
Demand-driven, Symbolic Range Propagation?

William Blume Rudolf Eigenmann
Hewlett Packard, Cupertino, California Purdue University, West Lafayette, Indiana

Abstract. To e�ectively parallelize real programs, parallelizing compilers need powerful sym-
bolic analysis techniques [13, 6]. In previous work we have introduced an algorithm called range
propagation [4] that provides such capabilities. Range propagation has been implemented in Po-
laris, a parallelizing Fortran compiler being developed at the University of Illinois [7]. Because the
algorithm is relatively expensive and several compilation passes make use of it, we have studied
opportunities for increasing its e�ciency. In this paper we present an algorithm that provides range
analysis on-demand. We have implemented this algorithm in Polaris as well, and have measured
its e�ectiveness.

1 Introduction

Range propagation was developed for the Polaris parallelizing compiler in response to our observed need
of compilation passes to determine and reason about the values and expressions that program variables
can take on.

The algorithm centers upon the computation and manipulation of ranges, which are lower and upper
bound expressions for the value of a given variable at a given program statement.

Range propagation inludes two algorithms that depend on each other: one that can compare expres-
sions and one that can derive upper and lower bounds of variables from the program text. The latter
uses abstract interpretation [10] for analyzing the program.

As an example, suppose the data-dependence test wishes to compare the expression x � y � 1 with
�y. Upper and lower bound analysis has determined that x = [y : 10] and y = [1 : 1]. It did this by
analyzing all assignments to these variables and factoring in additional contraints imposed by control
statements such as IF and DO statements. The goal of the comparison algorithm is to prove that the
di�erence d = expression1 � expression2 = [x � y + y � 1 : x � y + y � 1] is either always positive
or always negative and, hence, either expression1 > expression2 or expression1 < expression2 holds.
First, it replaces x with [y : 10], getting d = [[y : 10] � y + y� 1 : [y : 10] � y + y� 1]. Simplifying leads to
d = [y2+y�1 : 11�y�1]. At this point it cannot yet determine whether the range of d is always positive
or negative. The next step replaces y with [1 :1], getting d = [[1 :1]2 + [1 :1]� 1 : 11 � [1 :1]� 1].
After simplifying, d = [1 : 1]. Now, the lower bound of d is an integer greater than zero, and hence
x � y� 1 > �y. The techniques used to determine the substitution order of variables and to simplify the
substituted ranges are described in [4].

One issue is that the compiler usually modi�es the program between di�erent applications of range
propagation, requiring repeated recomputations of the program's ranges. Because of this, a signi�cant
fraction of a compiler's execution time can be spent performing range propagation.

To lower these costs, we have developed a demand-driven algorithm for performing range propagation.
It can compute the range for a particular variable when that range is requested by the compilation
pass, as opposed to a conventional data-ow algorithm that computes all ranges at once. Since many
restructuring techniques only need to know a small subset of the ranges of all variables, a demand-driven
algorithm should greatly reduce the costs of range propagation.

? This work was done at the University of Illinois at Urbana-Champaign under support by Army contract
DABT63-92-C-0033. This work is not necessarily representative of the positions or policies of the U.S. Army
or the government.

1

function get range(s : statement, v : variable) : range
if (R(s; v) has not been de�ned) then
c get control range(s; v)
d get data range(v)
R(s; v) c \ d

end if

return R(s; v)
end function

Fig. 1. The demand-driven range propagation algorithm

2 Determining upper and lower bounds of variable values

The range propagation algorithm computes the range of each variable at each point of the program. A
range is simply a symbolic lower bound and a symbolic upper bound on the values that a variable may
take.

Since one cannot always statically compute the exact range that all variables may take in a program,
range propagation computes a conservative approximation of the range of a variable. The lower bound
of this approximation is always guaranteed to be smaller than or equal to the actual lower bound while
the upper bound of this approximation is always guaranteed to be larger than or equal to the actual
upper bound.

We break up the problem of computing the ranges of a variable at a particular statement into two
sub-problems: the computation of the control ranges of the variable, and the computation of the data

ranges of the variable. The �nal range for the variable is simply the intersection of its control and data
ranges. The control ranges of a variable are those ranges computed from the constraints imposed by
the control ow of the program, such as from IF or DO statements. The data ranges of a variable are
those ranges computed from the assignments to that variable. We compute the control and data ranges
separately because control ranges are much cheaper to compute.

The top-level function get range for the demand-driven range propagation algorithm is shown in
Figure 1. It stores its results in a global structure named R, so that future invocations of this function
can reuse these results rather than recomputing. This storing and reusing values to avoid recomputation
is called memoization [17, 1]. The algorithm simply checks whether the range for the given variable
and statement already exists in R, computes and stores the range if it does not, then returns the range.
The range is computed by intersecting the data and control ranges returned by get control range and
get data range, two functions that will be described in Sections 3 and 4, respectively.

Notation used in this paper: A control-ow graph (CFG) of a program is a directed graph. Each
vertex in the CFG corresponds to a statement in the program and an edge between two vertices indicates
that the second statement may be immediately executed after the �rst statment. An edge is said to be
a back-edge if the order of the source of the edge is larger than the order of the sink of the edge, under
a depth �rst ordering of the CFG.2 Vertex u dominates vertex v if and only if every path from start

to v pass through vertex u. Vertex u strictly dominates vertex v if and only if u dominates v and u

does not equal v. Vertex u is the immediate dominator of vertex v if and only if u strictly dominates
v and there is no vertex w such that u strictly dominates w and w strictly dominates v. See Aho, Sethi,
and Ullman [2] for more details on these de�nitions.

Similar dominance relationships can be de�ned for the control-ow edges in the program. For example,
a control-ow edge dominates a statement if all paths from start to that statement pass through that

2 Our de�nition of back-edges is wider than the de�nition of back-edges given in other papers, (i.e., we de�ne
more edges to be back-edges than they do). We have de�ned back-edges di�erently so that if one deleted all
the back-edges from a graph, the graph is guaranteed to be acyclic, even if the original graph is irreducible.

2

control-ow edge. In this paper, we would say that a control-ow edge is an immediate dominating

control-ow edge (or icdom(s)) of a statement (s) if that edge is the immediate dominator of the
statement.

Our demand-driven range propagation algorithm assumes that programs are in Static Single As-

signment (SSA) form. A program is in SSA form when every variable within it has at most one de�ning
statement. Programs are translated into SSA form by inserting �-functions and renaming variables. A
�-function, denoted as v �(w1; w2; : : : ; wn), is a special assignment to a variable v that is inserted
at a join in the control ow where at least two de�nitions of v reach this join. The �-function has an
argument for each entering control-ow edge of this join. The ith argument (wi) corresponds to the value
that the variable assigned by the �-function (v) would take if the control-ow of the program took the
ith control-ow edge to reach the join node, (i.e., v = wi). An e�cient algorithm to translate programs
into SSA form is described in [12]. In this paper, we will assume that the function def(v) would return
the single statement in the program that de�nes v.

3 Computing control ranges

3.1 Needed functionality

Our demand-driven control range propagation algorithmassumes that the immediate dominating control-
ow edge is known for each statement and that the program is in SSA form. The function icdom(s)
will represent the immediate dominating control-ow edge of the statement s. A linear-time algorithm
for computing dominators has been developed by Harel [14]. Alternatively, one can approximate the
dominating control-ow edges from the statement dominators, which must be computed when translating
into SSA form.

To compute the control ranges of a program, we will assume that there exists a function
get local control ranges(e; v), which computes and returns the range of a given variable v at a given
control-ow edge e computed from the control constraints imposed by the source statement of that edge.
For example, get local control ranges(e; v) would return [a :1], if e is the exiting control ow edge
for the then case of the statement IF (V .GE. A) THEN. If there are no control ow constraints imposed
on that variable for that control-ow edge, then the function returns the unconstrained range [�1 :1].

3.2 Algorithm

The algorithm for demand-driven control range propagation is shown in Figure 2. This algorithm is
composed of two mutually recursive functions: a function that computes the control range that holds for
the entry of a given statement, and a function that computes the control range that holds after taking
a given control-ow edge. Intuitively, these functions compute the control range of a given variable
and statement (or control-ow edge) by intersecting the ranges that hold for the variable for all the
dominating control-ow edges of the given statement (or control-ow edge). The control range of a
statement is simply the control range that holds after passing through that statement's immediately
dominating control-ow edge, (i.e., icdom(s)). As discussed in [8], this is more e�cient but slightly more
conservative than intersecting the control ranges of all incoming control ow edges. If the statement
does not have an immediately dominating control-ow edge, then its result is the unconstrained range
[�1 :1]. The control range for a control-ow edge is the control range that is imposed by the edge, (i.e.,
the result of get local control range), intersected with the control range for the source statement of
that edge. The result is stored in the data structure C so as to avoid needless recomputation, (i.e., it
memoizes).

Although recursive, the functions in Figure 2 are guaranteed to terminate. By de�nition of immedi-
ately dominating control-ow edges, the source of icdom(s) must strictly dominate statement s. Since
the graphical representation of the dominator relationship is a tree, the algorithm will eventually reach
a statement that does not have an immediately dominating control-ow edge.

3

function get control range(s : statement, v : variable) : range
if (icdom(s) is not de�ned) then
return [�1 :1]

else

return get control range1(icdom(s); v)
end if

end function

function get control range1(e : control-ow edge, v : variable) : range
if (C(e; v) has not been de�ned) then
c get local control range(e; v)
p get control range(source(e); v)
C(e; v) c \ p

end if

return C(e;v)
end function

Fig. 2. The demand-driven control range propagation algorithm

3.3 Time complexity

The worst case time taken by the algorithm in Figure 2 is bounded by O(cjSj), where c is the time taken
to perform an intersection, (which equals the time taken to perform a constant number of symbolic
expression comparisons), and jSj is the number of statements in the program. However, from the extensive
use of memoization, (i.e., storing computed values into C and reusing them), the worst case time taken
to compute the range for every variable at every statement is O(cjSjjV j), where jV j is the number of
scalar variables in the program. Since a non-demand-driven algorithmwould also take at least O(cjSjjV j)
time, (since such an algorithm would have to visit each (statement, variable) pair in the program), the
demand-driven algorithm is at most as expensive as a non-demand-driven algorithm, ignoring a constant
factor.

3.4 Optimizations

By design of the algorithm, the time taken to compute a single control range is dependent upon the
number of control-ow edges that dominate the given statement s. The number of dominating control-
ow edges of a statement can be very large (O(jSj)). However, only a few of these edges add new
constraints, (e.g., edges exiting IF or DO statements or from ASSERT directives). Because of this, our
algorithm creates and uses a sparse form of the icdom function, where this sparse form returns the most
immediate dominating control-ow edge that adds at least one range to one variable.

We have implemented an algorithm for computing the sparse immediate dominating control-ow
edge of a statement. It simply traces back through all the statement's dominating control ow edges,
using the icdom relationship, until it �nds an edge that adds a control range to at least one variable.
A global structure is used to memoize the result of this computation so that the algorithm would not
recompute it in future calls.

4 Computing data ranges

The algorithm for computing ranges originating from the program's data ow is much more complex
than the algorithm for computing ranges originating from constraints imposed by the control ow. This
additional complexity arises from the need to iterate to a �xed point, (i.e., perform data-ow analysis),
to compute the data ranges.

4

type node ptr = pointer to d range node

type node = structure

var : variable
value : range = > (assignment stmt.); [�1 :1] (otherwise)
old value : range = >
committed : boolean = false (assignment stmt.); true (otherwise)
prev : set of node ptr = ;
next : set of node ptr = ;

end structure

Fig. 3. Fields and initial values of a node structure

4.1 Data-ow graph

To allow the algorithm to cleanly and e�ciently perform data ow analysis on a program in a demand-
driven manner, we create and iterate over a data-ow graph that contains only the information needed
to compute the desired range. Each node in this data-ow graph represents a variable and its data range.
An edge exists from the node for variable x to the node for variable y if and only if the computation of
the range of x depends upon the range of y. One node in this graph, denoted as root, is the node for
the variable of the requested data range. All other nodes in the graph that we need to iterate over are
reachable from root.

The �elds of a single node of this graph are shown in Figure 3. value, old value, prev, and next are
working �elds for the node. Once the �nal value has been determined, committed is set to true, which
\freezes" the node's value and, in this way, memoizes the node's range.

With the exception of the initialization of the value �eld, all the initializations are straightforward.
The initial range assigned to the value �eld is determined from the single de�nition point of the variable,
which is given by the program's SSA representation. If the variable's de�nition is not an assignment
statement, (e.g., the variable is a formal parameter, an argument to a procedure call, or an I/O state-
ment), then its range is set to the unconstrained range [�1 : 1] and committed. Otherwise, its value
is set to the unde�ned range denoted > .

4.2 Algorithm

The top-level of the algorithm for computing data ranges is shown in Figure 4. This algorithm simply
calls the function get node to build and iterate over a data-ow graph whose root is the node for the
given variable, then returns the computed range stored in this root node.

The function get node has two responsibilities. One of these responsibilities is to build a data-ow
graph. More speci�cally, it creates a node for the given variable as well as data-ow subgraphs for the
variables that the given variable's range may depend on. The function create node, creates the node
for the given variable, as shown in Figure 3. The function add children to node, which is shown in
Figure 5, creates nodes for the variables that the current node depends upon and adds edges between
this current node and the newly created nodes by updating their next and prev �elds. These other nodes
are created by recursive calls to get node. The global array D is used to memoize created nodes for
future reuse.

The other responsibility of function get node is to compute and commit the data ranges for the data-
ow subgraph under construction. It does this eagerly, whenever the subgraph contains all nodes that it
reaches (and hence it contains all variables needed for the analysis of this subgraph). We determine this
state of the subgraph using Tarjan's strong-connect algorithm.

This eagerness to compute and commit data ranges as early as possible is one of the inherent prop-
erties of the algorithm. The reason for this eager computation of ranges is that it maximizes the number
of committed ranges that a particular range may depend on, which improves the accuracy of the ranges

5

function get data range(v : variable) : range
root get node(v)
return root:value

end function

function get node(v : variable) : node ptr
if (D(v) has not been de�ned) then
root create node(v)
D(v) root
call add children to node(root)
// Node root is now fully-initialized
if (all uncommitted nodes reachable from root have been fully initialized) then
compute data ranges(root)
commit data ranges(root)

end if

end if

return D(v)
end function

Fig. 4. The demand-driven data range propagation algorithm

procedure add children to node(x : node ptr)
if (def(v) is an assignment statement) then
for each variable w in rhs of def(v) do
y get node(w)
x:next x:next [fyg
y:prev y:prev [fxg

end for

end if

end procedure

Fig. 5. Algorithm to create children for a data-ow graph node.

computed by function compute data ranges phase. Computing and committing data ranges early also
minimizes the number of poisoned ranges generated. Poisoned ranges will be discussed in Section 5.

The point in algorithm get node where the subgraph under construction is ready for computing the
data ranges can be thought of as where \all uncommitted nodes reachable from root have been fully
initialized", whereby the nodes are marked \initialized" as indicated by the comment line. The function
get node computes and commits the ranges of this subgraph by calling functions compute data ranges

and commit data ranges. The implementation of compute data ranges will be described in the next
subsection. The implementation of commit data ranges is shown in Figure 6. This algorithm sets the
committed �eld to true for all (uncommitted) nodes in the subgraph rooted at root. By committing these
nodes, it memoizes the ranges contained in these nodes, so that future invocations of get data range

will return the ranges in these nodes rather than recomputing them.

procedure commit data ranges(root : node ptr)
for each uncommitted node x reachable from root do
x:committed true

end for

end procedure

Fig. 6. Algorithm to commit data ranges in the data-ow subgraph rooted at root

6

procedure compute data ranges(root : node ptr)
compute data ranges phase(root, widening phase)
compute data ranges phase(root, narrowing phase)

end procedure

Fig. 7. Algorithm to compute data ranges from the given graph.

procedure compute data ranges phase(root : node ptr, phase : phase type)
work list all uncommitted nodes that are reachable from root
while (work list is not empty) do
x dequeue(work list)
v x:var
if (rhs of def(v) is a �-function) then
r >
for each edge e entering def(v) do
y node in x:next associated with edge e
s y:value \ get control range1(e; y:var)
r r [s

end for

if (def(v) has an entering back edge in CFG and x:old value 6= >) then
if (phase = widening phase) then
r x:value5 r

else // (phase = narrowing phase)
r x:value4 r

end if

end if

else

b rhs of def(v)
r [b : b]

end if

for each node y 2 x:next such that y:committed = false do

s y:value \ get control range(def(v); y:var)
r r with all occurrences of variable y:var replaced with s

end for

x:old value x:value
x:value r
if (x:old value 6= x:value) then
work list work list [x:prev

end if

end while

end procedure

Fig. 8. Algorithm to compute data ranges for nodes whose de�nitions are �-functions.

4.3 Computing data ranges from a data-ow graph

The main function for computing data ranges is shown in Figure 7. It calls the function
compute data ranges phase twice in order to compute the ranges of �-functions in two phases: the
widening phase and the narrowing phase. These two phases are discussed in [8]. Briey, the widening
phase applies some conservative operations in order to guarantee termination of the algorithm in loop sit-
uations. The narrowing phase follows for regaining some of the accuracy lost by the widening operations.
In Section 4.4 we will illustrate this mechanism in an example.

The implementation of function compute data ranges phase is shown in Figure 8. It performs an
iterative data-ow analysis upon all uncommitted nodes in the data-ow graph. More speci�cally, it
initially inserts all uncommitted nodes on the priority queue work list. It then repeatedly removes a

7

[a : b] [[c : d]) [min(a; c) : max(b; d)] (1)

[a : b] \ [c : d]) [max(a; c) : min(b; d)] (2)

[a : b]5 [c : d]) [if a = c then a else �1 :

if b = d then b else 1] (3)

[a : b]4 [c : d]) [if a 6= �1 then a else c :

if b 6=1 then b else d] (4)

Table 1. Basic operations used by the range propagation algorithm.

node from work list, updates that node's data range, then adds all nodes to work list that depend upon
its data range, (i.e., the nodes in x:prev), if its data range has changed. The algorithm quits only when
the work list becomes empty. To minimize the number of updates performed upon the graph's nodes,
the nodes in work list should be ordered by a topological order of the data-ow graph, ignoring any
back-edges, (that is, in rPOSTORDER, as described in [16]).

The data range (r) of a node x, whose variable's (v) de�nition contains a �-function, is computed
by unioning ([) the ranges of the arguments of its �-function. The semantics of the union operator is
given in Table 1. This union results in a range whose lower bound is the minimum of the lower bounds
of the argument's ranges and whose upper bound is a maximum of the upper bounds of the arguments'
ranges. An argument's range (s) is the intersection (\) of the argument's current data range and the
control range holding for the argument's control-ow edge.3

A node whose variable's de�nition is not a �-function, is initially assigned a single-element data range
whose bounds are equal to the right-hand-side of the variable's de�nition.

For both types of nodes the algorithm then replaces all variables of uncommitted nodes in their range
with the ranges that these variables assume at the given statement. As a result of this replacement step,
only committed range values appear in the ranges being computed. This way, ranges being computed
cannot be self-referential, which would introduce di�culties in the algorithm. A self-referential range is
a range assigned to a variable v, where after repeated replacements of variables in the range with those
variables' ranges, its symbolic value contains variable v. An example of a directly self-referential range
is x = [1 : x + 1]. An example of indirectly self-referential ranges is the pair of ranges x = [1 : y] and
y = [1 : x + 1]. Such self-referential ranges are not very useful because self-referential bounds typically
add no constraint information to variables. For example, in the range x = [1 : x + 1] the upper bound
adds no information, since all it says is x � x+ 1, which is always true. Hence, this range is equivalent
to the simpler range x = [1 : 1]. Another problem with directly or indirectly self-referential ranges is
that the expression comparison algorithm, which is briey described in the introduction, has di�culties
determining a good order to substitute variables with ranges, resulting in more variable substitutions
and less accurate results.

Furthermore, the replacement mechanism simpli�es the termination test of the data-ow algorithm.
The algorithm terminates if all nodes are processed without changing their range value. Such a change
is easy to detect if the range includes only variables with �xed (i.e., committed) values.

The replacement scheme comes at the cost of some inaccuracy. We can regain some of this accuracy
by \undoing" the replacement at the end of the range computation. This is further discussed in [8].

4.4 Example

3 By construction of �-functions, each argument of a �-function corresponds to one of the entering control-ow
edges of the �-function's basic block.

8

c Assert: n � 8
i1 = n

100 CONTINUE

i2 = �(i1; i4)
IF (x(i2) > 0) THEN
i3 = i2=2

ENDIF

i4 = �(i3; i2)
IF (i4 � 2) THEN GOTO 100

i1

i3

i2

i4

T
[n:n]

T
[n:n]

[n/2:n]

[-∞:n]
[2:n]

T
[n/2:n]

[n/2/2:n]

[-∞:n]
[1:n]

T
[n/2:n/2]

[n/2/2:n/2]

[-∞:n/2]
[1:n/2]

Fig. 9. Example program fragment in SSA form and its data-ow graph

As an example of how function get data range works, suppose that we wish to compute the data
range for variable i4 in the Fortran code fragment shown in Figure 9. For this example, the func-
tion call get data range(i4) creates and iterates over the data-ow graph shown in �gure 9. Function
get range data invokes compute data ranges (and commit data ranges) twice in this example; once
to compute the range of i1, and once to compute the ranges for i2, i3, and i4. This is because fi1g and
fi2; i3; i4g are strongly-connected components of the data ow graph, and function get node computes
and commits all nodes in a created subgraph as soon as it is fully formed, (i.e., is a strongly-connected
component).

The ranges listed alongside each node in the graph represent the values that the node's value �eld take
while function compute data ranges phase iterates to a �xed point. To give the reader an understanding
of how these ranges are computed, we will describe how the data range was computed for the node for
variable i2. Initially, on entry to compute data ranges, the range of i2 is the unde�ned range >. In the
widening phase, the �rst visit to i24 sets its value to the union of the ranges of i1 and i4, both intersected
with the control range of their incoming control-ow edge. The control range of i1 is the unconstrained
range [�1 : 1] since there is no control-ow constraints on i1 coming from the statement before the
CONTINUE statement. The control range for i4 comes from the IF statement, and is [2 : 1] because of
the condition (i4 � 2) in the IF statement. That leads to the formula for the range of i2:

i2 = (i1 \ [�1 :1])[(i4 \ [2 :1]) = i1 [(i4 \ [2 :1])

So the value of the range of i2 on the �rst visit to its node is [n : n] [(> \ [2 : 1]) = [n : n]. Since
the range of i2 has changed, predecessors of node i2 (i.e., i1 and i4), are placed in the work list and
the algorithm continues. When the algorithm returns to i2, the range of i3 would have been updated to
[i2=2 : i2=2] = [[n : n]=2 : [n : n]=2] = [n=2 : n=2], and i4 would have been updated to [n=2 : n=2][[n :
n] = [n=2 : n]. At this point, the new range for i2 is [n : n] [([n=2 : n] \ [2 : 1]) = [n=2 : 1]. On the
third visit to i2, the algorithm determines its range to be [n : n] [([n=2=2 : n] \ [2 : 1]) = [n=2=2 : n].
Now, since i2 is a loop header node, the algorithm also applies the widening operator (5) to this result,

4 In this example, we will use a variable's name to represent both the variable and the data-ow node for that
variable.

9

getting [n=2 : n]5 [n=2=2 : n] = [�1 : n]. On the fourth visit to i2, the algorithm would �nd that the
range of i2 is [�1 : n]5 ([n : n][([�1 : n]\ [2 :1])) = [�1 : n]5 [2 : n] = [�1 : n]. Since the range
of i2 has not changed, the algorithm will not put i2's successors on the work list, causing the widening
phase to stop. Note, that the widening operator, which is applied after two visits to a node, has caused
the value to become stable. However, it has introduced an overly conservative lower bound. Function
compute data range would then enter the narrowing phase. In the narrowing phase, the narrowing
operator (4) would be applied to the range of i2 instead of the widening operator. Thus the narrowing
phase, on its �rst visit to i2, would compute the range of i2 to be [�1 : n]4 ([n : n] [([�1 : n] \ [2 :
1])) = [�1 : n]4 [2 : n] = [2 : n]. On its second visit of i2, the computed range of i2 would also be
[2 : n], causing the narrowing phase to stop.

When function get data range(i4) completes, it will have computed and committed the data ranges
i1 = [n : n], i2 = [2 : n], i3 = [i2=2 : i2=2] 5, and i4 = [1 : n]. So, the function get data range will return
[1 : n].

5 Handling union and intersection operations

In our presentation of the algorithms to compute control and data ranges, we have not addressed the
complexities associated with making the union or intersection of two ranges. Both of these operations
form the bounds of the resulting range by taking the minimum or maximum of the bounds of their two
arguments. Simplifying these minimumand maximumexpressions typically requires symbolic expression
comparisons, which in turn can perform several get range operations.

5.1 Control ranges

Handling this recursion in the control range computation algorithm in Figure 2 is not di�cult. One only
needs to initialize C(e; v), (i.e., the memoized control range of variable v at control-ow edge e), to
the unconstrained range [�1 : 1] and allow the intersection operation to use only control ranges to
compare bounds when simplifying the range. Initially setting the control range of the current variable
and statement to [�1 : 1] ensures termination, since this assignment guarantees that any recursive
invocation of get control range will not attempt to compute the control range for this variable, state-
ment pair. Because the intersection operator can generate many recursive calls to get control range,
the worst case time complexity of the algorithm in Figure 2 would be O(cjSjjV j).

5.2 Data ranges

A simple way to handle the recursion caused by union and intersection operations performed in the
algorithm compute data ranges phase in Figure 8 is to allow these operations to use only control ranges
to simplify their results. Since the computation of control ranges will never invoke get data range,
the algorithm is guaranteed to terminate. The worst case time complexity of the algorithm remains
unchanged.

However, by using only control ranges to perform unions and intersections when computing data
ranges, the resulting data ranges may lead to overly conservative results. This is because the widening
operator may replace partially unsimpli�ed range bounds with �1. Thus, it is desirable to be able to
use data ranges in these simpli�cations as well. Unfortunately, avoiding in�nite recursions is complex.
We handle this problem by assigning a variable's node a timestamp when we create it in create node.
This timestamp, which is associated with a particular invocation of get data range, is used to identify
when a node belongs to an older invocation of get data range. The functions compute data ranges,
compute data ranges phase and commit data ranges are allowed to only visit nodes created by the cur-
rent invocation of get data range. Additionally, if the function compute data ranges phase attempts

5 The range i3 = [i2=2 : i2=2] was created in the loop at the end of function compute data ranges.

10

to access the data range of a uncommitted node created by a previous invocation of get data range, it
would use the range [�1 :1] for that node's data range. Also, any node that uses the range of a node
created by an older invocation of get data range is marked as poisoned. Poisoned nodes are nodes that
cannot be memoized, (i.e., their values will not be stored in the global data structure), nor committed,
since their data ranges may be overly conservative. Instead, they are deleted from the data-ow graph
on the exit of get data range. Any node that uses the data range of a poisoned node is itself poisoned.

6 Performance

The time complexities of the algorithms are discussed in [8]. In this paper we show that our demand-
driven range propagation algorithm is e�cient for real programs, even when called many times. All
optimizations described in the previous sections have been implemented in these algorithms. These
times taken to compute all control and data ranges in a program are displayed in Table 2. The code

column displays the name of each Fortran code examined. These codes were taken from the Perfect
Benchmarks, which is a suite of Fortran 77 programs representing applications in a number of areas
in engineering and scienti�c computing [3]. The Number of lines column displays the number of lines
in each code after being converted into SSA form. The Computing control ranges and Computing data

ranges columns give the total times taken to compute every control and data range respectively in each
of the codes. The Merging data and control ranges column shows the time taken to intersect all the
control and data ranges in the program, as done by the top-level algorithm described in Section 2. The
total time to compute all the ranges in the program is just the sum of these columns. All timings are
user times measured on a Sparc 10, using g++ 2.6.3 with the ag -O.

Number Computing Computing Merging data and
Code of lines data ranges (s) control ranges (s) control ranges (s)

ARC2D 3573 2.4 1.3 1.4
BDNA 5960 3.8 5.4 4.3
FLO52 3348 3.9 4.9 2.7
MDG 1487 0.7 1.9 1.1
OCEAN 3142 8.0 4.6 25.3
TRFD 965 1.7 4.9 17.6

Table 2. Time taken in seconds to compute all data and control ranges, and to merge all data and control ranges
on a Sparc 10 workstation.

As Table 2 has shown, computing all data and control ranges is very e�cient. However, merging
them can be expensive. This cost of merging them together arises from the intersection operation in
the function get range. In our experience, much of this time in computing and merging control and
data ranges is spent computing the intersection and union of ranges. This cost arises from the fact that
the symbolic expression comparison algorithm is used to simplify the intersection and union of ranges,
and this algorithm can be expensive. However, unions and intersections are very cheap if one of their
arguments is [�1 :1]

Table 2 has shown that the demand-driven range propagation algorithm is e�cient for computing all
ranges in a program. However, it says little about the costs of computing a single range. The demand-
driven range propagator may need to compute the values of other control and data ranges to determine
the value of a certain range. In the worst case, every data and control range may need to be computed.

To determine the e�ciency of the demand-driven range propagation algorithm for computing a single
range, we have measured the number of control and data ranges computed by the algorithm to determine
this range. Since the running time of the algorithm is proportional to the number of ranges it needs to

11

compute, the fraction of computed control and data ranges computed out of the set of all control and
data ranges should roughly indicate what fraction of the execution times shown in Table 2 that a typical
range computation takes.

We have collected both the average and the maximum number of data and control ranges computed
for a single invocation of get control range from Figure 2 and get data range from Figure 4. Tables 3
and 4 displays these results. These numbers were computed by requesting each control or data range
in a program, then counting the number of control and data ranges created by each request. All mem-
oized ranges, (i.e., the ranges stored in R, C, and D, from functions get range, get control range,
get data range), were cleared before each request for a control or data range. Ideally, the average and
maximumnumber of control ranges created should be one when a single control range is requested. Also,
the ideal average and maximum number of data ranges created should be one and the ideal average and
maximumnumber of control and poisoned ranges created should be zero when a data range is requested.

No. control No. computed
Code ranges Avg. Max.

ARC2D 10227 1.9 5
BDNA 27285 2.7 8
FLO52 35094 2.6 11
MDG 4152 2.4 7
OCEAN 94819 2.4 37
TRFD 9994 3.1 21

Table 3. Average and maximum number of control ranges computed when computing a single control range.

Examining Table 3, one can see that typically only two or three control ranges need to be computed
to determine the value of a single control range. This low number is mostly due to the use of the
sparse icdom optimization, as described in Section 3. This sparse icdom relationship usually causes the
algorithm in Figure 2 to compute the control ranges for only the control-ow statements, (e.g., IF and
DO statements) that enclose the current statement. Since our test programs do not have deeply nested
control ow, it is not surprising that the average number of computed control ranges is small.

One can roughly determine the cost of computing a control range by dividing the total time taken by
get control range, as shown in Table 2, by the total number of control ranges in the program, as shown
in column No. control ranges in Table 3, then multiplying this result by the number of ranges computed
for that control range. Doing this, we �nd that the average control range computation takes about a
few hundred microseconds, and the longest control range computation takes about a few milliseconds.
Thus, we feel con�dent to claim that computing a single control range using a demand-driven algorithm
is very e�cient.

Table 4 displays the average and maximum number of control, data, and poisoned ranges computed
per data range.6 The overall average and maximumcost of computing a data range can be approximated
by adding these averages and maximums respectively. This table shows that computing a data range
typically causes the algorithmto compute several data and control ranges, possibly many data and control
ranges in the worst case. Additionally, the large discrepancies between the averages and the maximums
indicate that the costs of computing a data range may vary greatly. Despite the potentially large number
of data ranges computed, the average and maximum data and control ranges computed is still a small

6 Poisoned ranges are overly conservative data ranges computed by a recursive call to get data range. Unlike
control and data ranges, poisoned ranges are not memoized, so they may be repeatedly recomputed when
computing a data range. We count such ranges multiple times, once per computation, in the table. See Section 4
for more details.

12

No. data Control Data Poisoned
Code ranges Avg. Max. Avg. Max. Avg. Max.

ARC2D 1002 2.9 31 2.4 20 0.1 24
BDNA 1431 5.5 47 3.9 29 1.3 40
FLO52 1142 22.9 243 9.8 97 2.8 54
MDG 436 4.0 20 2.9 11 1.1 49
OCEAN 1529 10.5 201 6.6 64 0.4 30
TRFD 521 8.4 68 4.4 21 0.2 6

Table 4. Average and maximum number of control ranges, data ranges, and poisoned data ranges computed
when computing a single data range.

fraction of the total number of control and data ranges in the program. Thus, a demand-driven data
range computation algorithm is still more e�cient than its non-demand-driven counterpart.

We can determine the rough cost of computing a data range by dividing the total time taken by
get data range by the total number of data ranges in the program, then multiplying by the number of
data and poisoned ranges ranges computed for that data range. Doing this, one can determine that the
average time taken to compute a data range is a few tens of milliseconds, and the worst case time is a
few hundreds of milliseconds for real codes.

If one �nds the cost of computing a single data range to be too expensive, one can sometimes
compute and use only control ranges. We have found that using only control ranges, coupled with
symbolic constant propagation and induction variable substitution, provides su�cient information for
applications of range propagation by parallelizing compilers on some Fortran programs. This is because
such transformations transformmost expressions in a program into expressions made up of only symbolic
constants and enclosing loop indices, and one only needs to know the constraints imposed upon these
loop indices and symbolic constants to compare or compute the ranges of such expressions.

7 Related work

The idea for representing program constraints as ranges was �rst proposed by Harrison [15] for array
bounds checking and program veri�cation. Bourdoncle [9] greatly improves the accuracy of the integer
range propagation algorithm by Harrison, through the use of abstract interpretation [10]. However, Bour-
doncle's algorithm does not generate symbolic ranges. Neither Harrison's nor Bourdoncle's algorithms
are demand-driven, nor do they use a sparse data-ow representation of a program, such as SSA form
or de�nition-use chains.

Cousot and Halbwachs [11] present a di�erent method to compute and propagate constraints through
a program. In their technique, sets of constraints between variables are represented as a convex poly-
hedron in the n-space of variable values. Because of this representation, all constraints are restricted to
the form of a�ne inequality relationships, (e.g., 5 � x + 2 � y � 2). Abstract interpretation is used to
compute the convex polyhedron of variable constraints for each statement and each control-ow edge of
the program.

They are more accurate in the computation and propagation of a�ne variable constraints than our
algorithm. However, they cannot handle non-a�ne variable constraints, such as a < b � c. Additionally,
by using a convex hull representation to compute variable constraints, their algorithm cannot bene�t
from a sparse data-ow representation of a program. Because of this, their algorithm can be much less
e�cient than ours. Also, their convex hull representation prevents one from creating a demand-driven
version of their algorithm that is not overly complex.

Tu and Padua [18] also present a demand-driven, symbolic expression comparison and constraint
propagation technique, based on an extension of SSA called gated SSA form. Their technique compares

13

expressions by repeatedly substituting variables with their constant symbolic values until the two ex-
pressions di�er by only an integer constant. The values to substitute are determined by a demand-driven
analysis of the program. Variants of �-functions, which can be substituted in other expressions, are used
to represent ranges of values. (These variants of �-functions are simply �-functions extended to contain
conditional predicates that indicate which of their arguments should be their result.) Rewrite rules are
used to simplify expressions containing such �-functions.

The di�erences between our algorithm and theirs are mainly due to the two di�erent applications.
Their algorithm was designed to compare the bounds of array sections for array privatization [19]. Be-
cause conditional array de�nitions and uses occur in a signi�cant fraction of important loop nests, ow-
sensitive analysis is essential to successfully perform such comparisons. This capability was included in
their algorithm. On the other hand, the bounds being compared are usually very similar to each other,
requiring the substitution of only a few variables with their constant values to make the two bounds equal
each other, except for a constant o�set. On the other hand, range propagation was orignally designed for
dependence testing. Our symbolic data dependence test, called the Range Test [5], often needs to com-
pare expressions that are more complicated and dissimilar to each other than the expressions compared
for array privatization. Because of this, more constraint information and a more powerful expression
comparator is needed to compare such expressions. Also, dependence testing requests many more con-
straints, making memoization much more important. Therefore a memoization mechanism was included
in our algorithm while not in Tu's. In our experience, conditionally de�ned constants and constraints
do not signi�cantly improve the e�ectiveness of dependence testing. Because of these di�erences, Polaris
includes implementations of both range propagation and Tu's and Padua's gated-SSA demand-driven
analysis. In future work, we will attempt to merge the two algorithms.

8 Conclusions

We have developed a demand-driven range propagation algorithm and have shown it to be e�cient for
computing a single range as well as many ranges. Because of its e�ciency, it is feasible to use range
propagation at many points in a compiler without a serious degradation of the compiler's performance,
even though the program may be modi�ed between these points. Since these ranges can be used to per-
form symbolic expression comparisons and range computation of expressions, and these operations enable
powerful symbolic analyses, demand-driven range propagation can signi�cantly increase the e�ectiveness
of parallelizing and optimizing compilers.

References

1. H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer Programs. The MIT
Press, 1985.

2. Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, Mass., 1986.

3. M. Berry, D. Chen, P. Koss, D. Kuck, L. Pointer, S. Lo, Y. Pang, R. Rolo�, A. Sameh, E. Clementi, S. Chin,
D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl,
O. Johnson, G. Swanson, R. Goodrum, and J. Martin. The Perfect Club Benchmarks: E�ective Perfor-
mance Evalution of Supercomputers. Int'l. Journal of Supercomputer Applications, Fall 1989, 3(3):5{40,
Fall 1989.

4. William Blume and Rudolf Eigenmann. Symbolic Range Propagation. Proceedings of the 9th International
Parallel Processing Symposium, April 1995.

5. William Blume and Rudolf Eigenmann. The Range Test: A Dependence Test for Symbolic, Non-linear
Expressions. Proceedings of Supercomputing '94, Washington D.C., November 1994, pages 528{537.

6. William Blume and Rudolf Eigenmann. An Overview of Symbolic Analysis Techniques Needed for the
E�ective Parallelization of the Perfect Benchmarks. Proceedings of the 1994 International Conference on
Parallel Processing, pages II233 { II238, August, 1994.

14

7. William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeinger, David Padua, Paul Petersen,
Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and Stephen Weatherford. Polaris: Improving the E�ec-
tiveness of Parallelizing Compilers. Proceedings of the Seventh Workshop on Languages and Compilers for
Parallel Computing, Ithaca, New York; also: Lecture Notes in Computer Science 892, Springer-Verlag, pages
141{154, August 1994.

8. William Joseph Blume. Symbolic Analysis Techniques for E�ective Automatice Parallelization. PhD thesis,
Univ. of Illinois at Urbana-Champaign, Cntr. for Supercomputing Res. & Dev., June 1995.

9. Franc�ois Bourdoncle. Abstract Debugging of Higher-Order Imperative Languages. Proceedings of the ACM
SIGPLAN '93 Conference on Programming Language Design and Implementation, pages 46{55, June 1993.

10. Partrick Cousot and Radhia Cousot. Abstract Interpretation: A uni�ed Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. Proceedings of the 4th Annual ACM Symposium
on Principles of Programming Languages, pages 238{252, January 1977.

11. Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of Linear Restraints Among Variables of a
Program. In Proceedings of the 5th Annual ACM Symposium on Principles of Programming Languages,
pages 84{97, 1978.

12. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. E�ciently Com-
puting Static Single Assignment Form and the Control Dependence Graph. ACM Transactions on Program-
ming Languages and Systems, 13(4):451{490, October 1991.

13. Mohammad Haghighat and Constantine Polychronopoulos. Symbolic Dependence Analysis for High-
Performance Parallelizing Compilers. Parallel and Distributed Computing: Advances in Languages and Com-
pilers for Parallel Processing, MIT Press, Cambridge, MA, pages 310{330, 1991.

14. D. Harel. A linear time algorithm for �nding dominators in a ow graph and related problems. Proceedings
of the 17th ACM Symposium of Theory of Computing, pages 185{194, May 1985.

15. William H. Harrison. Compiler Analysis of the Value Ranges for Variables. IEEE Transactions on Software
Engineering, SE-3(3):243{250, May 1977.

16. Matthew S. Hecht and Je�rey D. Ullman. A Simple Algorithm for Global Data Flow Analysis Problems.
SIAM Journal on Computing, 4(4):519{532, December 1975.

17. D. Maydan, J. Hennessy, and M. Lam. E�cient and exact data dependence analysis. In SIGPLAN NO-
TICES: Proceedings of the ACM SIGPLAN 91 Conference on Programming Language Design and Imple-
mentation, Toronto, Ontario, Canada, June 26-28, pages 1{14. ACM Press, 1991.

18. Peng Tu and David Padua. Gated SSA-Based Demand-Driven Symbolic Analysis for Parallelizing Compilers.
Proceedings of the 9th ACM International Conference on Supercomputing, Barcelona, Spain, July 1995.

19. Peng Tu and David Padua. Automatic Array Privatization. In Utpal BanerjeeDavid Gelern-
terAlex NicolauDavid Padua, editor, Proc. Sixth Workshop on Languages and Compilers for Parallel Com-
puting, Portland, OR. Lecture Notes in Computer Science., volume 768, pages 500{521, August 12-14, 1993.

This article was processed using the LaTEX macro package with LLNCS style

15

