmarks where the recognition of moderately

complex algorithms were required to fully exploit the parallelism in these codes. In QCD, a

loop nest that took 50% of the serial execution time could not be parallelized because of calls

to a random number generator. If this subroutine can be recognized as a random number

generator, some actions can be taken to handle these dependencies. For example, the random

number generator can be replaced by a parallel version or surrounded by locks. Although this

would cause the results of the parallel loop to di�er from the results of the serial loop, the results

should still be valid. To legally perform this optimization, however, some sort of user interaction

would still be required to guarantee its validity. For another code, SPEC77, a major loop nest

is prevented from being parallelized by a called subroutine that performs a linear search in

a sorted array. This subroutine was optimized by the programmer to start its search at the

element it found on its last call. Unfortunately, this optimization creates a dependence between

calls to this subroutine. So, to parallelize the loop that calls this subroutine, the compiler

must recognize that this subroutine uses a linear search in a sorted array, and replace it with a

side-e�ect-free search algorithm.

2.9 Summary

A summary of the techniques required to parallelize the Perfect Benchmarks and their impor-

tance is shown in Table 2.1. A number in a cell for a speci�c code and technique is the estimated
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Nonlinear Inter. Guard. Con- Const. Run Compile Auto-
Code Depend. Const. Const. straint Array Array Time Time Alg. Matable

Anal. Prop. Prop. Prop. Prop. Anal. Tests Interp. Recog. Speedup

ADM 1.1 3.3 1.8 4.32 4.32 7.8
ARC2D 1.1 1.1 1.1 1.1 1.5
BDNA 2.1 2.1 4.1
DYFESM 3.6 3.1 3.6 3.6 3.9
FLO52 1.7
MDG 1.2 18.5 1.2 20.3
MG3D 36.9 36.9 36.9 36.92 36.92 36.9
QCD 11.3 19.0 19.0 19.0 19.0 11.4 19.1
OCEAN 8.3 11.5 8.3 1.5 12.2
SPEC77 2.4 6.4
TRACK 2.9 3.3 5.3
TRFD 18.2 18.2 18.2 1.4 18.2

Table 2.1: Estimated amount of slowdown on Cedar from manually parallelized codes if a
speci�c symbolic analysis technique could not be used.

slowdown incurred from the performance of the manually parallelized code if the technique could

not be used. That is, the slowdown equals te=ta, where te is the estimated time taken with the

technique disabled and ta is the time taken by the manually parallelized version. The value te

was calculated by assuming that all important loop nests1 that use the given technique could

not apply the transformations that allowed the faster execution times for the nest. That is,

such nests will have a execution time equal to the time taken by the automatically parallelized

version of the loop nest, as generated by Kap/Cedar, which is based upon the 1988 version of

the commercial parallelizing compiler named Kap. Other important loop nests, which didn't

use the technique, have an execution time equal to the manually parallelized version's. An

empty cell indicates that no important loops use the given technique. The last column in the

table, Automatable speedups, displays the speedup from the automatically parallelized codes to

the manually parallelized codes using only techniques that could be implemented in a compiler,

which is the ratio of the two bars in Figure 1.2.

1We consider a loop nest as important if its parallelization may signi�cantly a�ect the speedup of the entire
program.
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One caveat to Table 2.1 is that the techniques are not orthogonal. First, some techniques are

dependent upon information provided by others. For example, symbolic nonlinear expression

data dependence tests almost always needs the information provided by constraint propagation

so that it can e�ectively compare expressions. Secondly, some important loop nests can be

parallelized by either using one symbolic analysis technique or another. The only examples

that su�ers from this problem in Table 2.1 are the runtime test and compile time interpretion

techniques for ADM and MG3D. For these slowdowns, either of the two techniques can be used

to parallelize the important loop(s). These numbers correspond to the problem of determining

whether b evenly divides a in the integer expression (a=b) � b, as described in Section 2.7.

2.10 Conclusions

We have shown that current commercial parallelizing compilers do poorly on real codes. We

have also shown that a compiler can theoretically achieve good speedups for these codes. From

this, we deduced that there is signi�cant room for improvement of parallelizing compilers. We

then examined the codes to determine what symbolic analysis techniques are required to get

these good speedups. The techniques that we identi�ed ranged from minor extensions to current

techniques to complex and expensive transformations. The most interesting of these techniques

were: symbolic, nonlinear expression data dependence tests, constraint propagation, guarded

constant propagation, constant array propagation, subscript array analysis, and the generation

of run time tests.

We have implemented some of these techniques within the Polaris parallelizing compiler [39],

which is being developed at the University of Illinois. More speci�cally, we have implemented

2For ADM and MG3D the given slowdown is incurred only if neither runtime tests nor compile time tests can
be used.
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an interprocedural constant propagator with procedure cloning, a symbolic, nonlinear depen-

dence test called the Range Test, and a symbolic variable constraint propagator called Range

Propagation. The rest of this dissertation will discuss the implementations of the Range Test

and Range Propagation.

We believe that the symbolic analysis techniques that we have identi�ed, along with other

powerful techniques such as interprocedural analysis, array privatization, improved handling of

induction variables, and reduction parallelization, can signi�cantly improve the e�ectiveness of

parallelizing compilers on real codes. Our implementations of interprocedural constant propa-

gation, the Range Test and Range Propagation supports this. For example, Polaris, with these

techniques, was able to identify all the parallel loops for all the examples in Section 2.3. The

resulting performance of Polaris is shown in Figure 1.3.

We also believe that some of these symbolic analysis techniques will be bene�cial for op-

timizing compilers for superscalar or VLIW processors. For example, these compilers would

bene�t from a more accurate dependence analysis when they perform code scheduling, since

having fewer dependences gives them greater freedom to move code. Another example is to

use constraint propagation to eliminate redundant conditional jumps, which should improve

performance since conditional jumps may cause the processor's pipeline to stall.
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Chapter 3

THE RANGE TEST

3.1 Open issues in data dependence testing

There has been much research in the area of data dependence analysis [3, 25, 37, 42, 50].

Modern day data dependence tests have become very accurate and e�cient. However, most of

these tests require the loop bounds and array subscripts to be represented as a linear (a�ne)

function of loop index variables. That is, the expressions must be in the form c0 +
Pn

j=1 cjij

where cj are integer constants and ij are loop index variables. Expressions not of this form are

called nonlinear.

Because nonlinear expressions prevent the application of dependence tests, parallelizing

compilers perform several analyses and optimizations to eliminate nonlinear expressions. For

example, constant propagation and induction variable substitution are used to remove loop-

variant variables. Other techniques have also been developed to handle additive, loop-invariant,

symbolic terms or to eliminate unwanted operations such as divisions [25, 37, 42].
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L1 : DO i1 = P1; Q1; R1

� � � � � �
Ln : DO in = Pn; Qn; Rn

S1 : A(f(i1; : : : ; in)) = � � �
S2 : � � � = A(g(i1; : : : ; in))

ENDDO

� � �
ENDDO

Figure 3.1: Model of loop nest for dependence testing.

Unfortunately, not all nonlinear expressions can be removed. Because of this, we developed

the Range Test, a dependence test that can handle symbolic, nonlinear array subscripts and loop

bounds. In the Range Test, we mark a loop as parallel if we can prove that the range of elements

accessed by an iteration of that loop do not overlap with the range of elements accessed by other

iterations. We prove this by determining whether certain symbolic inequality relationships hold.

Powerful variable constraint propagation and symbolic simpli�cation techniques were developed

to determine such inequality relationships. To maximize the number of loops found parallel

using the Range Test, we examine the loops in the loop nest in a permuted order.

3.2 Data dependence

In this section we will give a brief de�nition of data dependences. For a more thorough descrip-

tion of data dependence and dependence analysis, see Banerjee et al [5, 3, 50].

To ease the presentation of the Range Test, we will assume that we have a perfectly nested

FORTRAN-77 loop nest as shown in Figure 3.1. We will also assume that the tested array

A has only one dimension. The array access functions (f and g), the loop's lower and upper

bounds (Pi and Qi), and the loop's stride (Ri) may be arbitrary symbolic expressions made

up of loop-invariant variables and loop indices (i.e. ix) of enclosing loops. We will also assume
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that all loop strides (Ri) are positive. It is not di�cult to extend our test to handle imperfectly

nested loops, negative strides, multidimensional arrays, and loop-variant variables. In fact,

our implementation includes these extensions. Section 3.5 will describe how to make these

extensions.

3.2.1 Data dependence

We de�ne an index subspace Rj , where 1 � j � n, to be the set of all loop index vectors

(�1; : : : ; �j) that fall within loop bounds of the outermost j loops. More formally,

Rj = f(�1; : : : ; �j) : P1 � �1 � Q1; : : : ; Pj � �j � Qj ;

(�1 � P1) mod R1 = 0; : : : ; (�j � Pj) mod Rj = 0g

The conditions (�i � Pi) mod Ri = 0 are required to make sure that each �i can only take on

values that are some multiple of the loop's stride from the loop's initial value. The index space

R is de�ned to be equal to the index subspace Rn.

A data dependence exists between array accesses A(f(~�)) and A(g(~�)) if and only if at least

one of the two accesses is a write, f(~�) = g(~�), and ~�; ~� 2 R.

3.2.2 Direction vectors

Suppose that a dependence exists between A(f(~�)) and A(g(~�)). Then, the direction vector

~d = (d1; : : : ; dn) for this dependence is de�ned as:

di =

8>>>>>>><
>>>>>>>:

< if �i < �i

= if �i = �i

> if �i > �i
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(This de�nition of direction vector is true only for loops with positive strides. For a loop Li

with a negative stride, the < and > cases of de�nition of di are swapped.) Since there may be

more than one pair of integer vectors ~� and ~� that satisfy the dependence equation, there may

be more than one direction vector between the statements S1 and S2.

A dependence is carried by loop Li (or loop at level i) if and only if there exists a dependence

vector ~d where d1 = `=', : : : , di�1 = `=' and di = `<'. If a loop does not carry any dependences,

then that loop may be run in parallel without synchronization.

3.3 The Range Test

The Range Test grew out of a simple observation in our hand analysis of real programs: most

parallel loop iterations access adjacent array ranges. These ranges can be very regular (e.g.,

an inner loop accesses a �xed-length array section and the outer loop strides over this section),

they can be increasing or decreasing (e.g., if the two loops are triangular); or, they can be

irregular (e.g., if they represent array sections that are carved out of a large array; start and

length of the sections are typically stored in index arrays)1. With one additional observation

we can describe the majority of all access patterns: the loops visiting these ranges may be

interchanged, such that the access patterns appear \interleaved". Now, if we managed to prove

that such adjacent array ranges do not overlap { possibly \looking through interchanged loops"

{ we could tell that the loops are parallel. The following section describes such a test formally.

1The Range Test does not yet handle such subscripted subscript patterns (e.g., A(X(i)))
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3.3.1 Disproving dependence between symbolic expressions

Essentially, the Range Test disproves carried dependences between A(f(~{)) and A(g(~{ 0)) for

a loop at level j, by proving that the range of elements taken by f and g do not overlap

for adjacent iterations of the loop at level j. It determines whether these ranges overlap by

comparing the minimum and maximum values of these ranges. The formal de�nition of these

minimum and maximum values are de�ned below. Section 3.3.4 describes how to compute these

minimum and maximum values

De�nition 1 Let fmin
j (i1; : : : ; ij) and fmax

j (i1; : : : ; ij) be functions that obey the following con-

straints:

fmin
j (i1; : : : ; ij) � min

n
f(~{ 0) :~{ 0 2 R; i01 = i1; : : : ; i

0
j = ij

o

fmax
j (i1; : : : ; ij) � max

n
f(~{ 0) :~{ 0 2 R; i01 = i1; : : : ; i

0
j = ij

o

Intuitively, fmin
j (i1; : : : ; ij) and fmax

j (i1; : : : ; ij) are functions that return the minimum and

maximum values that f may take for a particular iteration of the outermost j loops. In our

implementation of the Range Test, these functions are represented as symbolic expressions made

up of loop indices i1; : : : ; ij and loop-invariant variables.

The ability to determine the minimum or maximum of f or g in respect to some set of loops

leads us to our �rst dependence test. If the maximum of f is less than the minimum of g in

respect to some subset of loops, then these loops cannot carry any dependences. The theorem

below states this formally.

Theorem 1 If fmax
j (i1; : : : ; ij) < gmin

j (i1; : : : ; ij) for all (i1; : : : ; ij) 2 Rj, then there can be no

dependences between A(f(~{)) and A(g(~{ 0)) with a direction vector ~d of the form d1 = `=', : : : ,

dj = `='.
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Proof. Suppose that such a dependence exists, (i.e., f(~{) = g(~{ 0) with direction vector ~d).

By De�nition 1, we have f(~{) � fmax
j (i1; : : : ; ij) and gmin

j (i01; : : : ; i
0
j) � g(~{ 0). Because of the

direction vector ~d, gmin
j (i01; : : : ; i

0
j) = gmin

j (i1; : : : ; ij). Since fmax
j (i1; : : : ; ij) < gmin

j (i1; : : : ; ij),

it must hold that f(~{) < g(~{ 0). Contradiction. 2

Theorem 1 currently can only disprove dependences, with direction vectors of the form

(=; : : : ;=; �; : : : ; �). With a small modi�cation, it can be enhanced to disprove direction vectors

of the form (=; : : : ;=; <; �; : : : ; �). That is, a direction vector ~d of the form d1 = `=', : : : ,

dj = `=' and dj+1 = '<'. This can be done by tightening the bounds on index ij+1 to be

Pj+1 � ij+1 � Qj+1�Rj+1 when computing fmax
j (i1; : : : ; ij) and tightening the bounds on i0j+1

to be Pj+1 +Rj+1 � i0j+1 � Qj+1 when computing gmin
j (i1; : : : ; ij). Remember that we assume

that the loop stride Rj+1 is positive. Such an optimization is useful for disproving loop-carried

dependences for ranges of array accesses that do not overlap except for the very �rst or very

last iteration of the loop. In our experience, such ranges do occur in real programs.

Theorem 1 proves that there are no carried dependences between A(f(~{)) and A(g(~{ 0)) for

loops with indices ij+1; : : : ; in, if the range of possible values taken by f for these loops does not

overlap with the range of possible values taken by g. However, it cannot prove that there are

no carried dependences for a certain loop if the possible values taken by f and g are interleaved

for that loop. Figure 3.2 shows some examples of how array accesses can be interleaved for

a particular loop nest. We have found such examples do occur often in practice. All these

examples assume that we have a loop nest of the form

L1 : DO i = 0; n� 1
L2 : DO j = 0; n� 1
S1 : A(f(i; j)) = � � �
S2 : � � � = A(g(i; j))

ENDDO

ENDDO
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a)  f(i,  j) = i,    g(i,  j) = i + n

f(*, *) g(*, *)

0 n 2n

f(0, *) g(0, *) g(1, *) g(2, *)f(1, *) f(2, *)

b)  f(i,  j) = 2∗ n∗ i + j,    g(i,  j) = 2∗ n∗ i + j + n

0 n 2n 3n 4n 5n 6n

c)  f(i,  j) = 2*i + 2∗ n∗ j,    g(i,  j) = 2*i + 2∗ n∗ j + 1

0 2n 4n 6n

f(0, 1) f(1, 1)g(0, 1) g(1, 1)

Figure 3.2: Examples of how array accesses can be interleaved in respect to a particular loop
(loop with index i for these examples.) All examples assume that 0 � i; j < n.
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and that the Range Test is currently attempting to prove that S1 and S2 do not carry depen-

dences for loop L1. For �gure 3.2a, the range of accesses made by A(f(i; j)) and A(g(i; j)) never

overlap, so Theorem 1 can prove that loop L1 does not carry a dependence for this access pair.

However, the set of accesses made by A(f(i; j)) and A(g(i; j)) are interleaved in �gures 3.2b

and 3.2c, causing the test from Theorem 1 to fail, even though there isn't a carried dependence.

We will present a second dependence test that can disprove carried dependences for a special

case of these interleavings, where the possible values taken by f and g for a single iteration are

not interleaved with the possible values taken by other iterations of f and g. Figure 3.2b shows

an example of this case. However, before we describe this test, we must de�ne the property of

monotonicity for a particular loop index. (We will deal with Figure 3.2c in Section 3.3.2.)

De�nition 2 A function f(~{) is mono-

tonically non-decreasing for index ij i� f(i1; : : : ; �j; : : : ; in) � f(i1; : : : ; �j; : : : ; in) whenever

Pj � �j � �j � Qj.

Similarly, a function f(~{) is mono-

tonically non-increasing for index ij i� f(i1; : : : ; �j; : : : ; in) � f(i1; : : : ; �j; : : : ; in) whenever

Pj � �j � �j � Qj.

We can prove whether an expression is monotonically non-decreasing for a loop level j by

proving that the di�erence f(i1; : : : ; ij + 1; : : : ; in)� f(i1; : : : ; ij; : : : ; in) is always greater than

or equal to zero, using the techniques described in Section 3.4. Similarly, we can prove whether

an expression is monotonically non-increasing for a loop level j by proving that the di�erence

is always less than or equal to zero.
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Using this de�nition, we will now show how one can disprove dependences carried at level j

when the possible values taken by f and g are not interleaved for a single iteration of the loop

at level j.

Theorem 2 If gmin
j (i1; : : : ; ij) is monotonically non-decreasing for ij and if fmax

j (i1; : : : ; ij) <

gmin
j (i1; : : : ; ij + Rj) forall (i1; : : : ; ij) 2 Rj and for Pj � ij � Qj � Rj, then there can be no

dependences from A(f(~{)) to A(g(~{ 0)) with a direction vector ~d of the form d1 = `=', : : : , dj�1 =

`=', dj = `<'.

Proof. Suppose that such a dependence exists, (i.e., f(~{) = g(~{ 0) with direction vector

~d). By De�nition 1, we have f(~{) � fmax
j (i1; : : : ; ij) and gmin

j (i01; : : : ; i
0
j) � g(~{ 0). Because of

the direction vector ~d and because gmin
j (i1; : : : ; ij) is monotonically non-decreasing for index ij ,

gmin
j (i01; : : : ; i

0
j) � gmin

j (i1; : : : ; ij+Rj). (Remember that we assumed thatRj is always positive.)

Since fmax
j (i1; : : : ; ij) < gmin

j (i1; : : : ; ij +Rj), it must hold that f(~{) < g(~{ 0). Contradiction. 2

Theorem 3 If gmin
j (i1; : : : ; ij) is monotonically non-increasing for ij and if fmax

j (i1; : : : ; ij) <

gmin
j (i1; : : : ; ij � Rj), forall (i1; : : : ; ij) 2 Rj and for Pj + Rj � ij � Qj , then there can be no

dependences from A(g(~{ 0)) to A(f(~{)) with a direction vector ~d of the form d1 = `=', : : : , dj�1 =

`=', dj = `<'.

Proof. Similar to proof of Theorem 2.

By de�nition of loop-carried dependences, the test from Theorem 2 (or Theorem 3) must

be applied twice to prove that a pair of access functions f and g do not carry dependences for

the loop with index ij: once to disprove a dependence with direction vector ~d from f to g, and

once to disprove a dependence with direction vector ~d from g to f . Also note that the tests

from these two theorems can disprove a dependence direction ~d from f to g and from g to f ,
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and thus disprove that the loop with index ij does not carry a dependence, only if both f and

g are monotonically non-decreasing or monotonically non-increasing for ij .

In the previous de�nitions and theorems, we have assumed that the subset of loops that we

are attempting to disprove dependence for are the innermost loops with indices ij to in. With

some minor changes in notation, these de�nitions and theorems still hold for arbitrary subsets

of loops. The following subsection will exploit this property.

3.3.2 Permuting loops for dependence testing

As described earlier, the test from Theorem 1 can be used to prove independence when the

values of access functions f and g are not interleaved, and the tests from Theorems 2 and 3 can

be used to prove independence when the values of f and g are interleaved, but the values taken

by f and g for a loop iteration are not interleaved with values taken by other iterations. For

more complex interleavings, the tests from all three Theorems would fail. Figure 3.2c gives an

example of one of these more complex interleavings. Fortunately, we have observed that most

of these interleavings can be eliminated by permuting the order in which we test the loops.

For example, if loop L1, with index i, and loop L2, with index j were \swapped" so that L2 is

now treated as the outermost loop, we would be able to use Theorem 1 to prove that there are

no carried dependences in the \inner" L1 loop, and use Theorem 2 to prove that there are no

carried dependences in the \outer" L2 loop.

So, the Range Test attempts to maximize the number of loops that it can identify as not

carrying dependences by applying its tests upon a permuted ordering of the loops in the loop

nest. The Range Test does not physically permute the loops; it is done logically and temporarily

by the test. Also, the Range Test only tries those permutations such that all loops identi�ed as

48



not carrying any dependences for the permuted loop nest will also not carry any dependences

in the original nest.

The Range Test uses a heuristic to �nd a valid logical permutation of a loop nest, which

seems to be quite acceptable in practice. This heuristic determines a valid permutation of a

loop nest by recursively �nding a valid permutation of the inner loops of the loop nest, then

�nding a location where it may safely insert the outermost loop in this permutation. The �nal

location of the outermost loop is found by repeatedly moving inwards by one until it reaches

a location where it can be proven that it carries no dependences, or the loop just inside this

location either carries a dependence or would carry a dependence if outermost loop was inserted

inside of it.

To prove that all loops not carrying dependences in the permuted loop nest generated by

the heuristic above also do not carry dependences in the original loop nest, we will need the

following lemma. For similar lemmas and theorems on loop permutations, see the paper by

Banerjee [4].

Lemma 1 A loop that does not carry a dependence can be legally moved deeper into the loop

nest and all loops that didn't carry a dependence beforehand would still not do so.

Proof. Suppose that Lemma 1 is false. Let the loop at level i (Li) be the loop that was

moved deeper into the loop nest to level k > i. Now, since some loop carries a dependence

where it did not do so beforehand, and since a loop carries a dependence only if there exists

a dependence direction vector for which it carries a dependence, there must exist at least one

direction vector ~d for the loop nest that carries a dependence for some loop that it did not do

so beforehand. Now, since moving loop Li deeper just permutes the directions in a direction

vector, the original value of direction vector ~d must have also have carried a dependence for
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some loop at level j 6= i (Lj). Thus, moving loop Li deeper in the loop nest must have modi�ed

direction vector ~d in such a fashion that, although it once carried a dependence at loop Lj , it

now carries a dependence for some other loop. By de�nition of carried dependences, d1 = `=',

: : : , dj�1 = `=', and dj = `<', for the original direction vector. Now, since Li did not carry a

dependence in the original loop nest, i > j or di = `='. Now, if di = `=', then no matter where

Li is moved, loop Lj would still carry a dependence. On the other hand, if di 6= `=', then the

new level k of Li is still larger than j, since k > i > j. Thus ~d would still carry a dependence

for Lj . Contradiction. 2

We will prove that the heuristic generates a legal permutation by induction. For the base

case, where the loop nest is a single loop, the permutation is trivially legal. For the inductive

step, assume that the heuristic generates legal permutations for loop nests of i loops. For a

nest of i+ 1 loops, the heuristic �rst recursively �nds a permutation of the innermost i loops,

then �nds a location for the (i+ 1)th loop in this permutation. By the inductive hypothesis,

the recursive �rst step results in a legal permutation. For the second step, which moves the

(i+1)th loop inwards, all loops between the original and �nal positions of the (i+1)th loop do

not carry dependences, by de�nition of the heuristic. Thus, we can undo this second step by

moving all these loops back inside the (i+ 1)th loop; and, by Lemma 1, all loops not carrying

dependences still do not so. Therefore, the heuristic generates a legal permutation for a nest of

i+ 1 loops.

3.3.3 Algorithm

The algorithm for the Range Test, which implements the permutation heuristic described pre-

viously, is displayed in Figure 3.3. It generates the permuted loop nest, represented by the
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ordered list P , by visiting each loop Li in the original loop nest, from innermost to outer-

most, and �nding its proper location in the set of inner permuted loops P . Simultaneously,

the algorithm determines whether each Li carries any dependences. Loops proven not to carry

dependences are added to the set D. The outer for loop visits each loop Li while the inner

while loop determines whether the current Li carries any dependence and where to insert it in

the list of permuted inner loops P . Statement S1 tests if Li does not carry a dependence at a

particular location in P . If it doesn't carry a dependence, it is added to the set of parallel loops

D and inserted into P at this location. Statement S2 tests if it is legal to move the current

location of loop Li in P inward by one. If not, it is inserted into P at this location. (It is

not legal to move the current location of Li in P inwards by one if the current location is the

innermost location in P , if the next inner loop in P carries a dependence, or if the next inner

loop in P would become carry a dependence should Li be inserted inside of it.) Statement S3

performs the actual insertion of Li into P .

Functions RTEST1 and RTEST2 are displayed in Figure 3.4. Function RTEST1, which

applies Theorem 1, returns true if and only if it can prove that the loops in L do not carry

any dependences for access functions f and g. Function RTEST2, which calls RTEST2x that

implements Theorems 2 and 3, returns true if and only if it can prove that loop Lj carries no

dependences for access functions f and g and the inner permuted loops L. The functions MIN

and MAX represent the fmin
j and the gmax

j functions described earlier. (The expression fmax
j ,

used in Section 3.3, can be computed by calling MAX(f; fLj+1; : : : ; Lng). The expression fmin
j

is similar.) The function MAX(f;L) returns the maximum value that function f can take

for the indices of the loops in L. This maximum value is a symbolic expression made up of

51



Input: Normalized, perfectly nested loops (L1; : : : ; Ln) and array access functions f and g.
Output: Set of loops D that do not have carried dependences between f and g.
P  () (� P is an ordered list representing the permuted loop nest �)
D ;
for i n downto 1 do
placed  false

j  0
while not placed do
j  j + 1

S1 : if RTEST1(f; g;
n
Li; Pj ; : : : ; PjP j

o
) or RTEST2(f; g; Li;

n
Pj ; : : : ; PjP j

o
) then

(� Loop Li does not carry dependences at this point. �)
D  D [ fLig
placed  true

S2 : else if j = jP j+ 1 or Pj 62 D or not RTEST2(f; g; Pj;
n
Li; Pj+1; : : : ; PjP j

o
) then

(� Loop Li cannot be safely permuted any deeper. �)
placed  true

end if

end while

S3 : P  (P1; : : : ; Pj�1; Li; Pj; : : : ; PjP j)
end for

Figure 3.3: The Range Test algorithm.

loop-invariant variables and indices of loops not in L. The function MIN is similar. The

implementations of MIN and MAX will be described in the next subsection.

3.3.4 Computing fmin
j and fmax

j

There are several methods in which one can compute the minimum or maximum of an expression

for a subset of loop indices. One simple but powerful method is to substitute the lower or upper

bound of each index, depending on the index's monotonicity. Figure 3.5 shows how the Range

Test computes the maximum of an expression for a given set of loops. The algorithm for

computing the minimum is very similar; simply switch the monotonically non-decreasing and

monotonically non-increasing cases. It can be proven that the result of these functions meets

De�nition 1; that is, they are the minimum or maximum of f in the subspace spanned by

indices ij+1, : : : , in.
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boolean function RTEST1(f; g;L)
(� Apply Theorem 1 �)

R1 : return MAX(f;L) < MIN(g;L)
R2 : or MAX(g;L) < MIN(f;L)

end function

boolean function RTEST2(f; g; Lj;L)
return f and g are both mono. non-decreasing or mono. non-increasing for Lj

R3 : and RTEST2x(f; g; Lj;L)
R4 : and RTEST2x(g; f; Lj;L)

end function

boolean function RTEST2x(f; g; Lj;L)
(� Apply Theorem 2 or 3 �)
s MAX(f;L)
t MIN(g;L)
if t is mono. non-decreasing for Lj then
t t with ij substituted by ij + Rj

else

t t with ij substituted by ij � Rj

endif

return (s < t)
end function

Figure 3.4: Algorithm for disproving carried dependences for loop Lj in respect to loops L.
Loop Lj is assumed to have index ij . The word monotonically has been abbreviated to \mono".

Although the algorithm for computing the maximum in Figure 3.5 is powerful, a naive

implementation of it, which computes the monotonicity of the intermediate maximum expres-

sion y for each index, can be ine�cient. This is because each monotonicity computation for

y requires a symbolic expression comparison, which can be quite expensive. To avoid these

costs, the Range Test attempts to determine the monotonicity states of y from the precom-

puted monotonicity states of the input access expression f and the the loop bounds. (The

monotonicity states of all array accesses f and all loop bounds are computed only once, at the

beginning of dependence testing of the program.) More speci�cally, the Range Test initially

sets the monotonicity states of y to the monotonicity states of f , then update y's monotonicity
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expression function MAX(f;L)
y  f
for each Lk 2 L from innermost to outermost loops do
if y is mono. non-decreasing for ik then
y  y with ik substituted with Qk

else if y is mono. non-increasing for ik then
y  y with ik substituted with Pk

else

y  +1
end if

end for

return y
end function

Figure 3.5: Algorithm for calculating the maximum value of function f for �xed values of
indices ij of loops Lj , where Lj 62 L.

states after each substitution, using the monotonicity states of the substituted loop bound. For

those cases where the Range Test couldn't determine the new monotonicity of y for index i

from the old monotonicity of y for i and the monotonicity of the substituted loop bound for i,

it marks the monotonicity of y for i as unknown. Later, when it �nds the monotonicity of y

for i to be marked as unknown when it is substituting for i, it computes the monotonicity for

i using an expensive symbolic expression comparison. We have found this optimization to be

very e�ective in practice. For many array accesses, the monotonicity states of y never need to

be computed with symbolic comparisons.

3.3.5 Time complexity

Since the Range Test spends nearly all of its time performing symbolic expression comparisons,

its time complexity can be characterized by the number of symbolic comparisons performed.

These comparisons occur explicitly in the functions RTEST1 and RTEST2X and implic-

itly in the monotonicity tests ofMIN and MAX. Since the Range Test may call RTEST1 and

RTEST2 as many as O(n2) times, where n is the loop nest depth, and RTEST1 and RTEST2
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call MIN and MAX, which performs at most O(n) symbolic comparisons to determine mono-

tonicity for each index, the Range Test performs at most O(n3) symbolic comparisons for one

pair of array accesses (A(f(~{)) and A(g(~{ 0))). In practice, only a few permutations are examined

and at most a constant number of symbolic comparisons are done by the monotonicity tests of

MIN and MAX. So, the average number of symbolic comparisons done by the the Range Test

is near O(n).

Unfortunately, determining the costs of symbolic expression comparison is much more dif-

�cult. The worst case performance of symbolic comparisons is exponential on the size of the

expressions compared and upon the number of variables in the program. However, the average

case performance is much better.

3.4 Symbolic range propagation

To provide a facility for comparing symbolic expressions, we have developed a technique called

Range Propagation. Range Propagation will be described in detail in Chapter 4. However, since

the Range Test is built on top of the expression comparison facilities of Range Propagation, we

will give a brief sketch of Range Propagation in this section.

Range Propagation consists of two parts: the range propagation algorithm and an expres-

sion comparison facility. The range propagation algorithm collects and propagates variable

constraints through a program. The expression comparison facility uses these variable con-

straints to determine arithmetic relationships between two symbolic expressions.

The range propagation algorithm centers on the collection and propagation of symbolic

lower and upper bounds on variables, called ranges, through a program unit. Abstract inter-

pretation [16] is used to compute the ranges for variables at each point of a program unit. That
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is, the algorithm \executes" the program by following the control ow paths of the program,

updating the current ranges to reect the side e�ects of the statements encountered along these

paths, until a �xed point is reached.

We compare two expressions by calculating the integer range spanned by their di�erence,

then determining whether this range is always positive or always negative. This integer range

is calculated by repeatedly substituting ranges for variables in the di�erence expression then

simplifying the expression down, until all variables are eliminated.

For example, suppose we wish to compare x � y + 1 with y, where x = [y : 10], (meaning

y � x � 10), and y = [1 :1]. First, we calculate the di�erence, which is x�y�y+1. Then, we

substitute [y : 10] for x in x � y � y + 1, getting [y : 10] � y � y + 1. Simplifying this expression

down, we get the range [y � (y � 1) + 1 : 9 � y + 1]. Since the simpli�ed range still contains

variables, we substitute [1 :1] for y, getting [[1 :1] � ([1 :1]� 1) + 1 : 9 � [1 :1] + 1]. After

simpli�cation, this becomes [1 :1]. From this range, we can now see that x � y + 1 > y.

3.5 Generalizing the Range Test

In our description of the Range Test, we made some assumptions on the form of loop-nests to

ease its presentation. More speci�cally, we assumed that all array accesses are one-dimensional,

loops have a positive stride, none of the array accesses nor loop bounds contain loop-variant

variables that are not loop indices, and that the enclosing loops between the two accesses

being tested are perfectly nested. In this section, we will describe how one can remove these

assumptions.
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3.5.1 Multidimensional arrays

We handle multidimensional arrays simply by applying the Range Test to each dimension of

the array subscript, then intersecting all the sets of loops that we found to carry dependences.

3.5.2 Negative strides

In our presentation of the Range Test, we assumed that all loop strides are always positive. For

always negative strides, we use a modi�cation of Theorems 2 and 3 and functions MIN and

MAX to disprove dependences.

The only modi�cations that need to be made to functions MIN and MAX functions is to

swap the substitutions of Pk with the substitutions of Qk when loop Lk has an always negative

stride, (see Figure 3.5). The bounds must be swapped simply because when loop Lk has a

negative stride, Pk would be larger than Qk .

For the Theorems 2 and 3, one just needs to swap the terms \monotonically non-decreasing"

and \monotonically non-increasing" in the theorems when loop Lj has an always negative stride.

This swapping of terms is required because of the de�nition of direction vectors for loops with

negative strides. That is, a dependence with a dependence direction dj = `<', where loop Lj

has a negative stride, means that there is a dependence between two iterations ij and i0j of Lj ,

where ij > i0j . To ensure that the theorems stay correct, (see the proof of Theorem 2), one

must invert the monotonicity condition on gmin
j (i1; : : : ; ij) for index ij .

For strides that cannot be proven to be always positive or always negative, our implemen-

tation fails and marks the loops with these strides as loops that carry dependences.
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3.5.3 Loop-variant variables

Handling loop-variant variables in expressions is not di�cult. Loop variant variables are vari-

ables whose value may change within a loop and that are not a loop index for an enclosing

loop. One just needs to modify functions MIN and MAX to eliminate all variables that are

loop-variant for the loops in L from their results. A loop-variant variable can be eliminated by

substituting it with the range that Range Propagation has computed for it. Function RTEST2x

must also be modi�ed to eliminate any loop-variant variables for loop Lj from expressions s

and t, (see Figure 3.4).

3.5.4 Loops that aren't perfectly nested

Handling imperfectly nested loop nests is simple. Just modify functions MIN(f;L) and

MAX(f;L) to always substitute the indices of loops that enclose only the array access A(f(~{)).

This would ensure that any computation of fmin
j (or fmax

j ) would also include the maximum

(or minimum) of all the values that f can take for all iterations of the loops that enclose only

access A(f(~{)). We perform the same optimization to gmin
j and gmax

j to eliminate loops that

enclose only access A(g(~{ 0)).

3.6 Examples

In this section, we will provide examples of important loop nests, taken from the Perfect Bench-

marks [6], that the Range Test can determine to be parallel but which conventional data de-

pendence tests cannot.

One example is a loop nest taken from subroutine FTRVMT from the code OCEAN. This

loop nest accounts for 44% of the code's sequential execution time on an Alliant FX/80. A
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DO jl = 0, i2k - 1

exj = � � �
DO jj = 0, x(jl)

DO mm = 0, 128

js = 258*i2k*jj + 129*jl + mm + 1

js2 = js + 129*i2k

h = data(js) - data(js2)

data(js) = data(js) + data(js2)

data(js2) = h * exj

ENDDO

ENDDO

ENDDO

Figure 3.6: Simpli�ed version of loop nest FTRVMT/109 from OCEAN.

Li Pj Stmt Test Comparison results

mm S1 R1 258 � i2k � jj+ 129 � jl+ 129 < 258 � i2k � jj+ 129 � jl+ 129 � i2k+ 1

jj mm S1 R1 +1 6< 129 � jl+ 129 � i2k+ 1

jj mm S1 R2 +1 6< 129 � jl+ 1

jj mm S1 R3 258 � i2k � jj+ 129 � jl+ 129 < 258 � i2k � jj+ 129 � jl+ 387 � i2k+ 1

jj mm S1 R4 258 � i2k � jj+ 129 � jl+ 129 � i2k+ 129 < 258 � i2k � jj+ 129 � jl+ 258 � i2k+ 1

jl jj S1 R1 +1 6< 129 � i2k+ 1

jl jj S1 R2 +1 6< 1

jl jj S1 R3 +1 6< 129 � jl+ 129 � i2k+ 130

jl jj S2 R3 258 � i2k � jj+ 129 � i2k < 258 � i2k � jj+ 387 � i2k+ 1

jl jj S2 R4 258 � i2k � jj+ 258 � i2k < 258 � i2k � jj+ 258 � i2k+ 1

jl mm S1 R1 258 � i2k � jj+ 129 � i2k < 258 � i2k � jj+ 129 � i2k+ 1

Table 3.1: Trace of Range Test for loop nest FTRVMT/109 shown in Figure 3.6.
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mrsij0 = 0

DO mrs = 0, (num*num+num)/2 - 1

mrsij=mrsij0

DO mi = 0, num - 1

DO mj = 0, mi - 1

S1 : mrsij = mrsij + 1

S2 : xrsij(mrsij) = xij(mj)

ENDDO

ENDDO

mrsij0=mrsij0+(num*num+num)/2

ENDDO

Figure 3.7: Simpli�ed version of loop nest OLDA/100 from TRFD.

simpli�ed version of this loop is shown in Figure 3.6. Conventional data dependence tests

cannot prove that these loops do not carry any dependences because of the 258 � i2k � jj term

in the subscripts for array data. The Range Test, on the other hand, can do so.

Table 3.1 shows a trace of the Range Test when it is proving that there are no loop-carried

dependences between the array access functions f (jl; jj; mm) = 258�i2k�jj+129�jl+mm+1

and g(jl; jj; mm) = 258 �i2k �jj+129 �jl+mm+129 �i2k+1. The �nal column of this table

shows the symbolic expressions compared at the given statement of the Range Test algorithm

(Si) and the RTEST functions (Rj). The results of these comparisons were calculated from

the variable constraints determined by the range propagation algorithm, which are i2k � 1,

0 � jj � x(jl), 0 � jl � i2k� 1, and 0 � mm � 128. Since the upper bound x(jl) of loop jj

is not monotonic, the test used +1 as an approximation of this bound. For this pair of access

functions, the Range Test had to use Theorems 1, 2, and 3 and permute the jl loop inside the

jj loop to prove that there are no loop-carried dependences.

Another important loop nest, which needs a dependence test for symbolic, nonlinear expres-

sions, can be found in subroutine OLDA from the code TRFD. A simpli�ed version of this loop

60



nest is shown in Figure 3.7. This loop nest accounts for 69% of the code's sequential execution

time on an Alliant FX/80.

To parallelize this loop nest, induction variable substitution must be used to replace the

induction variable mrsij at statement S1 with the statement:

mrsij = (mi � �2� mi+ mrs � (num � �2+ num))=2+ mj+ 1:

After this substitution, conventional data dependence tests cannot prove that there are no self-

dependences for xrsij at S2 because of the nonlinear array subscript (after forward-substituting

the value of mrsij). The Range Test, on the other hand, would have no di�culties in proving

that this array has no self-dependences.

3.7 Measurements

To measure the e�ectiveness and speed of the Range Test, we compared its results with the

Omega Test [42]. Roughly, the Omega Test is a variant of integer Fourier-Motzkin analysis [19,

47] with optimizations to make the common cases fast. For a�ne array subscripts and loop

bounds, the Omega Test is an exact data dependence test. The Omega Test handles non-a�ne

expressions using uninterpreted function symbols. Our implementation of the Omega Test uses

the Omega Library version 0.91 [35].

Since uninterpreted function symbols are the Omega Test's solution to non-a�ne expres-

sions, the functionality of uninterpreted function symbols needs some further explanation. An

uninterpreted function symbol is simply a variable with one or more arguments, (e.g., f(i; j)),

representing a side-e�ect-free function. The Omega Test accepts a�ne expressions extended to

also contain uninterpreted function symbols, (e.g., i + 2 � f(i)). The current implementation
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of the Omega Test only allows the loop indices of enclosing loops to be the arguments of unin-

terpreted function symbols. Two identical uninterpreted function symbols can be cancelled out

or combined together if all their arguments are equal, (e.g., f(i)� f(i0) = 0 if i = i0). Because

our implementation of our interface to the Omega Test adds no constraints on the values that

these uninterpreted function symbols can take, the Omega Test can apply no other kind of

simpli�cation on uninterpreted function symbols.

Our interface to the Omega Test handles non-a�ne expressions by translating them into

uninterpreted function symbols. For example, to set up a dependence test between A(n � i+ j)

and A(n � i + j + 1), the interface would translate the non-a�ne expression n � i into the

uninterpreted function symbol f(i). Thus, the interface would feed the constraint f(i) + j =

f(i0) + j0 + 1 to the Omega Test. We also use uninterpreted function symbols to handle loop-

variant variables. That is, variables whose values change for some loop but are not loop indices.

3.7.1 E�ectiveness

To measure the e�ectiveness of the Range Test and Omega Test, we counted the number of loops

found parallel by these techniques as well as the number of loop-carried dependences eliminated.

The results of these measurements is shown in Table 3.2. These results were run on a subset of

the Perfect Benchmarks, two National Center of Supercomputing Applications (NCSA) codes,

and most of the Fortran codes in the Spec92 benchmarks. We ran some very simple data

dependence tests before running either the Range or Omega tests. The most important of

these simple tests were the GCD test and a simple test that eliminated dependences between

A(i) and A(i) for a loop with index i. We counted an eliminated loop-carried dependence arc

multiple times if that arc carried dependences for multiple loops.

62



Number Both tests Range only Omega only

Code of lines Par. Loops L.C. Deps. Par. Loops L.C. Deps. Par. Loops L.C. Deps.

ARC2D 4694 2 216 0 0 0 0
BDNA 4887 29 462 0 0 6 46
FLO52 2368 8 37 1 4 0 0
MDG 1430 13 128 6 23 1 9
OCEAN 3285 136 1725 76 884 0 0
TRFD 634 6 60 6 35 0 21
CLOUD3D 14438 1 200 0 12 0 0
CMHOG 11286 11 17 16 16 0 0
DODUC 5334 2 68 0 0 0 0
FPPPP 2718 4 176 0 0 0 0
HYDRO2D 4461 3 6 3 6 0 0
MDLJDP2 4136 0 9 0 6 1 3
MDLJSP2 3885 0 9 0 6 1 3
NASA7 1204 17 108 0 39 0 2
ORA 453 2 51 0 0 0 9
SU2COR 2514 44 1059 0 0 2 568
SWM256 487 12 24 0 0 0 0
TOMCATV 195 3 13 0 0 0 5
WAVE5 7628 124 864 15 174 0 2

Table 3.2: Number of parallel loops or eliminated loop-carried dependences detected by the
Range Test and the omega test.

We broke our results into three categories. The Both tests category displays the number

of loops that were found parallel and the number of loop-carried dependences eliminated by

both the Range and Omega tests. The Range only category displays the number of loops found

parallel and loop-carried dependences eliminated by the Range Test but not the Omega Test.

Similarly, the Omega only category displays the number of loops found parallel and loop-carried

dependences eliminated by the Omega Test but not the Range Test.

All of the advanced restructuring techniques developed and implemented in Polaris were used

before dependence testing. These techniques include partial inlining, interprocedural symbolic

constant propagation with procedure cloning, array privatization, generalized induction variable

substitution, and reduction recognition. Because of this, dependence arcs from reductions,

induction variables, and private arrays and scalars have already been eliminated when the
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Range and Omege Tests were executed. Details of these advanced techniques can be found

in [9, 7].

From Table 3.2, we can see that there are cases where the Range Test does better, and cases

where the Omega Test does better. This should not be surprising, because the Omega Test has

di�culties with non-a�ne expressions while the Range Test was designed to handle such cases.

On the other hand, the Omega test is exact for a�ne expressions while the Range Test is not.

To get a better understanding why one test was more successful than the other for some

cases, we examined every loop-carried dependence eliminated by only the Range Test or only

the Omega Test. For the Range Test, almost every dependence arc that only it eliminated were

dependences between non-a�ne array accesses. Most of these cases were due to the linearization

of arrays from partial inlining or from induction variable substitution. The only cases where

additional dependence arcs eliminated by the Range Test were not from non-a�ne array accesses

were all the additional loop-carried dependences eliminated for WAVE5. For these cases, the

Range Test used the constraint 1252 � n � 50080, which was generated by Range Propagation

from a conditional statement just before the loop, to break dependences between accesses pairs

such as A(i) and A(i+ n) or A(i+ n) and A(i+ 51332), where 1 � i � 1252

The Omega Test sometimes did better than the Range Test for several reasons. The most

common reason is coupled subscripts. Coupled subscripts are dependences between multidimen-

sional array accesses where one can disprove dependences when one examines all the dimensions

together, but can't disprove dependences by testing each dimension, one by one. Almost all of

the coupled subscripts that we've seen were one of the access pairs below:

� Between A(i; j) and A(j; j) where i < j,

� Between A(i; j) and A(j; i) where i < j,
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� Between A(i; i+ j) and A(i+ j; i),

� Between A(i; c) and A(c; i) where c is an integer.

Other coupled subscripts were simple variants of the above four types. Coupled subscripts

accounted for about half of the additional loop-carried dependences eliminated by only the

Omega Test for codes BDNA and SU2COR, and all of the additional loop-carried dependences

for codes MDG, NASA7, and TOMCATV.

The other case where the Omega Test sometimes did better than the Range Test were for

those cases where the ranges of two array accesses overlapped, but this overlap is solely due to a

dependence between the two accesses for the same loop iteration. This case occurred for all the

additional loop-carried dependences eliminated by only the Omega Test for ORA, MDLJDP2,

and MDLJSP2. One example, taken from ORA, is a dependence between A(i + 400) and

A(i + 50 � j + 300), where 1 � i � 19. A dependence exists between these two accesses only

when j = 2 and i = i0, where i0 is the value of the i index for the second access. Another example,

taken from MDLJDP2 amd MDLJSP2, is a dependence between A(l) and A(4 � f(i; j; k) + l),

where 1 <= l <= 4, and f(i; j) is actually a complicated non-a�ne expression. Now the Range

Test is powerful to analyze this non-a�ne expression, which is f(i; j; k) = n2�i+n�j+k�n2�n,

to determine that f(i; j; k) � 0. However, it is not smart enough to see that the coe�cient 4

on the term 4 � f(i; j; k) guarantees that there can only be a dependence between iteration l0

and l00 of the loop with index l if and only if l0 = l00, since 1 � l � 4. On the other hand, the

Omega Test can prove this, even though it does not know the values that f can take.

Another reason for why the Omega Test sometimes did better than the Range Test was

that our interface to the Omega Test was able to replace complex loop-invariant expressions

with symbolic constants but our interface to the Range Test did not. For example, for the code
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BDNA, the dependence tests need to disprove dependences between A(i) and A(i+ 2 � x(1)),

where 1 � i � x(1). Our interface to the Omega Test replaces the loop-invariant x(1) term

with a symbolic constant t, getting A(i+2� t), before feeding it to the Omega Test. Since these

transformed accesses are a�ne, the Omega Test disproves the dependence between the two

accesses. However, the Range Test receives these accesses in their raw form. Since the current

implementation of Range Propagation cannot determine constraints on the x(1) term, it cannot

prove that i � x(1) < 1+2�x(1) � i+2�x(1) since it doesn't know that x(1) is always positive.

Thus, the Range Test fails for this pair of accesses. However, if some pre-processing pass was

written to replace all loop-invariant expressions with symbolic constants, (e.g., replace all x(1)s

with t), the Range Test would also succeed. Because of this, we do not consider this case to be

a shortcoming to the Range Test, just its interface. This case occurred for half of additional

loop-carried dependences eliminated by only the Omega Test for BDNA and SU2COR. (The

other half were coupled subscripts.)

The �nal reason why the Omega Test sometimes did better than the Range Test for our

measurements was because the Omega test can always break cross-iteration dependences for

loops with only one iteration while the Range Test cannot. Being that there is no bene�t in

parallelizing single iteration loops, we do not consider this to be a weakness of the Range Test.

This case occurred for the cross-iteration dependences eliminated only by the Omega Test for

TRFD and WAVE5.

Overall, the Range Test was able to determine that more loops were parallel than the Omega

Test. Additionally, for the Perfect Benchmarks and the NCSA codes, most of the loops that

were identi�ed as parallel by only the Range Test were loops that take up a signi�cant fraction

of the program's execution time while the loops identi�ed only as parallel by the Omega Test
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Code Preprocessing Range test Omega test Rest of dd testing

ARC2D 300 20 49 160
BDNA 620 41 110 280
FLO52 250 17 18 83
MDG 200 43 74 140
OCEAN 930 400 300 100
TRFD 170 46 69 24

CLOUD3D 735 52 140 760
CMHOG 1200 180 250 3800

DODUC 600 8 39 450
FPPPP 1000 7 1800 1000
HYDRO2D 100 0.8 3 15
MDLJDP2 110 3 8 18
MDLJSP2 110 3 10 18
NASA7 110 31 33 100
ORA 13 0.9 0.3 2
SU2COR 1200 350 4800 2700
SWM256 23 0.7 0.4 5
TOMCATV 18 0.6 0.3 5
WAVE5 1300 48 71 540

Table 3.3: Time taken by the Range and Omega tests on real programs. Timings for the rest
of dependence testing as well as all the analyses performed before dependence testing are also
included.

were all insigi�cant. (We were unable to determine the importance of the loops in the SPEC

benchmarks). Thus, we believe that the Range Test would have a greater impact than the

Omega Test in identifying signi�cant amounts of loop-level parallelism in real programs.

3.7.2 Speed

One of the biggest arguments made by compilers developers against symbolic data dependence

tests such as the Range Test is that they are too slow. Although the Range Test is slower than

other dependence tests such as the GCD or Banerjee's Inequalities test, since it manipulates

symbolic expressions rather than integers, we believe that the Range Test is e�cient enough

for use in commercial parallelizing compilers.
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To support this assertion, we have measured the execution times taken by the Range and

Omega tests to perform the dependence testing for the measurements displayed in Table 3.2 and

discussed in the previous section. These timings are displayed in Table 3.3. These timings were

collected on a Sparc 10. Our measurements were collected from Polaris, which was compiled

with g++ 2.6.3 with the -O ag. The columns Range Test and Omega test show the times taken

by the Range and Omega Tests to perform the dependence tests of the previous experiment.

To give the reader an idea of the signi�cance of these timings compared to the rest of the

compiler, we also included timings for all the preprocessing performed before dependence test-

ing and timings of the rest of the dependence testing pass. The preprocessing phase includes

the time to parse the Fortran codes as well as several restructuring techniques, including the

advanced techniques described in the previous subsection. Because some of these advanced

techniques may signi�acantly increase code size, (e.g., partial inlining and interprocedural con-

stant propagation with procedure cloning), the time spent applying these advanced techniques

and dependence testing may be much greater than other parallelizing compilers. The timings

of the rest of dependence testing pass includes timings of the simple dependence tests described

in the previous subsection, as well as timings of the functions that determine and iterate over

all possible dependences that need to be tested in a program unit, that create a dependence

graph, and that identify parallel loops.

From Table 3.3, one can see that although the Range Test does take a signi�cant amount

of time in a parallelizing compiler, it does not dominate that execution time. In the worst case,

it only took about a third of the execution time of Polaris. In the average case, it took much

less. Additionally, it was on average about twice as fast as the Omega Test. In a few cases, it
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was much faster. Thus, we feel con�dent in claiming that the Range Test is e�cient enough to

be incorporated in commercial parallelizing compilers.

3.8 Related work

The Range Test was developed, independent of other dependence tests, to handle the symbolic

array subscripts we encountered in actual programs. Early ideas of such a test were described

in [23, 34]. The most distinguished feature of the test may be the fact that it is now available

in an actual compiler, which has proven to parallelize important programs to an unprecedented

degree.

The following discussion compares our test to one of the most e�ective state-of-the-art tests

and points out related ideas of other projects.

Mathematically, the Range Test can be thought of as an extension of a symbolic version of

the Triangular Banerjee's Inequalities test with dependence direction vectors [3, 49], although

our implementation di�ers. The only drawback of our test, compared to the Triangular Baner-

jee's test with directions, is that it cannot test arbitrary direction vectors, particularly those

containing more than one `<' or `>' (e.g., (<;<)). The permutation of loop indices partially

overcomes this drawback. (These permutations can be thought of as permutations of the de-

pendence direction vectors tested.) We have found that this limited set of direction vectors,

along with the permutation of loop indices, was su�cient to parallelize all of the relevant loop

nests in our test suite. One advantage of the Range Test is that the worst case of the number

of direction vectors tested is better than Banerjee's Inequalities with directions, since we test

at most O(n2) direction vectors while Banerjee's Inequalities with directions may test as many

as O(3n) direction vectors.
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Haghighat and Polychronopoulos presented a dependence test to handle nonlinear, symbolic

expressions [26]. Their algorithm is essentially a symbolic version of Banerjee's Inequalities test.

However, their test did not include the extensions to Banerjee's Inequalities to test dependence

direction vectors and to handle triangular loops, nor does it include our extension to handle

nonlinear expressions containing ic terms, as in Figure 3.7 after induction variable substitution,

where i is a loop index and c is an integer constant greater than 1. We have seen several examples

in the Perfect Benchmarks that need all these extensions to be identi�ed as parallel. The same

authors presented ideas to calculate the set of variable constraints holding for each statement

of the program unit, then to use these constraints to prove or disprove symbolic inequalities

for dependence testing. More speci�cally, they use an algorithm by Cousot and Halbwachs [17]

to compute the set of variable constraints. We also determine variable constraints and perform

symbolic inequality tests, although we use di�erent techniques, (i.e., Range Propagation). We

will compare these two methods to compute variable constraints later in Chapter 4.

In a separate paper, Haghighat and Polychronopoulos [27] describe a technique to prove

that a symbolic expression is strictly increasing or decreasing. By using this technique, self-

dependences for an array reference can be eliminated. Their example can prove that all the

loops in Figure 3.7, after induction variable substitution, are parallel. However, as described,

the test only handles self-dependences. The subroutine OLDA in TRFD has other important

loop nests that has multiple array accesses with nonlinear subscript expressions similar to the

subscripts from Figure 3.7.

Maslov [36] presents an alternate way to handle symbolic, non-linear expressions. Instead of

testing these expressions directly, his algorithm partitions the expression into several indepen-

dent subexpressions, then tests these partitions using conventional data dependence tests. Es-
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sentially, it delinearizes array references. For example, it converts an array reference A(n�i+j),

where 1 � j � n, into a two-dimensional array A(j; i). The greatest strength of this technique

is that it can convert non-linear expressions into linear ones, allowing exact data tests like the

Omega Test [42] to be applied. Because of this, there are situations where Maslov's algorithm

proves independence whereas we cannot, such as the array references A(n�i+j) and A(i+n�j),

where 1 � i � j � n. However, the delinearization algorithm cannot handle expressions con-

taining terms of the form ic, as in Figure 3.7 after induction variable substitution. Furthermore,

the algorithm requires some additional symbolic capabilities; the compiler must be able to cal-

culate symbolic gcd's and modulos, and the compiler must be able to sort the set of symbolic

coe�cients (cj 's). Performing this symbolic sort can be particularly di�cult, since one may be

unable to determine that some of the coe�cients are less than others (i.e., the cj 's may not

have a total ordering).

3.9 Conclusions

We have developed a symbolic data dependence test, called the Range Test, that can identify

parallel loops in the presence of nonlinear array subscripts and loop bounds. We have shown

that the Range Test can prove that two very important loop nests in the Perfect Benchmarks

are parallel, whereas conventional data dependence tests cannot. In our experiments, we have

found that the Range Test can prove independence for many of the other parallel loops that

contain symbolic non-linear array subscript expressions.

We have implemented the Range Test in Polaris. Currently, the Range Test is the only

major data dependence test implemented in Polaris. To determine its e�ectiveness, we have

compared its ability to eliminate loop-carried data dependences and identify parallel loops with
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the Omega Test, an exact data-dependence test for linear array subscripts. We have found that

the Range Test identi�es a signi�cant number of parallel loop nests that the Omega Test could

not. Two conclusions can be derived from this result. First, there are a signi�cant number

of important parallel loops that contain nonlinear expressions in real programs. Second, the

Range Test can determine that some, if not all, of these loops are parallel.

With the aid of memoization [37], or the caching of already tested array subscript pairs,

we believe that the execution time of the Range Test is acceptable, even when applied as the

only test. Our timings of the Range Test support this belief. However, there is no reason

why the Range Test cannot be invoked only when other dependence tests fail due to nonlinear

expressions. By doing so, one would gain the power of the Range Test at little cost.

To implement the Range Test, one needs a facility to compare arbitrary expressions. The

next chapter will describe Range Propagation, which provides such a facility.
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Chapter 4

SYMBOLIC RANGE

PROPAGATION

4.1 Bene�ts from an expression comparator

One of most useful of symbolic analysis techniques is the ability to compare arbitrary symbolic

expressions, using constraint information derived from the program. Many transformations in

a parallelizing compiler can bene�t from such an ability. Examples are symbolic dependence

testing, detection of zero-trip loops, dead-code elimination, determination of array sections

referenced by an array access, and loop trip-count estimation. We will examine two of these

examples, symbolic data dependence testing and detection of zero-trip loops, in detail.

The ability to compare symbolic expressions is probably most useful for symbolic data

dependence tests. In fact, our nonlinear data dependence test called the Range Test, which was

described in Chapter 3, is built upon this ability.
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The Range Test proves that two array accesses do not have a loop-carried dependence by

proving that the range of possible values referenced by one access does not overlap with the

range of possible values for the other access. It proves this by determining that the symbolic

upper bound of one of these ranges is less than the symbolic lower bound of the other range.

This requires the ability to compare symbolic expressions.

The real strength of the Range Test is that it can prove independence for non-a�ne (non-

linear) array references, which most other dependence tests cannot do. For example, the Range

Test can prove that all the loops in Figure 4.1 are parallel but, to our knowledge, no other

dependence test can do so. This loop nest was taken from TRFD, a code in the Perfect Bench-

marks, and accounts for 28% of the code's serial execution time. For the Range Test to prove

that there are no dependences for the writes to array A, it needs to compare non-a�ne sym-

bolic range bounds derived from statements S1 and S2, under the constraints imposed by the

enclosing loops, (e.g., 0 � i � n � 1, n � 1). For example, the Range Test had to compare

((i+1)�(n2+n))=2+ i+k+2 to 0 for this example. We have seen several other important loop

nests from real applications that needed the Range Test with Range Propagation to e�ectively

parallelize them.

The ability to compare symbolic expressions is also needed to prove that a loop is not a

zero-trip loop. By knowing that a loop is not a zero-trip loop, one can peel o� an iteration

of a loop or generate a last-value assignment for an induction variable eliminated by induction

variable substitution without enclosing this iteration or last-value assignment with a conditional

statement that tests whether the loop was a zero-trip loop. Eliminating this conditional is

desirable because conditional statements often weaken the results of global analyses, (e.g.,

constant propagation and induction variable substitution). For example, both loop peeling
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DO i = 0; n� 1
DO j = 0; i
DO l = 0; i� j

S1 : x = ((i2+ i+ 2 � j) � (n2 + n+ 2))=4+ l+ 1
A(x) = � � �

ENDDO

DO k = 0; n� i� 2
DO l = 0; k+ i+ 1

S2 : x = ((i2 + i+ 2 � j) � (n2 + n + 2))=4
+i� j + k � (i+ 1) + (k2 + k)=2 + l+ 2

A(x) = � � �
ENDDO

ENDDO

ENDDO

ENDDO

Figure 4.1: A loop nest, extracted from TRFD, that contains non-a�ne array references.
Loop peeling and induction variable substitution were performed to place the loop nest into
this form.

and induction variable substitution was needed to get the loop nest in Figure 4.1 into the form

shown. Without the ability to detect zero-trip loops, these transformations would have inserted

conditional statements that would have prevented the outermost loops from being parallelized.

In response to this need for comparing arbitrary symbolic expressions under constraints

derived from the program unit, we have developed Range Propagation. Range Propagation

centers upon the computation and manipulation of ranges. A range, denoted [a : b], consists

of a symbolic lower bound a and a symbolic upper bound b, where a � b. Constraints are

represented by a mapping from program variables to ranges. For example, assigning the range

[a : b] to a variable x denotes the constraint a � x � b. We will always assume that x does not

occur in either a or b. This mapping from variables to ranges will be called a range dictionary.

Range Propagation consists of two major parts: an expression comparison algorithm and a

range propagation algorithm. The expression comparison algorithm determines which inequal-

ity relationships (e.g., <, =, �) hold between two expressions, given a set of constraints in a
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range dictionary. The range propagation algorithm determines the constraints that hold at each

point in a program. It does this by computing the ranges that initially hold for each variable,

then propagating these ranges through the program unit. Since the range propagation algo-

rithm needs to compare symbolic expressions to simplify ranges, we will discuss the expression

comparison algorithm �rst.

4.2 Comparing expressions using symbolic ranges

In this section, we will �rst give an overall sketch of our expression comparison algorithm, which

determines the relationship between two arbitrary symbolic expressions under the constraints

given by a range dictionary. We will then discuss how two major components of the algorithm

are implemented. A cost analysis of this algorithm will then be performed.

4.2.1 Algorithm

This algorithm assumes that the compiler can manipulate and simplify arbitrary symbolic

expressions. E�cient simpli�cation techniques for parallelizing compilers can be found in [26,

28, 32].

Roughly, we determine the inequality relationship between two symbolic expressions p and q,

in respect to a range dictionary R, by forming the di�erence d between p and q, then repeatedly

replacing (substituting) each variable x in d with the range of x, until we reach a point where

the lower bound of d is a non-negative integer or the upper bound of d is a non-positive integer.

We can then determine the relationship between p and q from the bounds of this �nal value of

d. For example, p > q if the lower bound of the �nal value of d is a positive, non-zero integer.
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The expression comparison algorithm, which implements the intuitive description above, is

shown in Figure 4.2. Statement S1 determines the di�erence d between p and q. (It is assumed

that d has been fully simpli�ed.) Statement S2 determines the best order to replace variables

in d with their ranges. This order is stored in an ordered list S, which contains all variables

that may eventually need to be replaced in d, including variables that are not initially in d.

Statement S3 repeatedly removes a variable x from the list S and replaces x in d with its range

R(x), until list S is empty or d is comparable. (We say that a range d is comparable when

its lower bound is a positive integer or its upper bound is a negative integer.) Statement S4

handles the case where the while loop ran out of variables to replace before it could make d

be comparable. This loop simply replaces all remaining variables in d with the unconstrained

range [�1 : +1]. (We do this rather than failing because there are cases where d would

be comparable if the variables were eliminated, (e.g., d = [max(1; x) : +1]).) Statement S5

returns the inequality relationship between p and q by examining the lower and upper bounds

of d. If it cannot determine any relationships, it returns the unknown inequality relationship.

For example, suppose we wish to compare x�y+1 with y, where x = [y : 10] and y = [1 :1].

First, we calculate the di�erence, which is d = x � y � y + 1. Then, we replace x with [y : 10],

getting d = [y2� y+ 1 : 9 � y+ 1], (we'll describe how we computed this new value for d in the

next subsection). Since d is still not comparable, we replace y with [1 :1], getting d = [1 :1].

Since the lower bound of d is greater than zero, we have the relationship x � y + 1 > y.

To implement the algorithm in Figure 4.2, one must implement the functions:

replacement order() and replace var(). The function replacement order() attempts

to determine the best order to replace variables with their ranges, while the function

77



Input: Symbolic expressions p and q and range dictionary R,
which maps each variable x to a range R(x) = [a : b].

Output: Inequality relationship between p and q

(i.e, <, �, =, >, �, or ? (unknown)).

S1 : d [q � p : q � p]
S2 : S  replacement order(d, R)
S3 : while (d is not comparable and S is not empty) do

x S:head
S  S:tail
d replace var(d, x, R(x), R)

end while

if (d is not comparable) then
S4 : foreach variable x in d do

d replace var(d, x, [�1 : +1], R)
end foreach

endif

S5 : return inequality relationship for d

Figure 4.2: The symbolic expression comparison algorithm.

replace var() performs the actual replacements. The next two subsections will describe these

functions in detail.

4.2.2 Replacing a variable with its range

One of the essential components of the expression comparison algorithm is replace var(), which

replaces variables with their ranges. There are several methods that such a replacement can be

performed. In this section, we will describe two methods: a faster but less accurate algorithm,

which substitutes each occurrence of the variable with its range, and a slower but more accurate

algorithm, which determines the new range of the expression from its monotonicity.

4.2.2.1 Range substitution method

The most intuitive method to replace a variable with its range is to physically substitute each

occurrence of the variable in the given expression with the variable's range, then simplify the
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[[a : b] : c] ) [a : c] (4.1)

[a : [b : c]] ) [a : c] (4.2)

[a : b] + c ) [a+ c : b+ c] (4.3)

[a : b] � c )

8><
>:

[a � c : b � c] if c � 0
[b � c : a � c] if c � 0
[�1 :1] otherwise

(4.4)

[a : b]=c )

8><
>:

[a=c : b=c] if c > 0
[b=c : a=c] if c < 0
[�1 :1] otherwise

(4.5)

[a : b]i )

8>>><
>>>:

[ai : bi] if i is even and a � 0
[bi : ai] if i is even and b � 0
[ai : bi] if i is odd
[�1 :1] otherwise

(4.6)

min([a : b]; c) ) [min(a; c) : min(b; c)] (4.7)

max([a : b]; c) ) [max(a; c) : max(b; c)] (4.8)

Table 4.1: Rewrite rules for simplifying expressions containing ranges. Variables a, b, and c
are symbolic integer-valued expressions. The variable i is an integer.

resulting expression. This simpli�cation transforms the resulting expression into a range whose

bounds do not contain ranges. As an example, suppose we wish to replace the range [1 : y] for

variable x in the di�erence range d = [x2 � x : 1]. The resulting range can be computed by

�rst substituting [1 : y] for x in d, getting [[1 : y]2 � [1 : y] : 1], then simplifying this range

down to [1� y :1], (assuming that y � 1).

By far the most complicated part of this method is the simpli�cation of the substituted

expression. We simplify an expression by applying rewrite rules to each subexpression, from

the innermost subexpressions outward. These rewrite rules transform a subexpression whose

arguments are range expressions into a range subexpression whose arguments do not contain

ranges. These rewrite rules are displayed in Table 4.1. All these rewrite rules assume that we

are working with integer-valued symbolic expressions and that all ranges' lower bounds are less

than or equal to their upper bounds. The rest of this chapter will also make these assumptions.
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As an example, consider the simpli�cation of [[1 : y]2� [1 : y] :1], taken from the previous

example. The steps to simplify this expression are:

[[1 : y]2 � [1 : y] :1] ) [[12 : y2]� [1 : y] :1] by rule (6)

) [[12 : y2] + [�y : �1] :1] by rule (4)

) [[12 � y : y2 � 1] :1] by rule (3)

) [12 � y :1] by rule (1)

) [1� y :1]

Several of the rewrite rules in Table 4.1 require the comparison of symbolic expressions to

zero. For example, to simplify expression x � [1 : 10], one must determine the sign of x. We

handle this by recursively calling the expression comparison algorithm in Figure 4.2. The costs

of performing these recursive expression comparisons can be greatly decreased by caching and

reusing the signs of variables, (i.e., memoization).

Because this method makes recursive calls to the expression comparison algorithm, it could

go into an in�nite loop. To guarantee termination, we do not allow the range for variable x to be

substituted in any recursive calls to the expression comparison algorithm while the expression

comparison algorithm is trying to replace x in some expression. Instead, we substitute the

unconstrained range [�1 :1] for x. This prevents any more recursive expression comparisons,

since the simpli�cation of ranges containing [�1 : 1] does not require them. (We did not

include the rewrite rules for expressions containing [�1 :1], since they are easy to determine.)

So, if there are v integer variables in a program, there can be at most v invocations of the

expression comparison algorithm on the stack at one time.

It is often desirable to have MIN and MAX expressions in the range expressions for variables.

To uncover more opportunities for simpli�cation, these MIN and MAX subexpressions should
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min(min(a; b); c) ) min(a; b; c) (4.9)

min(a; b) + c ) min(a+ c; b+ c) (4.10)

min(a; b) � c )

(
min(a � c; b � c) if c � 0
max(a � c; b � c) if c � 0

(4.11)

min(a; b)=c )

(
min(a=c; b=c) if c > 0
max(a=c; b=c) if c < 0

(4.12)

min(a; b)i )

8><
>:

min(ai; bi) if i is even and min(a; b)� 0
max(ai; bi) if i is even and min(a; b)� 0
min(ai; bi) if i is odd

(4.13)

Table 4.2: Rewrite rules for simplifying min expressions. The rewrite rules for max expressions
is similar. Variables a, b, and c are assumed to be arbitrary symbolic integer expressions.
Variable i is an integer.

be moved outward so that they enclose the entire expression, (although they shouldn't be

pulled out of ranges). Thus, when we substitute a range containing MINs and MAXs into an

expression, we must pull these MINs and MAXs outward to the top levels of the expression.

This can be done by using rewrite rules similar to those given earlier for simplifying range

expressions. These rules are displayed in Table 4.2.

In addition to the range, MIN, or MAX speci�c simpli�cations given earlier, we apply con-

ventional symbolic simpli�cation techniques to the expression. These techniques include con-

stant folding, distribution of products-of-sums, and the combination and cancellation of common

symbolic terms [14, 26, 28, 32]. We also use advanced techniques developed by Haghighat [28]

to simplify expressions containing integer divisions. Where they fail, we multiply out the

divisions in the di�erence range, being careful to include the truncation errors of the divi-

sions. For example, we convert the expression d = a=b + c to the range d0 � d � b where

d0 = [a� b+1+ b � c : a+ b � c], assuming that a > 0 and b > 0. (One can see that this range is

correct, since b � (a=b) = b � ((a� a mod b))=b) = a� a mod b = a� [0 : b� 1] = [a� b+ 1 : a].)
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4.2.2.2 Monotonicity replacement method

One problem with the range substitution method from the previous subsection is that it can

generate overly conservative lower or upper bounds when it replaces a variable in an expression

that has multiple occurrences of that variable. This occurs because both bounds of the range

of the variable to be replaced are used to compute the lower or upper bound of the resulting

range expression, although it is impossible for a variable to be equal to both its lower and upper

bounds, (assuming that its lower bound does not equal its upper bound). For example, when

[1 : y] was substituted for x in x2 � x in the example from the previous subsection, the �nal

lower bound of the resulting expression (1� y) was formed by taking the lower bound of [1 : y]

for the x2 term while taking the upper bound of [1 : y] for the �x term. Since there is no legal

value of x in the range [1 : y] where x2 � x would take on the value 1� y, this bound is overly

conservative.

In this subsection, we will present a variable replacement method that can determine the

exact lower and upper bounds for an expression as a whole, (e.g., the lower and upper bounds

of x2� x), if it succeeds. (If it fails, we can still use the variable substitution method.) We will

assume that we are replacing variable x in expression f(x) with range [a : b].

The exact lower and upper bounds for f(x) after replacing x are the minimum and maximum

values that f(x) can take for any value of x in the range [a : b]. Determining these minimum

and maximum values are simple if we can prove that f(x) is monotonic for x. The expression

f is monotonically non-decreasing for x within range [a : b], if f(x) � f(x0) whenever x � x0

for x; x0 2 [a : b]. Similarly, f is monotonically non-increasing for x within range [a : b], if

f(x) � f(x0) whenever x � x0 for x; x0 2 [a : b]. Now, if f(x) is monotonically non-decreasing
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for x, then the range of values taken by f(x) is [f(a) : f(b)]. Similarly, if f(x) is monotonically

non-increasing for x, then the range of values taken by f(x) is [f(b) : f(a)].

Determining whether f(x) is monotonically non-decreasing or monotonically non-increasing

is not di�cult. One can prove that f(x) is monotonically non-decreasing for x by proving that

f(x+ 1)� f(x) � 0. This inequality can be easily proven by recursively calling the expression

comparison algorithm in Figure 4.2. Similarly, one can prove that f(x) is monotonically non-

increasing for x by proving that f(x+ 1)� f(x) � 0.

The monotonicity replacement method, when used by itself, can be very expensive. (A back-

of-the-envelope calculation estimated it to be at least O(v!), where v is the number of variables

in the program.) Because of this, we do not use the monotonicity replacement method to

determine the sign of the forward di�erence expression f(x + 1) � f(x). Instead, we use the

range substitution method given in the previous subsection. This greatly improves the worst

case performance of this technique while preserving much of its accuracy. This also guarantees

that this method will eventually halt, since the range substitution method eventually halts.

Detailed analysis of its time complexity will be done later in this section.

As an example, suppose we wish to replace the range [1 : y] for variable x in the di�erence

range d = [x2�x :1]. To calculate the new lower bound of d, we must �rst determine whether

the lower bound is monotonically non-increasing or monotonically non-decreasing for x. This is

done by calculating the forward di�erence (x+1)2� (x+1)� (x2�x) = 2�x, then determining

whether 2�x is greater-equal or less-equal to zero by a recursive call to the expression comparison

algorithm. Now, 2 � x is greater than zero, since 2 � x ) 2 � [1 : y] ) [2 : 2 � y] has a positive

lower bound. Hence, x2 � x must be monotonically non-decreasing and the range of x2 � x is

[12 � 1 : y2 � y] = [0 : y2 � y]. After doing a similar computation for the upper bound of d,
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we determine the new range of d to be [0 : 1]. Note that this lower bound is better than the

lower bound 1� y computed from the range substitution method in the previous subsection

One complication in using monotonicity for replacing ranges for variables is that either the

range we are replacing with or the given expression may contain MIN or MAX expressions.

Replacing a variable in a MIN or MAX expression causes problems because the monotonicity

of the arguments of the MIN or MAX may di�er. Having MINs or MAXs in the range we are

replacing for a variable causes problems because we wish to have all MINs and MAXs in the

resulting expression to be the outermost terms so to aid simpli�cation.

With a few additional rules, these MIN or MAX expressions can be easily handled. To

replace a range for variable x in min(f(x); g(x)), one simply performs the monotonicity replace-

ment method for x on f(x) to get f(a), the same method for x on g(x) to get g(b), then return

the expression min(f(a); g(b)). Pulling MIN and MAX expressions out of an resulting expres-

sion is also simple. If f(x) is monotonically non-decreasing, then f(min(a; b)) is transformed

into min(f(a); f(b)). Similarly, if f(x) is monotonically non-increasing, then f(min(a; b)) is

transformed into max(f(a); f(b)). The rules for handling expressions with MAXs are similar.

As an example, suppose we wish to replace x with [1 : min(10; y)] in d = [max(x2� x;�x) :

1]. Since the previous example has shown that x2 � x is monotonically non-decreasing, its

lower bound is 12 � 1 = 0. Similarly, since �x is monotonically non-increasing, its lower

bound is �min(10; y), which can be rewritten to max(�10;�y). Thus, the new value of d is

[max(0;max(�10;�y)) :1] = [max(0;�y) :1].
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4.2.3 Determining a replacement order

The order in which one replaces ranges for variables is very important. A poorly chosen re-

placement order may require more replacements and result in less accurate ranges than a well

chosen replacement order. For example, suppose we wish to compute the relationship between

x and y, where x = [1 : y] and y = [1 :1]. If we replace x then replace y in d = x� y, we get:

d = x� y

= [1 : y]� y

= [1� y : 0]

and we can determine that x � y, since the upper bound of d is zero. On the other hand, if we

replace y �rst, we get:

d = x� y

= x� [1 :1]

= [�1 : x� 1]

= [�1 : [1 : y]� 1]

= [�1 : y � 1]

= [�1 : [1 :1]� 1]

= [�1 :1]

In this case, we would not be able to determine any relationship between x and y.

To determine a good order to replace variables, we create a Range Dependence Graph

(RDG), then determine an ordering for its vertices. Each vertex in the RDG represents a

variable that may need be replaced at some point to make the di�erence range (d) to be
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D

X

Y

D = X - Y
X = [1:Y]
Y = [1:∞]

Figure 4.3: An example of a Range Dependence Graph (RDG).

comparable. The RDG also contains a vertex for the initial value of d. An edge exists between

vertices x and y if and only if the range for variable x contains the variable y. An example of

an RDG is shown in Figure 4.3. RDGs may contain cycles.

A good replacement order is computed by determining the strongly-connected components1

(SCCs) in the RDG, topologically sorting2 these SCCs3. This topological ordering of the SCCs

gives an good overall replacement order of the variables between SCCs in the RDG, but does

not specify any replacement order for variables within a SCC in respect to each other. To �nd

a replacement order for variables within a SCC, we topologically sort the vertices in each SCC

ignoring back-edges.4 We use an arbitrary vertex with an edge originating from outside the

1A strongly-connected component of a graph is a maximal subgraph of that graph where each vertex in the
subgraph can reach all other vertices in the subgraph.

2A topological ordering of a directed acyclic graph is an ordering such that if there is a path from vertex u
to vertex v then u occurs before v in this ordering.

3By de�nition of SCCs, one can always topologically sort the SCCs of a graph in respect to each other.
4Back-edges are edges in a graph, which if deleted would result in an acyclic graph.
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SCC as the root (start) node for the internal topological sort of a SCC. E�cient algorithms for

�nding SCCs and back-edges, and performing topological sorts can be found in [15].

As an example, we will compute the replacement order for the RDG graph shown in Fig-

ure 4.4. The algorithm �rst computes the strongly connected components of the graph, then

topologically sorts them into the order (SCC1, SCC2, SCC3, SCC4). It then topologically sorts

the vertices in each SCC, ignoring back-edges. The orders for SCC1 and SCC4 are trivial, ((t)

and (z) respectively). The order for SCC2 is computed by choosing an arbitrary vertex with an

incoming edge, in this case the vertex u, then topologically sorting SCC2 ignoring the back edge

w ! u, getting the order (u; v; w). The ordering for SCC3, which is (x; y), is computed simi-

larly. The �nal replacement order is then formed by concatenating these individual orderings

in the order of the SCC ordering. This results in the order (t; u; v; w; x; y; z).

For acyclic RDGs, it can be seen that the computed replacement order is optimal in the

number of replacements. However, it may not be optimal for cyclic RDGs. This may be

because we chose the wrong root node to start the topological sort in the SSC, or may be that

the optimal replacement order may require a variable to be visited more than once. To partially

overcome this problem, we repeat the replacement order of each multiple vertex SCC in the

�nal replacement order. The SCC's variable order and its duplicate variable order are adjacent

to each other in the �nal replacement order. For example, the replacement order for Figure 4.4

would be (t; u; v; w; u; v; w; x; y; x; y; z). We have found this heuristic to be e�ective for many

of the cyclic RDGs we have seen in practice.
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Figure 4.4: An example of a cyclic Range Dependence Graph.
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4.2.4 Time complexity

In our experience, nearly all the time spent by the expression comparison algorithm in Figure 4.2

is performing variable substitutions and expression simpli�cations inside the replace var()

function. Thus, the overall time complexity of the expression comparison algorithm would be

a function of the number of variable replacements performed and the costs of substitutions and

simpli�cations.

The cost of a single variable replacement, (i.e., replace var), is equal to the costs of

performing a constant number of variable substitutions and expression simpli�cations, ignoring

the costs incurred by recursive calls to the expression comparison algorithm. Now, the cost

of performing a variable substitution or expression simpli�cation are functions of the sizes of

the expressions involved, (more speci�cally, the number of nodes in the abstract syntax trees

that represents the expressions). Typically these functions are of the order O(n) or O(n logn),

where n is the maximum of the sizes of the initial and �nal expressions. (See Havlak for a

detailed analysis of the costs of simplifying symbolic expressions encountered by parallelizing

compilers [32].)

Using these costs of substitutions and simpli�cations, one can compute the cost of the

expression comparison algorithm. Unfortunately, each substitution or simpli�cation can cause

a multiplicative growth in the size of the �nal expression, causing subsequent substitutions

and simpli�cations to run longer. Let c be the maximum amount that an expression may

grow after a substitution or simpli�cation. Then after i invocations of replace var, each

performing a constant number of substitutions and simpli�cations, the �nal expression may be

of length cin. Thus the worst case time complexity of the expression comparison algorithm

is O(
Pr

i=1 c
in log cin), where r is the total number or variable replacements performed by the
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expression comparison algorithm. After simplifying this down and treating variable n as a

constant, the worst case time complexity of the expresion comparison algorithm is O(rcr).

Computing the number of variable replacements, (i.e., variable r), is a bit more compli-

cated, since each variable replacement may make recursive calls to the expression comparison

algorithm, which can perform several variable replacements itself. The worst case of number of

replacements made by the expression comparison algorithm is O(v!). This is because each call

to the expression comparison algorithm performs O(v) variable replacements and each variable

replacement may make a constant number of recursive calls to the expression comparison algo-

rithm. Now, because the range substitution method has an optimization to ensure termination,

where recursive calls to the expression comparison algorithm cannot replace variables that are

currently being replaced, these recursive calls can replace only v� 1 of the v variables. Solving

this recurrence, one gets O(v!).

Although the worst case of the number of variable replacements is O(v!), if one makes a

reasonable assumption, the maximum number of variable replacements can be shown to be

O(v) or O(v2). This assumption is that the only recursive comparisons performed by the range

substitution method will be those to determine the uncached signs of variables. We feel justi�ed

to make such an assumption because it (nearly) holds for all expressions that are polynomials

in a fully simpli�ed, sums-of-products form possibly divided by an integer and enclosed by one

or more MINs or MAXs;5 nearly all expressions derived from real programs are of this form.

Alternately, one may modify the algorithm to guarantee that the assumption holds.

If we use the range substitution method to replacing variables with ranges, no recursive

calls to the expression comparison algorithm would be needed if the the signs of all variables

5This assumption may not hold for exponentiation terms. (See rewrite rules (6) and (13) from Tables 4.1
and 4.2.) However it does hold for most of the cases we've seen.
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in a program is known and stored in the sign cache. In this case, only O(v) replacements

would needed, where v is the number of integer variables in the program, or more accurately,

the number of variables in the RDG. However, if none of the variable signs are cached, then

the algorithm may perform up to O(v) recursive calls to the expression comparison algorithm,

(each performing O(v) replacements), to determine the signs of the O(v) variables. Thus, the

expression comparison algorithm may perform at most r = O(v2) variable replacements.

For the monotonicity replacement method, as many as O(v) recursive calls to the expression

comparison algorithm would be performed to determine the monotonicity of the O(v) variables.

By design of this method, each of these recursive calls can only invoke the range substitution

method. Thus, this method will perform at most O(v2) variable replacements if all the sign

caches were already �lled. If none of the sign caches were �lled, it would still make at mostO(v2)

replacements, since the �lling of the sign caches only add r = O(v2) additional replacements.

In summary, the expression comparison algorithm takes at most O(rcr) time, where c is the

maximum multiplicative growth of the di�erence expression after a substitution and simpl�ca-

tion and r is the number of variable replacements. At most r = O(v2) replacements are made

by the algorithm if one assumes that the range substitution method would only make recursive

calls to the expression comparison algorithm to determine the sign of uncached variables, or at

most r = O(v!) if one does not.

4.2.5 Performance

The previous subsection derived bounds on the time taken by the expression comparison algo-

rithm. Unfortunately, the worst case bounds are very bad. That is, the algorithm takes at most

O(rcr) time. Luckily, for real programs the number of variable replacements (r) performed is
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usually very small and little growth typically occurs in the di�erence expression, (i.e., c is close

to 1). In this subsection, we will present quantitative results that support this assertion.

Table 4.3 displays some statistics on the number of replacements and the average times

taken by the expression comparison algorithm in Figure 4.2. These statistics were collected

from the expression comparisons performed by the range propagation algorithm described in

Section 4.3 and by the Range Test, when run on six of the Perfect Benchmark codes and two

application codes from the National Center of Supercomputing Applications. Because most of

the time of the algorithm is spent in performing variable replacements, the table breaks down

the statistics by number of variable replacements per comparison. This number of variable

replacements includes replacements performed by recursive calls to the expression comparison

algorithm. The No. Comparisons column displays the number of expression comparisons that

needed this number of variable replacements. The Avg. time taken column shows the average

wall-clock time in milliseconds spent by one of these comparisons on a Sparc 10. The Total

row displays the total number of expression comparisons performed and the average amount of

time taken by them.

Two remarks should be made concerning Table 4.3. First, special-case code was used to

optimize the case where no replacements are required. Second, the large execution time for

comparisons that make 13 variable replacements is mostly due to a costly simpli�cation algo-

rithm for integer divisions. If disabled, the average time decreases to about 250 milliseconds.

This does worsen the accuracy of the expression comparator for these cases, however.

Table 4.3 shows that the typical invocation of the expression comparison algorithm is mod-

erately inexpensive. It also shows that the small number of variable replacements performed

by a typical comparison is the main reason for its low cost. Thus, the expression comparison
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No. replacements No. comparisons Avg. time (in mS)
per comparison needing n replacements taken per comparison

0 26007 0.2
1 13829 7.7
2 953 14.0
3 295 21.1
4 135 27.6
5 59 46.8
6 7 72.9
7 6 105.0
9 5 150.0
13 8 947.5

Total 41304 3.6

Table 4.3: Average time and number of replacements made by the expression comparison
algorithm in Figure 4.2 for six Perfect Benchmarks codes.

algorithm should be inexpensive enough to use in a production compiler, despite its exponential

worst-case complexity.

4.3 Propagating ranges

The range propagation algorithm centers on the collection and propagation of ranges through a

program unit. Abstract interpretation [16] is used to compute the ranges for variables at each

point of a program unit. That is, the algorithm \executes" the program by following its control

ow paths, updating the current ranges to reect the side e�ects of the statements encountered

along these paths, until a �xed point is reached. This section will describe how to compute

ranges for FORTRAN 77 programs. Similar algorithms can be designed for other languages.

4.3.1 Basic operations

To compute the ranges for each statement in the program unit, some basic operations to merge

or join ranges are required. These basic operations, which are displayed in Table 4.4, are the
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[a : b][ [c : d] ) [min(a; c) : max(b; d)] (4.14)

[a : b]\ [c : d] ) [max(a; c) : min(b; d)] (4.15)

[a : b]5 [c : d] ) [if a = c then a else �1 :

if b = d then b else 1] (4.16)

[a : b]4 [c : d] ) [if a 6= �1 then a else c :

if b 6=1 then b else d] (4.17)

Table 4.4: Basic operations used by the range propagation algorithm.

union ([), intersection (\), widening (5), and narrowing (4) operations. The union operator

merges ranges coming from multiple points in the control ow of the program. The intersection

operator adds new constraint information to a range. This new constraint information typically

originates from conditional tests or loop bounds. The widening operator, which is essentially an

overly conservative union operator, is used at selected points of the program unit to guarantee

termination. The narrowing operator is used to regain some of the information lost by the

widening operator. Our de�nitions of the narrowing and widening operators were inuenced

by the operators given by Bourdoncle [11].

The range propagation algorithm uses a special range, denoted as >, which represents an

unde�ned value. The union operator, when applied upon > and a range x, has the following

identity.

x [ > = > [ x = x

The application of the widening and narrowing operators on > and x have the same identity.

For the intersection operator, we have the following identity.

x [ > = > [ x = >

As mentioned in Section 4.2, the expression comparison algorithm can be very expensive

when the variables' ranges contain MINs and MAXs. Because of this, we attempt to eliminate
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the new MINs and MAXs introduced by the union and intersection operators in Table 4.4 by

using the expression comparison algorithm to determine the MIN (or MAX) argument with

the smallest (or greatest) value. Also, since expression comparison is often slowest for range

bounds that contain both MINs and MAXs, we disallow MIN expressions to occur in range

lower bounds and MAX expressions to occur in range upper bounds. More speci�cally, if the

union operator is unable to eliminate the MIN (or MAX) from its lower (or upper) bound, it

replaces the bound with �1 (or +1).

4.3.2 Algorithm

The ranges for a program unit are computed in two very-similar phases: a widening phase then

a narrowing phase. For each of these phases, mappings of variables to their ranges, (i.e., range

dictionaries), are associated with each statement and each control-ow edge in the program

unit. For both phases, iterative data-ow analysis [2] is used to compute the �nal values of

these range dictionaries. For the widening phase, the ranges for all variables for all program

entry points is initially de�ned to be [�1 : 1]. All other statements and control ow-edges

are initially assigned a range dictionary whose ranges are unde�ned (>). The initial ranges for

the narrowing phase are the �nal ranges computed by the widening phase.

We compute the ranges for a statement or control ow edge as follows. The range dictionary

for a statement is the union of the ranges of all the entering control-ow edges for that state-

ment. The range dictionaries for the exiting control-ow edges of a statement are computed by

modifying a copy of the statement's range dictionary with the side e�ects of the statement. The

modi�cations made for each kind of statement is as follows: An assignment statement sets the

range for the left-hand-side variable to the range computed from the right-hand-side expression.
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A conditional statement intersects the entering range dictionary with ranges derived from the

conditional's test. A similar intersection operation is done for the bounds of DO loops.

To guarantee that the algorithm eventually reaches a �xed point and halts, a widening

operator is applied on the entering range dictionaries of all entry statements of loops in the

control-ow graph, when in the widening phase. The arguments to the widening operator

are the entering ranges for the current visit to the statement and the entering ranges for the

previous visit to the statement. The widening operator is only applied for such nodes on the

third and later visits to these nodes, to ensure that the current and previous range dictionaries

are fully de�ned, (i.e., no ranges inside them are > or were formed by a union with >).

The narrowing phase is identical to the widening phase, except that its initial ranges are the

ranges computed from the widening phase, and the narrowing operator is applied at loop-header

nodes instead of the widening operator.

Variable modi�cations by a statement must also be taken into account when computing the

ranges for the statement's exiting control-ow edges. When a statement modi�es a variable, we

eliminate all occurrences of that variable in the exiting control-ow edges' range dictionaries.

We do this because the ranges are in terms of these variables before they are modi�ed, and

would thus be incorrect after this statement.

A simple way to perform this is to replace all occurrences of that variable with the vari-

able's range, (i.e., call replace var). However, a more accurate result can be achieved for

variable modi�cations caused by a special class of assignment statement called an invertible

assignment [17]. Invertible assignments are assignment statements where the variable on the

left-hand-side also occurs on the right-hand-side, and where this assignment can be rewritten

so that the old value of this variable equals some function of the new value of this variable; that
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is, if xnew = f(xold) then one can determine some inverse f 0 of f such that xold = f 0(xnew).

For example, x = x+1 is an invertible assignment, where the inverse of x+1 equals x� 1. For

variable modi�cations caused by invertible assignments, one can replace all occurrences of the

variable with the inverse of the assignment's right-hand-side. For example, if y = [1 : x] before

the invertible assignment x = x+ 1, then the new range for y is [1 : x� 1].

4.3.3 Example

Figure 4.5 gives an example of the ranges generated by the range propagation algorithm for a

small code fragment. Only the ranges for variable x are shown. We will describe how these

ranges were computed for only a few statements in the code fragment. The range after statement

S5 is determined by simply computing the range of x + 1, which is [1 : n] + 1 = [2 : n + 1].

(Remember that the range of x is not allowed to contain x.) The range inside the THEN part

of the IF statement at S3 was calculated by intersecting the old range [1 : 2 � n] with the

range [�1 : n], resulting in [max(1;�1) : min(2 � n; n)] = [1 : n]. The range after the ENDIF

statement at S8 was calculated by taking the union of the two ranges ([2 : n+1] and [2 : 2 �n])

entering the statement, forming [min(2; 2) : max(n+1; 2 �n)] = [2 : 2 �n]. Finally, the range at

the top of the loop at S2 was computed with the help of the widening and narrowing operators.

Without a widening operator, the values of the range after S2 would take on the successive

values: [1 : 1], [1 : 2], [1 : 4], : : : , preventing the algorithm from terminating. The widening

operator prevents this by assigning x to the conservative value [1 : 2] 5 [1 : 4] = [1 : 1].

However, one can see that the upper bound of this range is overly conservative, since the upper

bound from S1 (1) and the upper bound from S9 (2 � n) are both less than 1. This overly

conservative value is corrected in the narrowing phase, where the old value of the range after
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S1 : x = 1
x = [�1 :1]

S2 : CONTINUE
x = [1 : 1]

S3 : IF (x � n) THEN
x = [1 : 2 � n]

S4 : IF (A(x) � 1:0) THEN
x = [1 : n]

S5 : x = x+ 1
x = [1 : n]

S6 : ELSE
x = [2 : n + 1]

S7 : x = 2 � x
x = [1 : n]

S8 : ENDIF
x = [2 : 2 � n]

S9 : GOTO S2
x = [2 : 2 � n]

S10 : ENDIF
x = >
x = [1 :1]

Figure 4.5: Computation of ranges for an small code segment.

S2 is narrowed with the range formed by the union of the ranges from S1 and S9, getting

[1 : 1]4 ([1 : 1] [ [2 : 2 � n]) = [1 : 2 � n]. (Remember that the narrowing operator replaces

all in�nite bounds of the old range with the bounds of the new range, but otherwise leaves the

range alone.)

4.3.4 Time complexity

The time taken to perform a union or intersection of ranges for a particular statement would

be the time c taken to perform a symbolic expression comparison times the number of variables

v in the range dictionary, or O(vc). Similarly, the cost for handling variable modi�cations is

also O(vc). The widening operator only cost O(v) time. Thus it takes O(vc) time to compute

the range for a particular statement or control ow edge.

Because of the widening operators, each range in the program unit can be modi�ed only

a constant number of times. Thus the time taken by the range propagation algorithm is

O((s + e)vc), where s is the number of statements in the program and e is the number of

control-ow edges in the program. Since e � s, we can simplify this down to O(evc).
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Program Lines of code Time taken (in S)

ARC2D 4694 8.2
BDNA 4887 33.4
FLO52 2368 19.4
MDG 1430 7.2

OCEAN 3285 23.1
TRFD 634 38.8

CLOUD3D 14438 130.5
CMHOG 11826 42.2

Table 4.5: Time taken by the range propagation algorithm for six Perfect Benchmarks codes
and two NCSA codes.

Table 4.5 displays the speed of the range propagation algorithm on a Sparc 10 for six of

the Perfect Benchmarks and two application codes from the National Center of Supercomputer

applications (NCSA). The range propagation algorithm was compiled using g++ 2.6.3 with the

-O ag. This table shows that the range propagation algorithm is e�cient for real codes. The

table also shows that there is little correlation between the number of lines in the program and

the time taken by range propagation. This is because the algorithm is also sensitive to other

factors, such as the number of integer variables, the complexity of the expressions that these

variables are assigned to, and the complexity of the program's control ow.

4.4 Related work

The idea for representing program constraints as ranges was �rst proposed by Harrison [31] for

array bounds checking and program veri�cation. In his paper, Harrison describes how one can

compute the range of integer values that variables can take in a program unit, using data-ow

analysis. Although he does propose simple techniques to handle symbolic ranges, our symbolic

analysis techniques are superior. (He restricts the bounds of his symbolic ranges to the form

< variable > + < constant >.)
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Bourdoncle [11] greatly improves the accuracy of the integer range propagation algorithm

by Harrison through the use of abstract interpretation [16]. Our use of the narrowing operator

was inuenced by his algorithm. Bourdoncle's algorithm is unable to generate symbolic ranges.

The accuracy of the ranges generated by his (and Harrison's) technique can be improved with

our monotonicity replacement method in Section 4.2.

Cousot and Halbwachs [17] presents a di�erent method to compute and propagate con-

straints through a program. In their technique, sets of constraints between variables are rep-

resented as a convex polyhedron in the n-space of variable values. Because of this represen-

tation, all constraints are restricted to be in the form of a�ne inequality relationships, (e.g.,

5 �x+2 � y � 2). Abstract interpretation is used to compute the convex polyhedron of variable

constraints for each statement and each control ow edge of the program. Two a�ne symbolic

expressions can be compared, in respect to constraints given as a convex polyhedron, by de-

termining what side the convex polyhedron falls on the hyperplane formed by the di�erence of

the two expressions.

Although our range propagation algorithm was heavily inuenced by their abstract inter-

pretation algorithm, our representation of variable constraints is quite di�erent. They are more

accurate in the computation and propagation of a�ne variable constraints. However, they

cannot handle non-a�ne variable constraints, such as a < b � c. Another strength in our repre-

sentation is that our analyses can use a sparse data-ow form, such as de�nition-use chains [2]

or Static Single Assignment [18], while theirs cannot. Performing range propagation on such a

sparse form can greatly increase its e�ciency.

In a complementary paper, Tu and Padua [44] present a symbolic expression comparison

and constraint propagation technique, based on an extension of Static Single Assignment (SSA)
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form [18]. Expressions are compared by repeatedly substituting variables with their constant

symbolic values until the two expressions di�er by only an integer constant. The values to

substitute are determined by a demand-driven analysis of the program. Phi (�) functions,

which are allowed to be substituted in these expressions, are used to represent ranges of values.

These methods are potentially mre e�cient because they are demand-driven and use SSA form.

Our variable replacement and simpli�cation techniques are more powerful than theirs. How-

ever, their constraint propagation methods are more e�cient since they are demand-driven and

use Static Single Assignment form. Because of this, we have incorporated their demand-driven

techniques into the range propagation algorithm. Chapter 5 will describe how our demand-

driven range propagation algorithm. Additionally, their constraint propagation algorithm is

capable of performing ow-sensitive analyses.

4.5 Conclusions

We have presented a powerful, e�cient technique to compute the symbolic ranges for a program

unit, and have shown how to use these ranges to compare arbitrary, possibly non-a�ne, symbolic

expressions. We have also shown that this technique can bene�t several passes in a parallelizing

compiler.

We have implemented Range Propagation in Polaris. Range Propagation is currently being

used for symbolic data dependence testing by the Range Test, detection of zero-trip loops,

computation of symbolic range of values that may possibly be referenced by an array access,

and estimation of iteration counts of loops. Range Propagation has enabled the Range Test

to e�ectively parallelize two codes in the Perfect Benchmarks, TRFD and OCEAN, with the

aid of other restructuring techniques. Because of this, we were able to achieve speedups close
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to the hand-parallelized versions, which were 13 for TRFD and 14 for OCEAN on Cedar, a

machine with 32 vector processors, where commercial parallelizing compilers could only achieve

a speedup of at most 2. Thus, the ability to compare symbolic expressions, as provided by

Range Propagation, can signi�cantly improve the e�ectiveness of parallelizing compilers.

We also found Range Propagation to be reasonably e�cient. A single expression comparison

takes only about 3.6 milliseconds, on average. Computing all the ranges for a program unit

takes about 7 seconds per a thousand lines of code, an average. In chapter 5, we will present a

demand-driven version of Range Propagation which greatly improves the speed of computing

ranges for a program.
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Chapter 5

DEMAND DRIVEN SYMBOLIC

RANGE PROPAGATION

5.1 Motivation for demand-driven analysis

As shown in the previous chapter, Range Propagation is useful for many of the restructuring

techniques and analyses of parallelizing compilers. In fact, Range Propagation has been used

for data dependence analysis, detecting zero-trip loops for induction variable substitution, loop

trip-count estimation, and computing the range of possible values taken by an array access in

Polaris. Unfortunately, the compiler usually modi�es the program between these techniques,

requiring repeated recomputation of the program's ranges. Because of this, a signi�cant fraction

of a compiler's execution time can be spent performing range propagation.

Because of these costs, we have developed a demand-driven algorithm for performing range

propagation. By demand-driven, we mean an algorithm that computes the range for a particular

variable only when that range is requested by the user, as opposed to a conventional data-ow
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algorithm that computes all ranges at once. Since many restructuring techniques only use a

small subset of the ranges of a program unit, a demand-driven algorithm should greately reduce

the costs of range propagation.

5.2 Notation

A control-ow graph (CFG) of a program is a directed graph with a special vertex named

start and where every vertex is reachable from start. Each vertex in the CFG corresponds to a

statement in the program. An edge exists between two vertices in the CFG if and only if the

statement corresponding to the second vertex may be immediately executed after the statement

corresponding to the �rst vertex. An edge is said to be a back-edge if the order of the source

of the edge is larger than the order of the sink of the edge, under a depth �rst ordering of the

CFG.1 Vertex u dominates vertex v if and only if every path from start to v pass through

vertex u. Vertex u strictly dominates vertex v if and only if u dominates v and u does not

equal v. Vertex u is the immediate dominator of vertex v if and only if u strictly dominates

v and there is no vertex w such that u strictly dominates w and w strictly dominates v. See

Aho, Sethi, and Ullman [2] for more details on these de�nitions.

Similar dominance relationships can be de�ned for the control-ow edges in the program.

For example, a control-ow edge dominates a statement if all paths from start to that statement

pass through that control-ow edge. In this chapter, we would say that a control-ow edge is

an immediate dominating control-ow edge (or icdom(s)) of a statement (s) if that edge

is the immediate dominator of the statement.

1Our de�nition of back-edges is wider than the de�nition of back-edges given by others, (i.e., we de�ne more
edges to be back-edges than they do). We have de�ned back-edges di�erently so that if one deleted all the
back-edges from a graph, the graph is guaranteed to be acyclic, even if the original graph is irreducible.
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Our demand-driven range propagation algorithm assumes that programs are in Static Sin-

gle Assignment (SSA) form. A program is in SSA form when every variable within it has at

most one de�ning statement. Programs are translated into SSA form by inserting �-functions

and renaming variables. A �-function, denoted as v  �(w1; w2; : : : ; wn), is special assign-

ment to a variable v that is inserted at a join in the control ow where at least two de�nitions

of v reach this join. The �-function has an argument for each entering control-ow edge of

this join. The ith argument (wi) corresponds to the value that the variable assigned by the

�-function (v) would take if the control-ow of the program took the ith control-ow edge to

reach the join node, (i.e., v = wi). An e�cient algorithm to translate programs into SSA form

is described in [18]. In this chapter, we will assume that the function def(v) would return the

single statement in the program that de�nes v.

5.3 Range propagation

Briey the range propagation algorithm computes the range of each variable at each point of

the program. A range is simply a symbolic lower bound and a symbolic upper bound on the

values that a variable may take.

Since one cannot always statically compute the exact range that all variables may take in a

program, range propagation computes a conservative approximation of the range of a variable.

The lower bound of this approximation is always guaranteed to be smaller than or equal to the

actual lower bound while the upper bound of this approximation is always guaranteed to be

larger than or equal to the actual upper bound.

We break up the problem of computing the ranges of a variable at a particular statement into

two sub-problems, the computation of the control ranges of the variable and the computation
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function get range(s : statement, v : variable) : range
if (R(s; v) has not been de�ned) then
c get control range(s; v)
d get data range(v)
R(s; v) c\ d

end if

return R(s; v)
end function

Figure 5.1: The demand-driven range propagation algorithm.

of the data ranges of the variable. The �nal range for the variable is simply the intersection of

its control and data ranges. The control ranges of a variable are those ranges computed from

the constraints imposed by the control ow of the program, such as from IF or DO statements.

The data ranges of a variable are those ranges computed from the assignments to that variable.

We compute the control and data ranges separately because control ranges are much cheaper

to compute.

The top-level algorithm for the demand-driven range propagation algorithm is shown in

Figure 5.1. This algorithm stores its results in a global structure named R, so that future

invocations of this algorithm can reuse these results rather than recomputing.2 The algorithm

simply checks whether the range for the given variable and statement already exists in R,

computes and stores the range if it does not, then returns the range. The range is computed by

intersecting the data and control ranges returned by get control range and get data range.

The formal de�nition of the intersection operator for ranges can be found in Table 4.4. The

next two sections will describe how these control and data ranges are computed.

2This storing and reusing values to avoid recomputation is called memoization [37, 1].
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5.4 Computing control ranges

5.4.1 Needed functionality

Our demand-driven control range propagation algorithm assumes that the immediate dominat-

ing control-ow edge is known for each statement and that the program is in SSA form. The

function icdom(s) will represent the immediate dominating control-ow edge of the statement s.

An linear-time algorithm for computing dominators has been developed by Harel [30]. Alterna-

tively, one can approximate the dominating control-ow edges from the statement dominators,

which must be computed when translating into SSA form.

To compute the control ranges of a program, we will assume that there exists a function

get local control ranges(e; v), which computes and returns the range of a given variable v

at a given control-ow edge e computed from the control constraints imposed by the source

statement of that edge. For example, get local control ranges(e; v) would return [a :1], if

e is the exiting control ow edge for the then case of the statement IF (V .GE. A) THEN. If

there are no control ow constraints imposed on that variable for that control-ow edge, then

the function returns the unconstrained range ([�1 :1]).

5.4.2 Algorithm

The algorithm for demand-driven control range propagation is shown in �gure 5.2. This algo-

rithm is composed of two mutually recursive functions: a function that computes the control

range that holds for the entry of a given statement and a function that computes the control

range that holds after taking a given control-ow edge. Intuitively, these functions computes

the control range of a given variable and statement (or control-ow edge) by intersecting the

ranges that hold for the variable for all the dominating control-ow edges of the given state-
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function get control range(s : statement, v : variable) : range
if (icdom(s) is not de�ned) then
return [�1 :1]

else

return get control range1(icdom(s); v)
end if

end function

function get control range1(e : control-ow edge, v : variable) : range
if (C(e; v) has not been de�ned) then
c get local control range(e; v)
p get control range(source(e); v)
C(e; v) c \ p

end if

return C(e; v)
end function

Figure 5.2: The demand-driven control range propagation algorithm.

ment (or control-ow edge). The control range of a statement is simply the control range that

holds after passing through that statement's immediately dominating control-ow edge, (i.e.,

icdom(s)). If the statement does not have a immediately dominating control-ow edge, then

its result is the unconstrained range ([�1 : 1]). The control range for a control-ow edge is

the control range that is imposed by the edge, (i.e., the result of get local control range),

intersected with the control range for the source statement of that edge. The result is stored

in the data structure C so as to avoid needless recomputation, (i.e., it memoizes).

Although recursive, the functions in Figure 5.2 are guaranteed to terminate. By de�nition

of immediately dominating control-ow edges, the source of icdom(s) must strictly dominate

statement s. Since the graphical representation of the dominator relationship is a tree, the

algorithm will eventually reach a statement that does not have a immediately dominating

control-ow edge.
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5.4.3 Time complexity

The worst case time taken by the algorithm in Figure 5.2 is bounded by O(cjSj), where c is

the time taken to perform an intersection, (which equals the time taken to perform a constant

number of symbolic expression comparisons), and jSj is the number of statements in the pro-

gram. However, from the extensive use of memoization, (i.e., storing computed values into C

and reusing them), the worst case time taken to compute the range for every variable at every

statement is O(cjSjjV j), where jV j is the number of scalar variables in the program. Since a

non-demand-driven algorithm would also take at least O(cjSjjV j) time, (since such an algo-

rithm would have to visit each (statement, variable) pair in the program), the demand-driven

algorithm is at most as expensive as a non-demand-driven algorithm, ignoring a constant factor.

5.4.4 Design justi�cation

The algorithm for computing control ranges may prompt the user to ask two questions: Why is

the algorithm is so conservative, and why does the algorithm use dominating control ow edges

as opposed to control dependences?3 In this section, we will answer both of these questions.

Examining the algorithm in �gure 5.2, one can see that our algorithm for computing control

ranges is very conservative, since it looks at only some of the edges in the program. For example,

for the following code fragment:

IF (n > 0) THEN GOTO 100

...

IF (n > 0) THEN GOTO 100

...

STOP

100 CONTINUE

3A statement s is control-dependentupon another statement t if the execution of statement tmay determine
whether statement s would be executed or not. A formal de�nition of control-dependences, as well as how to
e�ciently compute them, can be found in [18].
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the algorithm would not be able to prove that n > 0 at the CONTINUE statement, since neither of

the two exiting control-ow edges of the two IF statements dominate the CONTINUE statement.

We have chosen to look at only dominating control-ow edges for simplicity and e�ciency. If

instead one tried to compute the control ranges from all control-ow edges, then one would need

to perform an iterative data-ow analysis. As we shall see in the following sections, performing

iterative analyses on demand is a complex, sometimes expensive procedure. Additionally, for

structured programs, the results from our algorithm would be identical to the results of an

iterative algorithm, since all statements that determine control ow dominate the statements

contained within their bodies. Thus, we believe that our algorithm would be just as accurate

as an iterative algorithm for most real programs, since most real programs are su�ciently well

structured.

As for the question why we use dominating control-ow edges instead of a control-

dependences, we do not use control-dependences since they do not provide the information

we need. More speci�cally, there are some cases where a statement can add a control range to

another statement, yet this other statement is not control-dependent upon this statement. For

example, in the following code fragment:

100 CONTINUE

IF (i <= n) THEN GOTO 200

...

i = i + 1

GOTO 100

200 CONTINUE

the CONTINUE statement labeled 200 is not control-dependent upon the IF statement, but the

control range of i at this CONTINUE statement is tightened by the constraint imposed by this

IF, (i.e., i > n).
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function sparse icdom(s : statement) : control-ow edge

if (I(s) has not been de�ned) then
e icdom(s)
if (e is de�ned and e does not add any control ranges) then
e sparse icdom(source(e))

end if

I(s) e

end if

return I(s)
end function

Figure 5.3: Demand-driven algorithm for computing a sparse immediate dominating control-
ow edge relationship.

5.4.5 Optimizations

By design of the algorithm, the time taken to compute a single control range is dependent

upon the number of control-ow edges that dominate the given statement s. The number of

dominating control-ow edges of a statement can be very large (O(jSj)). However, only a few

of these edges add new constraints, (e.g., edges exiting IF or DO statements or from ASSERT

directives). Because of this, our algorithm creates and uses a sparse form of the icdom function,

where this sparse form returns the most immediate dominating control-ow edge that adds at

least one range to one variable.

An algorithm for computing the sparse immediate dominating control-ow edge of a state-

ment is shown in Figure 5.3. This algorithm simply traces back through all the statement's

dominating control ow edges, using the icdom relationship, until it �nds an edge that adds a

control range to at least one variable. The global structure I is used to memoize the result of

this computation so that the algorithm would not recompute it in future calls.
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type node ptr = pointer to d range node

type node = structure

var : variable
value : range
old value : range
committed : boolean
prev : set of node ptr

next : set of node ptr

end structure

Figure 5.4: Fields of a node structure.

5.5 Computing data ranges

The algorithm for computing ranges originating from the program's data ow is much more

complex than the algorithm for computing ranges originating from constraints imposed by the

control ow. This additional complexity arises from the need to iterate to a �xed point, (i.e.,

perform data-ow analysis), to compute the data ranges.

5.5.1 Data-ow graph

To allow the algorithm to cleanly and e�ciently perform data ow analysis on a program in

a demand-driven manner, we create and iterate over a data-ow graph that contains only the

information needed to compute the desired range. Each node in this data-ow graph represents

a variable and its data range. An edge exists from the node for variable x to the node for

variable y if and only if the computation of the range of x depends upon the range of y. One

node in this graph, denoted as root, is the node for the variable of the requested data range.

All other nodes in the graph that we need to iterate over are reachable from root.

The �elds of a single node of this graph are shown in Figure 5.4. The var �eld stores the

name of the variable representing this node. The value �eld contains the variable's current data

range. The old value �eld holds the value of the variable's data range before its latest update.
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function create node(v : variable) : node ptr

x new node

x:var  v

x:old value  >
x:value  >
x:committed  false

x:prev  ;
x:next  ;
if (def(v) is not an assignment statement) then
x:value  [�1 :1]
x:committed  true

end if

return x
end function

Figure 5.5: Algorithm to create and initialize a data-ow graph node.

The committed �eld indicates whether the range in the value �eld is the fully computed range

for the node's variable. The next �eld represents all edges in the data-ow graph that exit from

this node. That is, it contains pointers to nodes whose values this node's range depends upon.4

Similarly, the prev �eld represents all edges that enter this node.

The committed �eld of nodes need some additional description. When the committed �eld

is set for a node, we say that the node is committed, uncommitted otherwise. When a node

is committed, one is assured that the range in the value �eld for this node is the correct data

range for the node's variable and will not be modi�ed. Because of this, only the ranges of

uncommitted nodes in a data-ow graph need to be computed. Conceptually, committing a

node can be thought of as memoizing the range of that node.

The algorithm for creating and initializing a single node in the data-ow graph is shown

in Figure 5.5. With the exception of the initialization of the value �eld, all the initializations

performed by this algorithm are straightforward. The initial range assigned to the value �eld is

4By construction of SSA form, each variable may have at most one de�nition. Because of this, determining
what de�nitions that a particular expression depends upon is simple.
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function get data range(v : variable) : range
root  get node(v)
// Assert: root :committed = true

return root :value
end function

function get node(v : variable) : range
if (D(v) has not been de�ned) then
root  create node(v)
D(v) root
call add children to node(root)
// Node root is now fully-initialized
if (all uncommitted nodes reachable from root have been fully initialized) then
compute data ranges(root)
commit data ranges(root)

end if

end if

return D(v)
end function

Figure 5.6: The demand-driven data range propagation algorithm.

determined from the single de�nition point of the given variable, as indicated by def(v). If the

variable's de�nition is not an assignment statement, (e.g., the variable is a formal parameter or

is an argument to a procedure call or I/O statement), then its range is set to the unconstrained

range ([�1 :1]) and committed. Otherwise, its value is set to the unde�ned range (>).

5.5.2 Algorithm

The top-level of the algorithm for computing data ranges is shown in Figure 5.6. This algorithm

simply calls the function get node to build and iterate over a data-ow graph whose root is

the node for the given variable, then returns the computed range stored in this root node.

The function get node has two responsibilities. One of these responsibilities is to build

a data-ow graph. More speci�cally, it creates a node for the given variable as well as data-

ow subgraphs for the variables that the given variable's range may depend on. The function
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procedure add children to node(x : node ptr)
if (def(v) is an assignment statement) then
for each variable w in rhs of def(v) do
y  get node(w)
x:next  x:next [ fyg
y:prev  y:prev [ fxg

end for

end if

end procedure

Figure 5.7: Algorithm to create children for a data-ow graph node.

procedure commit data ranges(root : node ptr)
for each uncommitted node x reachable from root do
x:committed  true

end for

end procedure

Figure 5.8: Algorithm to commit data ranges in the data-ow subgraph rooted at root.

create node, which is shown in Figure 5.5, creates the node for the given variable. The function

add children to node, which is shown in Figure 5.7, creates nodes for the variables that the

current node depends upon and adds edges between this current node and the newly created

nodes by updating their next and prev �elds. These other nodes are created by recursive calls

to get node. The global array D is used to memoize created nodes for future reuse.

The other responsibility of function get node is to compute and commit the data ranges

for the data-ow subgraph that it has built, if this subgraph is su�ciently complete to safely

compute these ranges. By su�ciently complete, we mean that none of the nodes in the sub-

graph of nodes reachable from root are in the midst of being initialized by other invocations of

get range. (Remember that get range is a recursive function). We use Tarjan's algorithm to

detect strongly-connected components5 to e�ciently determine whether the subgraph rooted

at root have been fully initialized.

5A strongly-connected component of a graph is a maximal subgraph of that graph where each vertex in the
subgraph can reach all other vertices in the subgraph.
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If the data-ow subgraph rooted at root have been fully initialized, the function get node

computes and commits the ranges of this subgraph by calling functions compute data ranges

and commit data ranges. The implementation of compute data ranges will be described in

the next subsection. The implementation of commit data ranges is shown in �gure 5.8. This

algorithm sets the committed �eld to true for all uncommitted nodes in the subgraph rooted at

root. By committing these nodes, we conceptually memoize the ranges contained in these nodes,

since future invocations of get data range would return the ranges in these nodes rather than

recomputing them.

5.5.3 Computing data ranges from a data-ow graph

The computation of data ranges from a data-ow graph uses some basic operations. More

speci�cally, the algorithm uses union ([), intersection (\), widening (5), and narrowing (4)

operators to compute data ranges. De�nitions of these operators can be found in Table 4.4 and

Section 4.3.1.

5.5.3.1 Algorithm

The main algorithm for computing data ranges is shown in Figure 5.9. This algorithm

computes the data ranges of all nodes whose variable's de�nitions are �-functions in func-

tion compute data ranges phase, then computes the data ranges of all other nodes in the

graph. The range of one of these other nodes is a single element range whose bounds

are the right-hand-side expression of the de�nition of the node's variable.6 The function

compute data ranges phase is called twice since the ranges of �-functions are computed in

6Function compute data ranges phase also computes ranges for these other nodes. However, the ranges it
generates are more conservative.
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procedure compute data ranges(root : node ptr)
compute data ranges phase(root, widening phase)
compute data ranges phase(root, narrowing phase)
for each uncommitted node x reachable from root do
if (rhs of def(v) is not a �-function) then
b rhs of def(x:var)
x:value  [b : b]

end if

end for

end procedure

Figure 5.9: Algorithm to compute data ranges from the given graph.

two phases: the widening phase and the narrowing phase. The di�erences between these two

phases will be described later in this section.

The implementation of function compute data ranges phase is shown in �gure 5.10. It

performs an iterative data-ow analysis upon all uncommitted nodes in the data-ow graph.

More speci�cally, it initially inserts all uncommitted nodes on the priority queue work list. It

then repeatedly removes a node from work list, updates that node's data range, then adds

all nodes to work list that depend upon its data range, (i.e., the nodes in x:prev), if its data

range has changed. The algorithm quits only when the work list becomes empty. To minimize

the number of updates performed upon the graph's nodes, the nodes in work list should be

ordered by a topological order of the data-ow graph, ignoring any back-edges, (that is, in

rPOSTORDER, as described in [33]).

The data range (r) of a node x, whose variable's (v) de�nition contains a �-function, is

computed by unioning ([) the ranges of the arguments of its �-function. This union results in

a range whose lower bound is minimum of the lower bounds of the ranges of the arguments of

the �-function and whose upper bound is a maximum of the upper bounds of the arguments'
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procedure compute data ranges phase(root : node ptr, phase : phase type)
work list  all uncommitted nodes that are reachable from root
while (work list is not empty) do
x dequeue(work list)
v  x:var
if (rhs of def(v) is a �-function) then
r >
for each edge e entering def(v) do
y  node in x:next associated with edge e
s y:value \ get control range1(e; v)
r  r [ s

end for

if (def(v) has an entering back edge in CFG and x:old value 6= >) then
if (phase = widening phase) then
r x:value 5 r

else // (phase = narrowing phase)
r x:value 4 r

end if

end if

else

b rhs of def(v)
r [b : b]
for each node y 2 x:next such that y:committed = false do

r  r with all occurrences of variable y:var replaced with y:value
end for

end if

x:old value  x:value
x:value  r

if (x:old value 6= x:value) then
work list  work list [ x:prev

end if

end while

end procedure

Figure 5.10: Algorithm to compute data ranges for nodes whose de�nitions are �-functions.
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ranges. An argument's range (s) is the intersection (\) of the argument's current data range

and the control range holding for the argument's control-ow edge.7

As for a node whose variable's de�nition is not a �-function, its data range is initially set

to a single element range whose bounds are the right-hand-side of its de�nition. The algorithm

then replaces all variables of uncommitted nodes in this range with their ranges.

One may ask why the algorithm eliminates all variables with uncommitted ranges from such

nodes' ranges. The algorithm will run correctly if such variables were not eliminated. However,

the resulting ranges are not very useful for they may be directly or indirectly self-referential.

A self-referential range is a range assigned to a variable v, where after repeated replacements

of variables in the range with those variables' ranges, its symbolic value contains variable v.

An example of a directly self-referential range is x = [1 : x+ 1]. An example of indirectly self-

referential ranges is the pair of ranges x = [1 : y] and y = [1 : x+1]. Such self-referential ranges

are not very useful because self-referential bounds typically add no constraint information to

variables. For example, in the range x = [1 : x+1] the upper bound adds no information, since

all it says is x � x + 1, which is always true. Hence, this range is equivalent to the simpler

range x = [1 :1]. Another problem with directly or indirectly self-referential ranges is that the

expression comparison algorithm, which is described in Chapter 4, has di�culties determining

a good order to substitute variables with ranges, resulting in more variable substitutions and

less accurate results.

To partially o�set the loss of accuracy because of elimination of variables with uncommitted

ranges from the nodes' ranges, the loop in function compute data ranges in Figure 5.9 sets

7By construction of �-functions, each argument of a �-function corresponds to one of the entering control-ow
edges of the �-function's basic block.
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the data range of all nodes whose variable's de�nition is not a �-function to a single element

range whose bounds are the right-hand-side of its de�nition.

5.5.3.2 Widening and narrowing

One problem with the computation of the data ranges in the data-ow graph, as described

above, is that its data ranges may not converge to some �xed value. For example, the data

range of an induction variable, (i = i + 1), inside a loop can take on the successive ranges

[1 : 1], [1 : 2], [1 : 3], : : : . To guarantee that such ranges would reach a �xed point, a widening

operator [16], denoted as 5, is applied to selected ranges in the data-ow graph. This widening

operator, which takes the old and new values of a range as its arguments, returns a range whose

lower and upper bounds equal the two arguments' lower and upper bounds if they are equal,

or in�nite bounds otherwise. For example, if the widening operator was applied to the old and

new ranges of the induction variable of the previous example, (i.e., [1 : 2]5 [1 : 3]), it would

return the value [1 :1].

The main disadvantage of applying the widening operator to ranges in a data ow graph

is that it results in overly conservative ranges. Because of this, the algorithm only applies

the widening operator on the ranges of nodes in the data ow graph that have entering back-

edges, (i.e., loop headers). Additionally, it applies the widening operator only on the third or

later updates to such nodes, (the test x:old value 6= > in the algorithm determines whether

an update is the third or later), to allow the data ranges of such nodes to settle a bit before

widening.

By construction of the widening operator, function compute data ranges phase is guaran-

teed to terminate when in the widening phase. This is because each update to a node's range
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is more conservative8 than its previous value and the application of the widening operator on

ranges of loop header nodes guarantees that such nodes would reach a �xed point in a �nite

number of steps. Since the algorithm computes the ranges of all other nodes directly or indi-

rectly from committed ranges and ranges from loop headers, the ranges of these nodes must

also reach a �xed point.

Even with a selective application of the widening operator to the nodes' data ranges in the

data-ow graph, one may still su�er from overly conservative results. To partially overcome this,

compute data ranges phase is called twice by compute data ranges. The second invocation

of compute data ranges phase applies a special operator called the narrowing operator [16, 11],

denoted as4, at those nodes where the widening operator was applied in the previous invocation

of compute data ranges phase. (The widening operator is not applied in this phase.) This

narrowing operator allows the currently computed data range to replace any in�nite bounds in

the old data ranges with �nite bounds derived from data-ow analysis. For example, suppose

the induction variable in the previous example was computed in a while loop that tested that the

induction variable was less than 100. Then the narrowing operator would allow the variable's

data range inside this loop to be changed from [1 : 1], which was computed in the previous

invocation of compute data ranges phase, to [1 : 100].

5.5.4 Example

As an example how function get data range works, suppose that we wish to compute the data

range for variable i4 in the Fortran code fragment shown in Figure 5.11. For this example,

the function call get data range(i4) creates and iterates over the data-ow graph shown in

8When we say more conservative, we mean ranges with smaller (or unchanged) lower bounds and larger (or
unchanged) upper bounds.
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c Assert: n � 8
i1 = n

100 CONTINUE

i2 = �(i1; i4)
IF (x(i2) > 0) THEN
i3 = i2=2

ENDIF

i4 = �(i3; i2)
IF (i4 � 2) THEN GOTO 100

Figure 5.11: Example used to show how function get data range works.

�gure 5.12 for this example. Function get range data invokes compute data ranges (and

commit data ranges) twice in this example; once to compute the range of i1, and once to

compute the ranges for i2, i3, and i4. This is because fi1g and fi2; i3; i4g are strongly-connected

components of the data ow graph and function get node computes and commits all nodes in

a created subgraph as soon as it is fully formed, (i.e., is a strongly-connected component).

This eagerness to compute and commit data ranges as early as possible is one of the inherent

properties of the algorithm. The reason for this eager computation of ranges is that it maximizes

the number of committed ranges that a particular range may depend on, which improves the

accuracy of the ranges computed by function compute data ranges phase.9

The ranges listed alongside each node in the graph represent the values that the node's

value �eld take while function compute data ranges phase iterates to a �xed point. To give a

reader an understanding how these ranges are computed, we will describe in detail how the data

range was computed for the node for variable i2. Initially, on entry to compute data ranges,

the range of i2 is the unde�ned range >. In the widening phase, the �rst visit to i2
10 sets

its value to the union of the range of i1 intersected with the control range holding for the

9Computing and committing data ranges early also minimizes the number of poisoned ranges generated.
Poisoned ranges will be discussed in Section 5.6.

10In this example, we will use a variable's name to represent both the variable and the data-ow node for that
variable.
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i1

i3

i2

i4

T
[n:n]

T
[n:n]

[n/2:n]

[-∞:n]
[2:n]

T
[n/2:n]

[n/2/2:n]

[-∞:n]
[1:n]

T
[n/2:n/2]

[n/2/2:n/2]

[-∞:n/2]
[1:n/2]

Figure 5.12: The data-ow graph created by function get data range(i4) for the example in
�gure 5.11.

control-ow edge coming from the statement before the CONTINUE statement, which would be

the unconstrained range [�1 :1] since there is no control-ow constraints on i1, and the range

of i4 intersected with the control range holding for the control-ow edge coming from the IF

statement, which would be [2 :1] because of the condition (i4 � 2) in the IF statement. That

is, the formula of the range of i2 is:

i2 = (i1 \ [�1 :1])[ (i4 \ [2 :1]) = i1 [ (i4 \ [2 :1])

(In this formula, we used the techniques described in Section 4.3.1 to simplify the results of

unions and intersections.) So the value of the range of i2 on the �rst visit to its node is

[n : n][(>\[2 :1]) = [n : n]. Since the range of i2 have changed, predecessors of node i2 (i.e., i3

and i4), are placed in the work list and the algorithm continues. When the algorithm returns to

i2, the range of i3 would have been updated to [i2=2 : i2=2] = [[n : n]=2 : [n : n]=2] = [n=2 : n=2]

123



and i4 would have been updated to [n=2 : n=2] [ [n : n] = [n=2 : n]. At this point, the new

range for i2 is [n : n] [ ([n=2 : n] \ [2 :1]) = [n=2 :1]. On the third visit to i2, the algorithm

determines its range to be [n : n] [ ([n=2=2 : n] \ [2 : 1]) = [n=2=2 : n]. Now, since i2 is a

loop header node, the algorithm also applies the widening operator to this result, getting [n=2 :

n]5 [n=2=2 : n] = [�1 : n]. On the fourth visit to i2, the algorithm would �nd that the range of

i2 is [�1 : n]5 ([n : n][ ([�1 : n]\ [2 :1])) = [�1 : n]5 [2 : n] = [�1 : n]. Since the range

of i2 has not changed, the algorithm will not put i2's successors on the work list, causing the

widening phase to stop. Function compute data range would then enter the narrowing phase.

In the narrowing phase, the narrowing operator would be applied to the range of i2 instead of

the widening operator. Thus the narrowing phase, on its �rst visit to i2, would compute the

range of i2 to be [�1 : n]4 ([n : n][ ([�1 : n]\ [2 :1])) = [�1 : n]4 [2 : n] = [2 : n]. On its

second visit of i2, the computed range of i2 would also be [2 : n], causing the narrowing phase

to stop.

When function get data range(i4) completes, it would have computed and have committed

the data ranges i1 = [n : n], i2 = [2 : n], i3 = [i2=2 : i2=2]
11, and i4 = [1 : n]. So, the function

get data range would return [1 : n].

5.5.5 Time complexity

Examining the algorithms in Figures 5.6{5.10 one can see that the time taken by the algorithms

would be proportional to the size of the generated data-ow graph if one ignored the costs of

calling get control range. By construction of functions get node and add children to node,

the data-ow graph would have at most O(jV j) nodes and O(ujV j) edges, where jV j is the

11The range i3 = [i2=2 : i2=2] was created in the loop at the end of function compute data ranges.
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number of scalar variables in the program and u � jV j is the maximum number of variables

used in any assignment statement in the program in SSA form.

By inspection, one can easily see that functions get node and add children to node to-

gether take at most O(jV j+ujV j) time and function commit data ranges takes at most O(jV j)

time. Computing the time complexity of compute data ranges is a little more involved. Its

cost depends upon the number of times each node in the graph are visited by the algorithm.

Because of the use of the widening operator, each node at the start of a cycle in the data-

ow graph can change at most four times. Thus each node in the data-ow graph is visited

at most a constant number of times. Thus, function compute data ranges performs at most

O(jV j) union operations and O(ujV j) intersection operations and calls to get control range.

Hence, the worst case time complexity of performing a single invocation of get data range is

O(cujV j+ cjEjjV j) 12, where c is the cost of performing an union or intersection, (which equals

the time taken to perform a constant number of expression comparisons), and the cjEjjV j term

is the time complexity for computing all control ranges for all control-ow edges, where jEj is

the number of control-ow edges in the program.

Because of the use of memoization, the time complexity of the computation of several data

ranges is identical to the time complexity of computing a single range. This is because of the

use of memoization in the function get node prevents nodes from be created multiple times and

because the nodes' committed �eld prevents the function compute data ranges from computing

the ranges for a node more than once. Hence the sum of the number of edges in all created

data-ow graphs can be at most O(ujV j). Additionally, the sum of the number of all nodes in

all created data-ow graphs is also at most O(ujV j).

12Under big-O notation, O(A+B) � O(min(A;B)).
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5.6 Handling union and intersection operations

In our presentation of the algorithms to compute control and data ranges, we have overlooked

the complexities associated with making the union or intersection of two ranges. Both of these

operations form the bounds of the resulting range by taking the minimum or maximum of

the bounds of their two arguments. Di�culties arise because simplifying these minimum and

maximum expressions typically requires symbolic expression comparisons, which in turn can

perform several get range operations. (We call the expression simpli�cation algorithm to sim-

plify minimums and maximums for two reasons; simpler ranges cause the expression comparison

algorithm to run faster, and the widening operator used in the algorithm in Figure 5.9 is much

less likely to set simpli�ed range bounds to �1.) One of these recursive calls may request a

range that is currently being computed, causing the program to go into an in�nite recursion.

5.6.1 Control ranges

Handling this recursion in the control range computation algorithm in Figure 5.2 is not di�cult.

One only needs to initialize C(e; v), (i.e., the memoized control range of variable v at control-

ow edge e), to the unconstrained range ([�1 : 1]) and allow the intersection operation to

only use control ranges to compare bounds when simplifying the range. Initially setting the

control range of the current variable and statement to [�1 :1] ensures termination, since this

assignment guarantees that any recursive invocation of get control range will not attempt to

compute the control range for this variable, statement pair. Because the intersection operator

can generate many recursive calls to get control range, the worst case time complexity of the

algorithm in Figure 5.2 increases to O(cjSjjV j).
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5.6.2 Data ranges

A simple way to handle the recursion caused by union and intersection operations performed

in the algorithm compute data ranges phase in Figure 5.10 is to allow these operations to use

only control ranges to simplify their results. Since the computation of control ranges will never

invoke get data range, the algorithm is guaranteed to terminate. Additionally, the worst case

time complexity of the algorithm remains unchanged.

However, by using only control ranges to perform unions and intersections when computing

data ranges, the resulting data ranges may lead to overly conservative results. This is because

the widening operator may replace partially unsimpli�ed range bounds with �1. Thus, it is

desirable to be able to use data ranges in these simpli�cations as well. Unfortunately, avoiding

in�nite recursions is complex. We handle this problem by assigning a variable's node a times-

tamp when we create it in create node. This timestamp, which is associated with a particular

invocation of get data range, is used to identify when a node belongs to an older invoca-

tion of get data range. The functions compute data ranges, compute data ranges phase

and commit data ranges are allowed to only visit nodes created by the current invocation of

get data range. Additionally, if the function compute data ranges phase attempts to access

the data range of a uncommitted node created by a previous invocation of get data range, it

would use the range [�1 :1] for that node's data range. Also, any node that uses the range of

a node created by an older invocation of get data range is marked as poisoned. Poisoned nodes

are nodes that cannot be memoized, (i.e., their values cannot be stored in R in Figure 5.1), nor

committed, since their data ranges may be overly conservative. Instead, they are deleted from

the data-ow graph on the exit of get data range. Any node that uses the data range of a

poisoned node is itself poisoned.
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Number Computing Computing Merging data and
Code of lines data ranges (s) control ranges (s) control ranges (s)

ARC2D 3573 2.4 1.3 1.4
BDNA 5960 3.8 5.4 4.3
FLO52 3348 3.9 4.9 2.7
MDG 1487 0.7 1.9 1.1
OCEAN 3142 8.0 4.6 25.3
TRFD 965 1.7 4.9 17.6

Table 5.1: Time taken in seconds to compute all data ranges, all control ranges, and merge
all data and control ranges on a Sparc 10.

5.7 Performance

To show that our demand-driven range propagation algorithm is e�cient for real programs,

even when called many times, we have measured the time taken to compute all control and

data ranges in a program. All optimizations described in this chapter have been implemented

in these algorithms. These times are displayed in Table 5.1. The code column displays the name

of each Fortran code examined. These codes were taken from the Perfect Benchmarks, which

is a suite of Fortran 77 programs representing applications in a number of areas in engineering

and scienti�c computing [6]. The Number of lines column displays the number of lines in each

code after being converted into SSA form. The Computing control ranges and Computing data

ranges columns give the total times taken to compute every control and data range respectively

in each of the codes. The Merging data and control ranges column shows the time taken to

intersect all the control and data ranges in the program, as done by the algorithm in Figure 5.1.

The total time to compute all the ranges in the program is just the sum of these columns. All

timings are user times measured on a Sparc 10, using g++ 2.6.3 with the ag -O.

As Table 5.1 has shown, computing all data and control ranges is very e�cient. However,

merging them together can be expensive. This cost of merging them together arises from the
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intersection operation in Figure 5.1. In our experience, much of this time in computing and

merging control and data ranges is spent computing the intersection and union of ranges. This

cost arises from the fact that the symbolic expression comparison algorithm, as described in

Chapter 4, is used to simplify the intersection and union of ranges, and this algorithm can

be expensive. However, unions and intersections are very cheap if one of their arguments is

[�1 :1]

Table 5.1 has shown that the demand-driven range propagation algorithm is e�cient for

computing all ranges in a program. However, it says little about the costs of computing a single

range. As subsections 5.4.3 and 5.5.5 have shown, the demand-driven range propagator may

need to compute the values of other control and data ranges to determine the value of a certain

range. In the worst case, every data and control range may need to be computed.

To determine the e�ciency of the demand-driven range propagation algorithm for computing

a single range, we have measured the number of control and data ranges computed by the

algorithm to determine this range. Since the running time of the algorithm is proportional to

the number of ranges it needs to compute, the fraction of computed control and data ranges

computed out of the set of all control and data ranges should roughly indicate what fraction of

the execution times shown in Table 5.1 that a typical range computation takes.

We have collected both the average and the maximum number of data and control ranges

computed for a single invocation of get control range from Figure 5.2 and get data range

from Figure 5.6. Tables 5.2 and 5.3 displays these results. These numbers were computed by

requesting each control or data range in a program, then counting the number of control and

data ranges created by each request. All memoized ranges, (i.e., the ranges stored in R, C, and

D, from functions get range, tt get control range, get data range), were cleared before each
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No. control No. computed
Code ranges Avg. Max.

ARC2D 10227 1.9 5
BDNA 27285 2.7 8
FLO52 35094 2.6 11
MDG 4152 2.4 7
OCEAN 94819 2.4 37
TRFD 9994 3.1 21

Table 5.2: Average and maximum number of control ranges computed when computing a
single control range.

request for a control or data range. Ideally, the average and maximum number of control ranges

created should be one when a single control range is requested. Also, the ideal average and

maximum number of data ranges created should be one and the ideal average and maximum

number of control and poisoned ranges created should be zero when a data range is requested.

Examining Table 5.2, one can see that typically only two or three control ranges need to

be computed to determine the value of a single control range. This low number is mostly due

to the use of the sparse icdom optimization, as described in section 5.4. This sparse icdom

relationship usually causes the algorithm in Figure 5.2 to compute the control ranges for only

the control-ow statements, (e.g., IF and DO statements) that enclose the current statement.

Since our test programs do not have deeply nested control ow, it is not surprising that the

average number of computed control ranges is small.

One can roughly determine the cost of computing a control range by dividing the total time

taken by get control range, as shown in Table 5.1, by the total number of control ranges

in the program, as shown in column No. control ranges in Table 5.2, then multiplying this

result by the number of ranges computed for that control range. Doing this, we �nd that the

average control range computation takes about a few hundred microseconds, and the longest
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No. data Control Data Poisoned
Code ranges Avg. Max. Avg. Max. Avg. Max.

ARC2D 1002 2.9 31 2.4 20 0.1 24
BDNA 1431 5.5 47 3.9 29 1.3 40
FLO52 1142 22.9 243 9.8 97 2.8 54
MDG 436 4.0 20 2.9 11 1.1 49
OCEAN 1529 10.5 201 6.6 64 0.4 30
TRFD 521 8.4 68 4.4 21 0.2 6

Table 5.3: Average and maximum number of control ranges, data ranges, and poisoned data
ranges computed when computing a single data range.

control range computation takes about a few milliseconds. Thus, we feel con�dent to claim

that computing a single control range using a demand-driven algorithm is very e�cient.

Table 5.3 displays the average and maximum number of control, data, and poisoned ranges

computed per data range.13 The overall average and maximum cost of computing a data

range can be approximated by adding these averages and maximums respectively. This table

shows that computing a data range typically causes the algorithm to compute several data and

control ranges, possibly many data and control ranges in the worst case. Additionally, the large

discrepancies between the averages and the maximums indicate that the costs of computing a

data range may vary greatly. Despite the potentially large number of data ranges computed,

the average and maximum data and control ranges computed is still a small fraction of the total

number of control and data ranges in the program, so a demand-driven data range computation

algorithm is still more e�cient than its non-demand-driven counterpart.

We can determine the rough cost of computing a data range by dividing the total time taken

by get data range by the total number of data ranges in the program, then multiplying by the

13Poisoned ranges are overly conservative data ranges computed by a recursive call to get data range. Unlike
control and data ranges, poisoned ranges are not memoized, so they may be repeatedly recomputed when
computing a data range. We count such ranges multiple times, once per computation, in the table. See section 5.5
for more details.
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number of data and poisoned ranges ranges computed for that data range. Doing this, one can

determine that the average time taken to compute a data range is a few tens of milliseconds

and the worst case time is a few hundreds of milliseconds for real codes.

If one �nds the cost of computing a single data range to be too expensive, one can sometimes

compute and use only control ranges. We have found that using only control ranges, coupled

with symbolic constant propagation and induction variable substitution, provides su�cient

information for applications of range propagation by parallelizing compilers on some Fortran

programs. This is because such transformations transform most expressions in a program into

expressions made up of only symbolic constants and enclosing loop indices, and one only needs

to know the constraints imposed upon these loop indices and symbolic constants to compare

or compute the ranges of such expressions.

5.8 Related work

The idea for representing program constraints as ranges was �rst proposed by Harrison [31] for

array bounds checking and program veri�cation. In his paper, Harrison describes how one can

compute the range of integer values that variables can take in a program unit, using data-ow

analysis. Although he does propose simple techniques to handle symbolic ranges, our symbolic

analysis techniques are superior. (He restricts the bounds of his symbolic ranges to the form

< variable > + < constant >.)

Bourdoncle [11] greatly improves the accuracy of the integer range propagation algorithm

by Harrison, through the use of abstract interpretation [16]. Our use of the narrowing operator

was inuenced by his algorithm. Bourdoncle's algorithm is unable to generate symbolic ranges.

Neither Harrison's nor Bourdoncle's algorithms are demand-driven nor do they use a sparse
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data-ow representation of a program, such as SSA form or de�nition-use chains, to improve

the e�ciency of their algorithms.

Cousot and Halbwachs [17] presents a di�erent method to compute and propagate con-

straints through a program. In their technique, sets of constraints between variables are rep-

resented as a convex polyhedron in the n-space of variable values. Because of this represen-

tation, all constraints are restricted to be in the form of a�ne inequality relationships, (e.g.,

5 �x+2 � y � 2). Abstract interpretation is used to compute the convex polyhedron of variable

constraints for each statement and each control-ow edge of the program.

They are more accurate in the computation and propagation of a�ne variable constraints

than our algorithm. However, they cannot handle non-a�ne variable constraints, such as

a < b � c. Additionally, by using a convex hull representation to compute variable constraints,

their algorithm cannot bene�t from a sparse data-ow representation of a program. Because of

this, their algorithm can be much less e�cient than ours. Also, their convex hull representa-

tion prevents one from creating a demand-driven version of their algorithm that is not overly

complex.

Tu and Padua [45] also present a demand-driven, symbolic expression comparison and con-

straint propagation technique, based on an extension of SSA called gated SSA form. Their

technique compares expressions by repeatedly substituting variables with their constant sym-

bolic values until the two expressions di�er by only an integer constant. The values to substitute

are determined by a demand-driven analysis of the program. Variants of �-functions, which

can be substituted in other expressions, are used to represent ranges of values. (These variants

of �-functions are simply �-functions extended to contain conditional predicates that indicate
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which of their arguments should be their result.) Rewrite rules are used to simplify expressions

containing such �-functions.

One strength of their algorithm is that they can perform ow-sensitive analyses. For ex-

ample, their algorithm can determine that x equals a at S1 for the following code fragment:

IF (y > 0) THEN

x = a

ENDIF

...

IF (y > 1) THEN

S1: ... = x

ENDIF

Another strength is that their algorithm can use semantical information o�ered by DO loops to

compute more accurate constraints, such as perform induction variable substitution on the y.

They are also able to derive constraints on array elements.

Their algorithm also has weaknesses when compared to ours. First, they do not perform

memoization. Thus, their algorithm can be much slower than ours when the constraints for

many variables are requested. Second, their algorithm cannot derive many of the constraints

generated by our get control range function. Basically, they can only derive constraints

equivalent to our data ranges and the control ranges for loop indices.

The di�erences between our algorithm and theirs is mainly due to that the two applications

were designed to handle two di�erent problems. Their algorithm was designed to compare the

bounds of array sections for array privatization [43]. Because conditional array de�nitions and

uses occur in a signi�cant fraction of important loop nests, ow-sensitive analysis is essential

to successfully perform such comparisons. On the other hand, the bounds being compared are

usually very similar to each other, requiring the substitution of only a few variables with thier

constant values to make the two bounds equal each other except for a constant o�set. On the
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other hand, range propagation was orignally designed for dependence testing. Our symbolic

data dependence test, called the Range Test, often needs to compare expressions that are more

complicated and dissimilar to each other than the expressions compared for array privatization.

Because of this, more constraint information and a more powerful expression comparator is

needed to compare such expressions. Also, dependence testing requests many more constraints,

making memoization much more important. In our experience, conditionally de�ned constants

and constraints does not signi�cantly improve the e�ectiveness of dependence testing. Because

of these di�erences, Polaris includes implementations of both range propagation and Tu's and

Padua's gated-SSA demand-driven analysis.

5.9 Conclusions

We have developed a demand-driven range propagation algorithm and have shown it to be e�-

cient for computing a single range as well as computing many ranges. Because of its e�ciency, it

is feasible to use Range Propagation at many points in a compiler without a serious degradation

of the compiler's performance, even though the program may be modi�ed between these points.

Since these ranges can be used to perform symbolic expression comparisons and range compu-

tation of expressions, and these operations enable powerful symbolic analyses, Demand-Driven

Range Propagation can signi�cantly increase the e�ectiveness of parallelizing and optimizing

compilers.
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

6.1 Conclusions

In this dissertation, we have identi�ed several symbolic analysis techniques that can signi�-

cantly improve the e�ectiveness of parallelizing compilers and have developed algorithms for

the two of the most important techniques. These two techniques are the Range Test and Range

Propagation. The Range Test is a symbolic data dependence test designed to handle the non-

linear array subscripts and loop bounds seen in real programs. Range Propagation computes

symbolic constraints, called ranges, on variables for each point in a program and uses these

constraints to compare arbitrary, possibly nonlinear, expressions.

We have implemented both the Range Test and Range Propagation in Polaris, a paral-

lelizing compiler being developed at the University of Illinois. We have found that these two

techniques, along with other advanced techniques developed by our group, signi�cantly im-
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prove the e�ectiveness of parallelizing compilers, (see Figure 1.3). Additionally, we found the

Range Test and Range Propagation to be reasonably e�cient. For example, even if we use the

Range Test as the only major data dependence test in Polaris, and we use the slower version

of Range Propagation that uses abstract interpretation to compute its ranges, our techniques

together take up at most a third of our compiler's execution time. To improve the e�ciency of

Range Propagation, we have also developed a demand-driven version of the range computation

algorithm.

6.2 Future work

There is still much work that can be done on symbolic analysis for parallelizing compilers as

well as on the Range Test and Range Propagation.

Our analysis of the Perfect Benchmarks for needed symbolic analysis techniques can be

extended in several ways. First, we did not develop algorithms nor implement about half of the

techniques identi�ed in our study. The two most important of these unimplemented techniques

are the analysis of subscripted subscripts, (e.g., A(x(i))) and run-time tests. Second, we never

veri�ed the importance of these identi�ed techniques by measuring the actual e�ectiveness

of the implementations of these techniques on the Perfect Benchmarks. Hence, we do not

know whether the identi�ed techniques are necessary and su�cient for parallelizing the Perfect

Benchmarks or just necessary. Third, it would be desirable to extend our study to other

application codes, such as the SPEC benchmarks.

There is plenty of room for improvement for the Range Test. We can extend the Range Test

to handle some of its de�ciencies it had compared to the Omega Test. This includes extensions

to handle coupled subscripts or to use ranges with non-unit strides. The Range Test can also be
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extended to handle some of the identi�ed needed symbolic analysis techniques such as run-time

tests or analysis of subscripted subscripts. Extending the Range Test to generate run-time

tests should not be di�cult. All one needs to do is to record all expression comparisons that

it couldn't determine to be true or false and generate a multi-version loop that tests these

comparisons and chooses whether to run the parallel or sequential version of the loop nest. We

believe that with extensions to Range Propagation, the Range Test may also be able to handle

subscripted subscripts, where the compiler can determine constraints on the subscript arrays.

Several improvements can be made to Range Propagation. One improvement would be to

extend Range Propagation to compute a program's ranges interprocedurally. Another improve-

ment is to extend Range Propagation to determine and use ranges on array elements. This

would allow the Range Test to handle subscripted subscripts. Finally, it would be desirable to

merge our Range Propagation with Tu's and Padua's demand driven analysis [45], combining

the strengths of both techniques.
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