
Privatization and Distribution of Arrays

A Preliminary Proposal

Peng Tu

Abstract

In today's high performance NUMA (Non-Uniform Memory Architecture) multipro-
cessors with memory hierarchy or distributed memory, the partition and distribution of
data associated with parallel computations a�ect the amount of parallelism that can be
exploited and the amount of data movement in the system. The objective of this research
is to study and evaluate compile time data management techniques to enhance paral-
lelism and to improve locality of memory reference for large scienti�c programs written
in Fortran.

Our �rst step is to reduce the amount of shared data through privatization. Priva-
tization is a technique that allocates a separate copy of a shared variable in the private
storage of each processor such that each processor can access a distinct instance of the
variable. Privatization can enhance inherent parallelism of a program by eliminating
memory-related anti- and output dependences. It can also improve the locality of refer-
ences since accessing a private variable is inherently local and communication free. We
present our algorithm for array privatization and the result of our experiment on the
e�ectiveness of the algorithm.

For the remaining shared data, we introduce a new concept: placement matrix, and
show its application in deriving data alignment and data decomposition to reduce com-
munication. We also incorporate the ratio of communication to computation in our
evaluation of di�erent data partitions. The work is continuing on heuristics for data
distribution and the implementation of the tools.

1 Introduction

Non-Uniform Memory Architecture (NUMA) multiprocessors promise to be a cost e�cient
way to deliver high performance by exploring parallelism in scienti�c applications. While
they have advantages in scalability and cost, the lack of uniform access global memory
makes it di�cult to program and manage. The di�erence in speed between local access
and non-local access can range from one order of magnitude for a machine with shared
memory hierarchy such as Cedar to two orders of magnitude for a machine with distributed
memory such as CM-2. Communication cost can limit their performance. Software support
for proper management of data distribution and load balancing become crucial for these
machines to achieve high performance and e�ciency at a reasonable programming cost.

1.1 SPMD Programming Model

Two programming models have been used for parallel multiprocessors. In the fork-join
model, a program is executed sequentially by one processor until it enters a parallel section.

1

When entering a parallel section, the sequential thread forks into a number of parallel
threads to be executed on several processors. At the end of the parallel section, the parallel
threads join into one sequential thread with a single processor proceeds. In the SPMD
model, all processors will execute the same program. Each processor can execute di�erent
piece of work by operating on di�erent piece of data. In the private section of a program,
each processor computes redundantly on its private data. In the shared section of a program,
each processor cooperates on a portion of parallel work on shared data. One task is created
for each processor at the beginning and killed at the end of a program execution. The
number of concurrent tasks is �xed for a program and the system overhead for spawning
and switching is minimized. In the following SPMD program,

SHARED A(100),B(100)

PRIVATE X

PARALLEL REGION

X = ...

DOALL I = 1, 100

A(I) = B(I)/X

ENDDO

END PARALLEL REGION

each processor redundantly computes for private variable X and then cooperates in comput-
ing shared array A. If X is not redundantly computed, it will have to be broadcasted to all
the processors. The doall loop is shared, di�erent iterations of the loop can be executed in
parallel by di�erent processors.

The assignment of the iterations to processors is generally determined by the distribution
of data involved in the computation for each iteration. For instance, if the array A and B is
distributed in such a way that A(I) and B(I) are in the same processor, the ith iteration
of the loop can be scheduled to be executed on the processor where A(I) is located.

Since computation and data are closely related, many compilers for distributed memory
machines use owner computes rule to determine which processor shall execute a particular
piece of a shared section[ZBG88] [CK88][RP89]. According to the data distribution speci�ed
by user or compiler, each data element is assigned to a owner processor which is the one
that stores that data element in its local memory. The owner processor of a data item
executes all the instructions that modify its value. Communication command is generated
to fetch the non-local data to the owner from the computation. Parallelism is realised by
partitioning the data, hence the computation is indirectly partitioned. Data dependence
is enforced through communication of data value from the producer to consumer. Since
SPMD model can provide better e�ciency, it has been supported in Cray MPP Fortran [?]
and Parallel Computing Forum Fortran.

1.2 Issues in Data Distribution

The task of compilers for today's high performance multiprocessors is to explore inherent
parallelism in the program, and to explore the parallelism in the machines. The parallelism
in the program can be explicitly speci�ed by user or implicitly embedded in it data and
control dependence structure. The parallelism in the machine is constrained by its number

2

of processors, memory organization and underlining interconnection network. A compiler
maps the program parallelism onto the machine parallelism to achieve performance and
e�ciency. This mapping includes data partition, task partition and matching task with
data in the target machine. To obtain a good mapping, the following fundamental issues
and tradeo�s must be taken into consideration.

Locality and privatization. Private data are allocated in the local memory of each
processor, it cannot be accessed by other processors. Access to private data is inherently
local, privatization can improve the spatial locality of reference of a program. In the SPMD
model, redundant execution of program can be performed on private data. This provides
an opportunity for computing required data locally instead of getting the data from remote
processors.

Load balance and communication highlights the tradeo�s in the compiling process.
Maximum load balance requires that computations be spread across all the processors and
hence parallelism in the computations can be achieved. But then the data involved in
the computations may not be local to all the processors, communication overhead can be
expensive for bringing non-local data to the processors. Minimum communication requires
that all the data involved in a computation to be in the same processors. Then some
computations that could be spread into several processors may have to be executed on
a single processor to preserve the data locality and hence parallelism in the program will
su�er. Data replication and privatization can be used in some case to reduce communication
while preserving parallelism.

Partition data and partition iteration space. Most compilers that generate mes-
sage passing code from a shared memory program and a user speci�ed data decomposition
take the data partitioning approach. Once the owner of the data is determined, message
passing code is generated according to owner computes rule. Since the owner of the variable
on the left hand side of an assignment statement is to compute its new value, messages
are generated to get values of variables owned by other processors for the computation.
Communication can be reduced if the data decomposition keeps most of the data in the
computation local. However, since the computation is indirectly partitioned, load balance
and parallelism will su�er if data decomposition does not distribute the owners of the com-
putations evenly across the processors. Partitioning of the iteration space has been used
by automatic parallelizing compilers to exploit parallelism on shared memory machines.
The advantage is that it can ensure load balance and parallelism. But the communication
overhead to bring proper data to the site of each iteration may be large since the data are
indirectly decomposed.

Data alignment determines which portions of two arrays shall be in the same processor
for a particular data partition. The objective of data alignment is to keep portions involved
in the same computation together so as to maximize local access and reduce communi-
cation. Most regular alignments are determined by three parameters: orientation, o�set,
and stride. Alignment constraints can be derived from subscript expression. Finding opti-
mum alignment is di�cult. The orientation problem has been formulated as the problem of
component a�nity graph and shown to be NP-complete[LC91]. As di�erent computations
require di�erent alignments, it may not be feasible to keep a �xed alignment in the entire
program. Dynamic alignment may provide a more e�cient program.

The communication pattern can be classi�ed in various ways. We identify two classes,
uniform communication and non-uniform communication. Uniform communication hap-

3

pens where the relationship between the sender and receiver is invariant of their locations.
It is important for distributed memory multiprocessors with regular interconnection, since a
uniform communication is usually conict free, i.e. each sender has a conict free communi-
cation path to its receiver. Uniform communication usually costs less on real machines since
the direction of data owing through the communication network is uniform and network
congestion is less severe than non-uniform communication. Techniques like vector and block
data transfer can be used in uniform communication to explore the regularity of machine's
interconnection network.

Pre-fetching is a way to hide the communication latency. By pre-fetching data and
storing them in local temporary locations before they are used, computation and communi-
cation can be overlapped. In the case of dynamic alignment, data can be pre-aligned, where
alignment is changed before computations are carried out on the data.

We will expand on the issues in the rest of this proposal as we explain our plan for this
research. The rest of this proposal will be divided into two broad sections. In the �rst
section, we will discuss our work on automatic array privatization [?] which can enhance
program's inherent parallelism and improve locality of reference on target machines by
reducing the amount of shared data. In the second section, we will discuss our framework
on automatic array distribution for exploiting parallelism and reducing communication.

2 Privatization for Parallelism and Locality of Reference

Enhancing parallelism, balancing load and reducing communication are among the major
tasks of compilers for distributed memory systems. Privatization is a technique that allows
each concurrent process to allocate a variable in private storage such that each process
accesses a distinct instance of the variable. Privatization of scalars has been used for many
years in parallelizing compilers and is well understood [BCFH89]. In this section, we will
focus on techniques for the privatization of arrays.

By providing distinct instance of a variable to each processor, privatization can elimi-
nate memory related dependences and enhance parallelism. It reduces communication since
access to a private variable is local to the processor. Previous studies on the e�ectiveness
of automatic program parallelization show that array privatization is one of the most e�ec-
tive transformations for the exploitation of parallelism [EHLP91]. Also, privatization can
improve load balancing under some translation systems targeted at distributed memory
machines. To illustrate this point, consider the loop:

S0: DO I = 1, N

S1: DO J = 1, N

S2: A(J) = B(I,J) + 1

S3: C(I,J) = A(J) * D(I)

S4: END DO

S5: END DO

Here, array A is involved in a cross iteration anti-dependence which prevents the outer loop
to be executed in parallel. In a distributed memory system using the owner computes rule,
load imbalance will happen due to extensive computation at the owner of A(J). If C(�; J) is
not distributed with A(J), communication will be necessary from the owner of A(J) to the
owners of C(�; J).

4

These problems can be relieved by array expansion [PW86] [Fea88]. For the loop above,
this means expanding A into a two dimensional array as shown next:

S0: DO I = 1, N

S1: DO J = 1, N

S2: A(I,J) = B(I,J) + 1

S3: C(I,J) = A(I,J) * D(I)

S4: END DO

S5: END DO

In this case, array expansion resolves the anti-dependence, exposes more parallelism and
improves load balance. However, expansion makes the array references more complicated.
Also, distribution and alignment pattern has to be speci�ed in conjunction with the ex-
pansion. Otherwise, if data are not distributed in such a way that A(I; J) is located with
C(I; J), communication from the owner of A(I; J) to the owner of C(I; J) would be necessary.

Array privatization together with a owner stores rule [Bal91] may result in a more
e�cient program. By allocating a private variable to each processor, the value of A(J) is
computed locally, load is evenly distributed. Communication happens only for storing A(J)
to its owner.

S0: DO I = 1, N

S1: DO J = 1, N

S2: PRIVATE X

S3: X = B(I,J) + 1

S4: C(I,J) = X * D(I)

S5: IF (I.EQ.N) A(J) = X

S6: END DO

S7: END DO

It can be completely eliminated if the compiler supports dynamic data redistribution or
if the compiler determines statically that A(J) should be distributed with C(N; J). The
dynamic nature of privatization also makes it easier to adapt the program to di�erent
physical machines.

The bene�t of array privatization is similar to that of scalar replication in distributed
memory systems [GB92][HKT91]. Instead of statically partitioning and distributing all the
data, the compiler can dynamically allocate those private data to generate more e�cient
codes. In the rest of this section, we �rst give some de�nitions and an algorithm for
identifying privatizable arrays within loops and go through an example. Then we explain
our method to evaluate the e�ectiveness of its use on enhancing parallelism and give some
preliminary performance results.

2.1 Array Privatization

For an array A to be private to a loop L, A must satisfy two conditions: (1) the array A must
be written by some statements in L, otherwise there will be no bene�t of making A private
to L; (2) if there is a use of an element of A in any iteration, that element must be written
in the same iteration before the use. The �rst condition prevents unnecessary privatization,
and the second condition ensures that every use of A refers to values computed in the same
iteration.

5

Note that it is possible to privatize a subsection of an array. Privatizable scalars are
special cases where the array contains only one element. The de�nition can also be general-
ized from iterations of a loop to threads of a program section. An array is privatizable to a
program section when every use of the array in the section is �rst written by a statement in
the same thread. Later, when we talk about interprocedure analysis, we will use subroutine
invocations as threads and �nd privatizable arrays for subroutines.

The problem of identifying privatizable arrays is therefore to determine for each use of
an array in a loop if there are de�nitions of the array in the same iteration which must reach
the use, and no other de�nitions of the array outside the iteration can reach the use. This
problem can be formalized in a data ow framework as discussed next.

Consider a control ow graph for a loop body, which consists of basic blocks and control
ow in one iteration. For each basic block S, we compute a set of must-de�ne (subscripted)
variables, DEF(S), and a set of possibly exposed-use variables, USE(S). By exposed, we mean
that the variable used is not de�ned by any preceding statement in S and hence it is exposed
to de�nitions outside of S. De�ne IN(S) as the set of variables that are always de�ned upon
entering S, and Pred(S) as the set of immediate predecessors of S in the control ow graph
of the loop body. IN(S) can be computed using the following equation

IN(S) = \t2Pred(S)(IN(t)[DEF(t))

The evaluation of the data ow equations listed above starts at the innermost loop. It
traverses the loop nests following the loop nest tree in post order. Intuitively, the algo-
rithm determines privatizable arrays for the inner loop �rst and propagate the de�ne-use
information of the inner loop to the outer loop.

For each loop L, all the IN sets are initially set to be empty sets (fg). Data ow
information is computed for each statement and propagated through the subgraph. It is
then summarized for one iteration of L.

Summary information for one iteration of L is obtained as follows. DEF(L), the set of
must-de�ned variables for one iteration of L, is the set of must-de�ned variables upon exiting
the iteration, i.e. DEF(L) = \(IN(t)[DEF(t)) : t 2 exits(L). USE(L), the possibly exposed-
use variables are the variables which are used in some statements of L, but do not have
a reaching must-de�ned in the same iteration, i.e. USE(L) = [(USE(t) � IN(t)) : t 2 L.
The privatizable variables are the variables which are de�ned and not exposed to de�nitions
outside the loop iteration, i.e. PRI(L) = DEF(L)� USE(L).

The summarized DEF(L), USE(L) and PRI(L) are then aggregated across the iteration
space of L. The aggregation process computes the region spanned by each array reference
in USE(L), DEF(L) and PRI(L) across the iteration space. Since the aggregated data contain
all the information for the analysis of outer loop, the inner loop L is collapsed into one single
node in the analysis of outer loop. The algorithm is shown below.

Algorithm Privatize
privatize := func(body; L)
Input: body for loop L

Output: DEF(L); USE(L);PRI(L)
Phase 1: Collect local information

foreach S 2 body do
if S is a DO loop then

6

! S is an inner loop, visit S �rst
[DEF(S); USE(S)] := privatize(body(S);S)
collapse all nodes in body(S) into S

else
calculate local DEF(S); USE(S)

endif
endfor

Phase 2: Propagate ow information
forall S 2 body initialize IN(S) := fg

foreach S 2 body in topological order do
IN(S) := \t2Pred(S)(IN(t)[DEF(t))

until �x-point
Phase 3: Compute PRI(L); DEF(L);USE(L) as a function of the loop index

DEF(L) := \t2exits(body)(IN(t)[DEF(t))
USE(L) := [t2body(USE(t)� IN(t))
PRI(L) := DEF(L)� USE(L)

Phase 4: Return aggregated DEF(L) and USE(L)
aggregate PRI(L),DEF(L) and USE(L) in L

annotate L with PRI(L), return [DEF(L); USE(L)]

Using the inner loop in our example at the beginning of this section, we illustrate the steps
taken by our algorithm in determining privatizable arrays. In phase 1{2, we compute local
USE and DEF for each statement, propagate the information in topological order through the
loop body and compute the IN sets. The result for the original loop:

DEF USE IN

S1: {J} {N} {}

S2: {A(J)} {B(I,J),I,J} {J}

S3: {C(I,J) {A(J),D(I),I,J} {A(J),J}

S4: {} {} {A(J),C(I,J),J}

In phase 3, we summarize the information for one iteration of L:

DEF(L) = IN(S4) = {A(J),C(I,J),J}

USE(L) = (USE(S1)-IN(S1)) + (USE(S2)-IN(S2)) +

(USE(S3)-IN(S3)) + (USE(S4)-IN(S4))

= {B(I,J),D(I),I,N}

PRI(L) = DEF(L) - USE(L) = {A(J),C(I,J),J}

In phase 4, we aggregate the summary information across the iteration space to get corre-
sponding information for all the iterations of loop L:

PRI(L) = {(A(J),J=1,N),(C(I,J),J=1,N),J}

DEF(L) = {(A(J),J=1,N),(C(I,J),J=1,N),J}

USE(L) = {(B(I,J),J=1,N),D(I),I}

PRI(L) and DEF(L) can be simply expanded across the iteration space. Since (A(J); J =
1; N) 2 PRI(L) and there is no free variable in (A(J); J = 1; N), A(1 : N) is privatizable to L.

7

USE(L) can also be expanded in the same way but the result may not be precise since one
iteration's use may only be exposed to the de�nitions in some previous iterations of the
same loop. This kind of use is not truly exposed to the outside of the loop body and shall
be excluded from the aggregated USE set. For instance, in

DO I = 2, N

S1: A(I) = A(I-1) + B(J)

END DO

the information for one iteration is USE(L) = fA(I� 1); B(J); Jg, and DEF(L) = fA(I)g, the
region aggregately de�ned in all iterations prior to the ith iteration is A(2 : I� 1), A(I� 1)
is exposed to de�nitions outside the loop only in the �rst iteration, i.e. USE(L) = fA(1)g.

Now, we can collapse the loop body into one node L with the aggregated DEF(L) and
USE(L) as its local information and run the same procedure for the outer loop.

Live analysis is needed to determined if a privatizable variable is live on exiting the loop.
If it is live on exit, last value assignment will be necessary to preserve the semantics of the
original program. We have developed a method to statically determine which iteration will
assign the last value. Last value assignment can also be resolved at run time using iteration
number tag.

The algorithm can generalized to deal with subroutine calls. All what is needed is to
substitute subroutine body for loop iteration in the algorithm, summary information is
computed for each subroutine. An analysis of the subroutines in their inverse calling order
together with mappings from formal parameters to actual parameters and global variables
give us the abilities to determine privatizable variables in loops with subroutine calls. We
have implemented the generalized algorithm and it is used in the next section to evaluate
e�ectiveness.

2.2 E�ectiveness Evaluation

To evaluate the e�ectiveness of the algorithm, we implemented the algorithm using the
Delta Program Manipulation System [Pad89]. The evaluations are made by comparing a
program's optimal loop level parallel execution times with and without array privatization.
Speedups are computed for each program with array privatization and without array priva-
tization assuming loop level parallelism. An upper bound of the optimal loop level speedup
for a program is also computed by ignoring all the anti-dependences. In all the calculations,
we use a strategy introduced by Kumar [Kum88] to measure a program's execution time
on an ideal machine where only the arithmetic operations consume time and an unlimited
number of processors are available.

A program is instrumented such that run-time reference information about memory lo-
cations is used to detect the ow dependences and anti-dependences [Che89][PP92]. The
optimal parallel execution time ignoring anti-dependences is obtained by calculating the
maximum length over all ow dependence chains. The parallel execution time of the
program without privatization is the maximum length over all ow dependence or anti-
dependence chains. Privatization will break some of the anti-dependences, hence a chain
involving anti-dependences may be cut into several shorter chains by privatization. The
parallel execution time of the program with privatization is the maximum length over all
ow or anti-dependence chains after the privatization breaks some of those chains.

8

The instrumentation is implemented by introducing a read shadow variable and a write
shadow variable for each program variable. A read shadow variable records the latest time
when a variable was read, and a write shadow records the earliest time when a variable was
assigned. The earliest time a variable can be assigned is when the lastest read for the variable
was �nished, all the operands used in calculating new value for the variable were written
and the computation for the new value was �nished. To measure loop level parallelism,
control dependences are added from every statement instance to its successors in the same
iteration, which ensures the sequential execution of statements in the same iteration. A
read shadow for a private variable is created locally for a loop iteration, di�erent iterations
have di�erent shadows for a private variable, hence the anti-dependences are broken across
iterations. Optimal execution time is computed by ignoring all the read shadow variables.

Six programs in the Perfect Benchmark Club [CKPK90] were instrumented. The loop
level speedup results are reported in the table below. The results without privatization
show that memory related dependences can severely limit parallelism in programs. After
array privatization, we get speedups within for �ve cases within a factor of two of the
optimal speedups. The di�erences between optimal speedups and privatization speedups
are due to several factors: (1) Our algorithm is e�ective when subscript expressions are
functions of loop indices. Its e�ectiveness is limited by the system's ability to forward
substitute induction variables and to propagate constants. Another di�culty is when array
references are used in subscript expressions. (2) Although we can handle symbolic loop
boundaries, there are cases where two symbolic boundaries have the same value but we
cannot establish that they are equivalent. (3) There are also cases where the privatizability
of arrays depends on some conditions. We are currently conducting experiments on other
programs in the Perfect Club. It is our intention that by testing more applications, we can
identify di�culties and new techniques to improve the performance of our algorithm.

With Without
Program Optimum Privatization Privatization
MDG 7.8 6.0 2.2
TRACK 5.0 2.3 1.5
TRFD 547.8 536.7 1.0
FLO52Q 219.6 193.6 3.8
OCEAN 621.4 11.1 1.5
QCD2 2.4 1.6 1.6

Table 1. Loop Level Speedup Ratios

3 Data Distribution

Data distribution determines the layout of data in the system to minimize communication
and to maximize parallelism. Data distribution can be divided into two phases: data
alignment and data decomposition. Data alignment determines the relative position of
di�erent arrays such that array elements involved in the same computation are often in the
same memory module to increase local access. Data decomposition determines the partition
of arrays to explore parallelism and limit communication.

There are two classes of data object in the SPMD programming model: private variables
and shared variables. Private variables are replicated on all the processors. Each processor

9

allocates private variables in its local storage. Private variables with the same name may
have di�erent values on di�erent processors. Shared variables are accessible to all the
processors. Shared arrays can be distributed across the processors. Only one copy of each
array element exists in the whole system. Arrays can be distributed dimensionally where
each dimension being distributed independent of all other dimensions. A dimension is called
fully parallel if di�erent column in that dimension is allocated on a di�erent processor. It
is called sequential if all the columns in that dimension is allocated on a single processor.

When there is parallel computation on a dimension of a shared array, the dimension
generally shall be distributed in parallel such that di�erent processors can work on dif-
ferent columns allocated in their local memory in parallel. When there is only sequential
computation on a dimension of a shared array, the dimension should be allocated on a
single processor such that communication and synchronization can be minimized. Hence,
the distribution of the shared arrays and the sharing of the parallel work have to be treated
integrately to achieve parallelism and locality of reference.

In this section, we will present some techniques that will be useful in this work. No
algorithm exists yet. Since the general problem is NP complete, our objective is to �nd
some good heuristics to exploit parallelism and reduce communication. We �rst discuss
data alignment. We introduce a placement matrix to represent how the array is distributed
in a virtual processor array and give an equation to compute the placement matrix and
hence the distribution. The objective is to �nd a placement such that all the elements
accessed in an iteration of a parallel loop are located on the same virtual processor. Then
we will discuss data decomposition when communication is necessary. The objective it to
�nd a data decomposition which can fully use the parallelism on a target machine and the
program while reducing the ratio of communication to computation.

3.1 Data Alignment

Several factors determine data alignment. There are orientation, o�set, and stride. Consider
the following loop:

DO I = 1, N

DO J = 1, N

A(I,J) = B(J,I)

END DO

END DO

To have local access of both A(I; J) and B(I; J) for each iteration, array A and B shall
be transposed placed with each other. That is, the �rst dimension of B shall be oriented
with the second dimension of A, and the second dimension of B shall be oriented with the
�rst dimension of A. Let (Tr)(B) be a transposely placed array B, then the following loop
is equivalent to the above one but has all the elements aligned.

DO I = 1, N

DO J = 1, N

A(I,J) = (Tr)(B)(I,J)

END DO

END DO

10

Note that (Tr) is a notation for the original placement of B, it is not a run time operation
to transpose array B.

3.1.1 Array Occurrence and Array Placement Matrix

Array alignment depends on the access pattern of the arrays in the computation. Matrix
representation of array occurrence is a convenient way to represent the array references in
the program. For instance:

(I; J) = (I; J)

1 0
0 1

!
(J + 1; I) = (I; J)

0 1
1 0

!
+ (1; 0)

Note that a subscript matrix consists of two part. The �rst part is a matrix product
reecting that the subscript in each dimension can be a linear combination of loop index
variables. The second part is a vector reecting the o�set along each dimension. We will
use (C; S) to denote an array occurrence with combination matrix as C and shifting vector
as S.

For an n-dimensional loop (I1; I2; : : : ; In), one can de�ne a one-to-one mapping from
the iteration space to an n-dimensional virtual processor network with exactly one iteration
per processor. Array placement in the virtual processor network can also be represented in
a matrix form. Placement matrix specifys how an array is placed in a multi-dimensional
virtual processor network. For instance, we can place array B transposed in the virtual
processor network using the placement matrix

OB =

0 1
1 0

!

To calculate virtual address for an array occurrence, we multiply the occurrence matrix with
its placement matrix. For an occurrence like B(J; I), the virtual address can be calculated
as

(J; I) �OB = (I; J)

0 1
1 0

!
0 1
1 0

!
= (I; J)

1 0
0 1

!

Displacement in placement can also be represented by an displacement vector. To bring the
array reference A(J + 1; I)

(J + 1; I) = (I; J)

0 1
1 0

!
+ (1; 0)

into alignment with loop index (I; J), we need a transpose O and a D displacement as:

O =

0 1
1 0

!
D = (0;�1)

The virtual processor address is then:

(I; J)

0 1
1 0

!
0 1
1 0

!
+ (1; 0)

0 1
1 0

!
+ (0;�1) = (I; J)

1 0
0 1

!

11

We will use (O;D) to denote a placement with orientation matrix as O and displacement
vector as D. To compute the virtual processor address for array occurrence X , we can use

V (X) = X �O +D

In general, for array occurrence (C; S),

X = I � C + S

where I = (I1; I2; : : : ; In) is the loop index vector, its virtual processor address can be
computed as

(I � C + S) �O +D

Now, we can de�ne a pair of array occurrences are perfectly aligned if and only if their
virtual processor address are the same. That is

I � C1 �O1 + S1 �O1 +D1 = I �C2 �O2 + S2 �O2 +D2

This equation can be solved separately as:

C1 �O1 = C2 �O2

S1 �O1 +D1 = S2 �O2 +D2

We will call the above equations as alignment equation. In the example at the beginning of
this section, we have

CA =

1 0
0 1

!
CB =

0 1
1 0

!

SA = (0; 0) SB = (0; 0)

The solution for the equations are:

OA =

0 1
1 0

!
OB DA = DB

Hence for the references to A and B to be perfectly aligned, the orientation of A and B shall
be transposely placed and the displacement of A and B shall be the same.

If there is no solutions to the alignment equations, there is no perfect alignment for the
array occurrences. In the following program,

DO I = 1, N

DO J = 1, N

DO K = 1, N

A(I,K) = B(K,J)

END DO

END DO

END DO

12

If A is placed to align with the virtual processors.

OA =

1 0
0 1

!
CA =

0
B@ 1 0

0 0
0 1

1
CA

OB =

a b

c d

!
CB =

0
B@ 0 0

0 1
1 0

1
CA

Solve the alignment equation0
B@ 1 0

0 0
0 1

1
CA

1 0
0 1

!
=

0
B@ 0 0

0 1
1 0

1
CA

a b

c d

!

we have 0
B@ 1 0

0 0
0 1

1
CA =

0
B@ 0 0

c d
a b

1
CA

Since the �rst row on both sides of the equation are all constants and they are not equal,
there is no solution to this equation. There is no perfect alignment for the array A and B.

The alignment equation can also be used to determine when a dimension of an array
shall be sequentialized or replicated. For instance, if the placement of both array A and B
is not determined, let them be:

OA =

a1 b1
c1 d1

!
OB =

a2 b2
c2 d2

!

Solve the alignment equation:0
B@ 1 0

0 0
0 1

1
CA

a1 b1
c1 d1

!
=

0
B@ 0 0

0 1
1 0

1
CA

a2 b2
c2 d2

!

we have 0
B@ a1 b1

0 0
c1 d1

1
CA =

0
B@ 0 0

c2 d2
a2 b2

1
CA

i.e.

OA =

0 0
c1 d1

!
OB =

c1 d1
0 0

!

It says the �rst dimension of A and the second dimension of B shall be sequentialized since
in the placement matrices the corresponding rows are zero vectors. A zero vector in a
placement matrix can be interpreted as either mapping (sequentializing) all columns of the
corresponding dimension to the single column 0 of the virtual processor arrays or mapping
(replicating) all columns of the corresponding dimension in all the columns of the virtual
processor arrays. The solution also specifys that the second dimension of A shall be aligned

13

in the same way as the �rst dimension of B. In this case a pair of array occurrences are
partially aligned when some projections of their virtual processor address are equal.

In the cases of partial alignment, the aligned dimensions shall be distributed in parallel
and the sequentialized dimensions can be either sequentialized or replicated. As in our
example, the dimension 2 of A and the dimension 1 of B shall be distributed in parallel and
aligned so the loop K can be executed in parallel. The dimension 1 ofA can be sequentialized
and hence the dimension 2 of B and only the parallelism of loop K is explored. To explore
the parallelism of loop I, the dimension 1 of A shall be distributed in parallel, then the
dimension 2 of B will have to be replicated.

We end this section with an example shows that the placement matrix's application
in deriving communication free data decompositions. This work is parallel to the work of
Ramanujam and Sadayappan [RS91]. We solve the problem here with the same framework
discussed above.

DO I = 1, 1000

DO J = 1, 1000

X(I,J) = Y(I,J-1) + Y(I,J)

END DO

END DO

In this loop, we have two references to Y which are conict. Our objective is to �nd
a communication free decomposition while sacri�cing some parallelism. The alignment
equations are:

CX �OX = CY1 �OY

CX �OX = CY2 �OY

SX �OX +DX = SY1 �OY +DY

SX �OX +DX = SY2 �OY +DY

Solve the �rst two equations and equal the right hand side of the last two equations, we
have

OX = OY

SY1 �OY = SY2 �OY

i.e.

(0;�1)

a b
c d

!
= (0; 0)

a b
c d

!

The solution for it is
c = 0; d = 0

Hence we shall sequentialize the second dimension of A and B. The communication free
decomposition is to make the �rst dimension of A and B parallel distributed and their
second dimension sequentialized. Note that communication free decomposition may not
fully use the parallelism of the target machine when the number of parallel iterations is
smaller than the number of processors, we will propose another criterion to evaluate it in a
later section.

14

3.1.2 Spreading and Blocking in Aligned Dimension

In the previous section, we discussed using alignment equations to compute placement
matrixes in order to achieve perfect alignment or partial alignment. Once the aligned
dimension is determined, one has to determine how the aligned dimensions shall be placed.
In the following loop,

DO I = 1, N

DO J=1, N

A(I,J)=B(J,2*I)

END DO

END DO

The placement matrixes for A and B must satisfy the alignment equations for them to be
aligned, i.e.

OA =

0 1
2 0

!
OB

Hence, the stride of the �rst dimension of A shall be the double of the strides of B, i.e., if
B(J; I) is mapped to address (J; I), then A(I; J) shall be mapped to address (J; 2 � I). Or,
if we blocking the B and map both B(J; 2 � I) and B(J; 2 � I � 1) to address (J; I), then
A(I; J) can also be mapped to (J; I). We call the �rst approach spreading and the second
approach blocking. Spreading has the advantage that all the column are distributed while
blocking will grouping some column onto same processor. The disadvantage of spreading is
that the array allocation is not continuous which may result in load imbalance in the later
phase when mapping the data into limited number of physical processors.

When using blocking, we would like to have the block size as small as possible. For
example, if we have B(J; 6 � I) and A(4 � I; J). We can blocking the B by size 6 and A by
size 4, and map both B(J; 6 � I) and A(4 � I; J) to address (J; I). But we can also blocking
the B by size 3 and A by size 2 and map both B(J; 3 � I) and A(2 � I; J) to (J; I), and
hence B(J; 6 � I) and A(4 � I; J) to (J; 2 � I). The second approach results in more parallel
blocks. In general, if we have a � I and b � I , then the minimum block sizes for them are
a=GCD(a; b) and b=GCD(a; b). These results can be easily generalized to cases with more
than two arrays.

The blocking scheme can be viewed as creating a new dimension out of the original
array. For example, A(2 � I) can be treated as A0(1; I), and A(2 � I � 1) as A0(0; I), where
A0(0 : 1; 1 : N=2) is an equivalence of A(1 : N). Using this technique, we can make
adjustments to the shifting matrixes of the array occurrences.

Since there can be multiple occurrences for an array in a program, placement matrixes
in di�erent occurrences can be di�erent. To resolve the conict placement requirement,
machine characteristics must be taken into account. This leads to the topic of our next
section on data decomposition.

3.2 Data Decomposition and Communication

The quality of a particular data distribution depends on the communication requirements
of computations on the shared data. We will study the communication property of data
decomposition in parallel loops since the loop level parallelism provides much opportunity
for exploring program parallelism.

15

A data decomposition is parallel communication free in a loop, if each iteration of the
loop can be executed in parallel and all the data elements accessed in each iteration are
located in the same processor (fully aligned). For instance, the following loop has a com-
munication free fully parallel data decomposition,

DO I = 1, 1000

X(I) = Y(I) + Z(I)

END DO

if we map X(I); Y (I); Z(I) to processor I . The loop can be executed in parallel and the
computation in each iteration involves only local memory access. Parallel communication
free data decomposition when achievable, can provide maximum parallelism with no com-
munication overhead. It is the most desirable case in NUMA multiprocessors, since it has
excellent scalability. With 10 processors, the above loop takes 100 units of time, with 1000
processors, it takes 1 unit of time. We also call it parallel fully scalable decomposition.

Some programs do not have parallel fully scalable data decomposition. In the loop,

DO I = 1, 1000

X(I) = Y(I-1) + Y(I)

END DO

there are conict placement requirement for array Y, and hence there is no communication
free parallel decomposition for array Y . Requiring communication free will result in both
array be sequentialized and the loop be sequentially executed. If we fully distribute both
arrays, the communication overhead will be a dominate factor in its execution time.

An important measurement for communication overhead of a NUMA multiprocessor is
the ratio of the communication rate for non-local access to the rate of local computation:

Mc =
Communication Rate

Computation Rate

In most of current NUMA systems, Mc ranges from 0.001 to 0.1. It means the system's
ability to deliver non-local data is ten to thousand times slower than local computation.
For discussions in this section, we assume our target machine has Mc = 0:1. Most current
machines have DMA ability to perform communication and computation simultaneously,
communication latency can be hidden if there is enough local computation to execute while
waiting for the non-local data.

Each loop has its own computation and communication characteristics. We de�ne it as
the ratio of the number of communication to the number of operations in one iteration of
the loop:

Lc =
Number of Communication

Number of Operation

It characterizes average communication requirement per local computation when each pro-
cessor gets one iteration of the loop. In the above example, Lc = 1:0, i.e., average one
communication per local computation.

Since Lc > Mc in the above loop, it is communication bounded . The execution time will
be restricted by communication overhead if both arrays are fully parallel distributed since
the communication system cannot keep up with the remote data demand.

16

In the worst case, simply distribute X,Y and share the communication bounded loop
may actually slow down the loop due to communication overhead. To achieve balance
between parallelism and communication, we shall change the partition of the task to reduce
Lc In the above loop, it can be done by increase the grain size of the task. Task grain
size can be increased by blocking or stripmining X, Y, i.e., by allocating more than one
iteration to one processor. Parallelism will su�er by a factor. But since the communication
per processor in this case doesn't increase, the execution time will be the same as using all
the available processors assuming communication and computation can be overlapped.

If we choose block size B, we have

Lc =
1

B

The balance between communication and parallelism can be achieved when Lc = Mc, i.e.
B = 10 in the loop. Since the communication per computation in the above loop can
be reduced by a factor of B with block size of B, we call the data decomposition parallel
B scalable. The parallelism in a parallel B scalable loop is decreased by a factor of B.
When B is greater than the array size, the whole array shall be sequentialized and the
loop be sequentially executed. Or the whole array be replicated and the loop be executed
redundantly.

When Lc < Mc, the loop is computation bounded. There is an opportunity to reduce
the grain size and exploit more parallelism.

It is not always possible to decide at compiler time if a loop has parallel scalable de-
composition. In the following loop,

DO I = 1, N

X(I) = Y(A(I)) + Y(I)

END DO

one can not �nd a decomposition for Y without knowing the value of A to have balanced
communication and computation. In this case, we call it parallel 1 scalable. Parallel
execution is possible but the communication overhead is unpredicatable, or we can call it
unscalable.

The above discussion can be generalized to nested loops and multidimensional arrays.

DO I = 1, 1000

DO J = 1, 1000

X(I,J) = Y(I,J) + Z(I,J)

END DO

END DO

The above loop is two dimensional parallel fully scalable. The next loop is parallel fully
scalable along I and parallel B scalable along J.

DO I = 1, 1000

DO J = 1, 1000

X(I,J) = Y(I,J-1) + Y(I,J)

END DO

END DO

17

If the system has no more than 1000 processors, then the optimal decomposition for the
above loop is parallel distribution of arrays along I dimension and sequentialization of the
arrays along J. Since it fully utilizes all the resources and is communication free. There is
no need to distribute the arrays along the J dimension.

It is not always possible to �nd a parallel fully scalable projection. The following pro-
gram is not parallel communication free for either dimension:

DO I = 1, 1000

DO J = 1, 1000

X(I,J) = (Y(I,J-1) + Y(I,J+1) + Y(I+1,J) + Y(I-1,J))/4.0

END DO

END DO

The Lc for this loop is 1.0, since each iteration access 4 non-local data and has 4 computa-
tion. By blocking along one dimension, be it I or J:

Lc =
2 + 2 �B

4 �B
=

1

2
+

1

2 �B

Hence Lc is greater than 0.5 for any block size, it is 1 scalable in either dimension. But if
it is simultaneously blocked in both dimension with same block size B:

Lc =
4 �B

4 �B �B
=

1

B

It is B2scalable by blocking in both dimensions. In this case, since communication per
processor increases to 4 �B, the execution time will be 3 times longer than fully distribute
the loop. When the number of processors in the system are more than the number of blocks,
they are potential candidates for breaking up as we will discuss in the next section.

In the situation where there is no communication free decomposition and the commu-
nication is not scalable, the array may have to be sequentialized in one processor and the
loop be executed sequentially on that processor. Or the array be replicated across all the
processors and the loop can be executed in parallel. The choice will depend on whether it
is possible to pre-fetch the array to all the processors.

The feasible block size B for scalable communication can be used to determine when a
dimension shall be sequentialized. When the block size is greater than the array size in that
dimension or the loop span, the array shall be sequentialized and the loop shall be executed
sequentially in that dimension of the iteration space.

Privatizable scalar and array are communication free in the loop where they are private.
They can be partitioned and distributed communication free in those loops.

Previous studies for e�cient solution of partial di�erential equations on multiple proces-
sor systems noted that the e�ciency of parallel algorithm is not determined by the amount
of communication but the ratio of communication to computation [FO84]. As pointed out
by Reed etal:[RAP87]: the stencil type, partition shape and machine organization all a�ect
the performance of resulting parallel computation. In our studies, we try to apply the ratio
of communication to computation to a broad class of problems. We limit the partition
shape to rectangle since it is easier to partition the iteration space into rectangles.

18

3.2.1 Evaluation of Data Decomposition

Di�erent feasible data decompositions can be compared by the degree of parallelism they
can preserve. We can use the number of iterations in a nest loop to represent the potential
parallelism in the loop. We will use P = l1 � l2� : : :� ln to represent the number of iterations
in a nested loop (l1; l2; : : : ; ln), where li is the number of iterations for the ith loop.

For a data decomposition, we de�ne it scaling factor along the ith dimension of the loop
nest as,

si =

8><
>:

1 if communication free
B if B scalable
1 if 1 scalable

The preserved parallelism for a decomposition can be computed as,

max(l1=s1; 1) �max(l2=s2; 1) � : : : �max(ln=sn; 1)

The above formula can easily be generalized to accommodate data decompositions which
need simultaneously blocking of two or more dimensions.

Data distribution can be evaluated statement by statement inside a loop. For a speci�c
target machine, we can use the formula to derive a data distribution which preserves enough
parallelism to be running on that machine. When the preserved parallelism is smaller than
the number of processors in the system, reducing the block size may be useful to create more
parallelism. As we seem before, in the case of B scalable when the amount of communication
per processor doesn't increase with blocking, reducing the block size won't reduce execution
time. Hence, the candidates for breaking up are those that can reduce communication per
processor, for instance, the B2 scalable dimensions. We can also determine the level of
parallelism preserved by most data decomposition and reserve the same amount of resource
from the target machine.

The decisions made on di�erent loop can then be combined or altered to achieve sat-
isfactory parallelism level for the whole program. Data redistribution and data replication
can be introduced to resolve conict data distribution requirement when more parallelism
is needed. Then we need to quantify the computation and communication requirements
for data replication. The success of data redistribution and data replication in a large ex-
tent is determined by whether the communication latency can be hidden by prefetching or
pre-distributing, which in turn is inuenced by the control ow of the program. We will
investigate the control ow problem in our future work.

3.3 Conclusion and Proposed Research

In this proposal, we have considered the problem of shared data distribution for NUMA
machines. We have described two approaches for this task. One approach is privatization
which trys the reduce the amount of shared data. I have implemented a module in DELTA
system to identify privatizable array in the context of loop and procedures and conducted
preliminary analysis on its e�ectness. Another approach is through proper data alignment
and data decomposition. We have proposed the placement matrix and placement equations
for deriving communication free data distribution. To map the parallelism of a program to
the parallelism of a target machine, we proposed balancing communication and computa-
tion as an objective for data decomposition. We propose to use preserved parallelism for

19

di�erent data distribution to quantify the e�ect of di�erent data partition schemes. Using
the preserved parallelism as a measurement, we can compare di�erent data distributions
and �nd a combination of array distributions that preserves as much parallelism as the the
target machine can provide.

For my Ph.D work, in the array privatization part, I plan to complete the work on array
privatization by implementing the module for static last value assignment, and evaluate its
e�ectiveness on the programs in the Perfect Benchmark Club. For the data distribution
part, the task is to apply the placement equations and data decomposition scheme to real
applications. Since di�erent loops in the same program may place conict data distribution
requirement, we must derive a way to make compromise among conict requirement. At
this time, we do not have a clear solution to this problem. I shall focus on solving this
problem during my Ph.D work. We will investigate the feasibility of using heuristics for
deriving a global optimal distribution. We will also investigate the e�ect of using local
optimal distribution for each loop and using data redistribution when the data distribution
is di�erent from one loop to other loops. A mechanism to evaluate the e�ectiveness of this
work similar to that described for array privatization will be implemented.

References

[Bal91] V. Balasundaram. Translating control parallelism to data parallelism. In Proc.
5th SIAM Conf. on Parallel Processing for Scienti�c Computing, 1991.

[BCFH89] M. Burke, R. Cytron, J. Ferrante, and W. Hsieh. Automatic generation of
nested, fork-join parallelism. Journal of Supercomputing, pages 71{88, 1989.

[Che89] Ding-Kai Chen. MAXPAR: An execution driven simulator for studying par-
allel systems. MS thesis, Univ. of Illinois at Urbana-Champaign, Center for
Supercomp. R&D, October 1989. CSRD Report 917.

[CK88] D. Callahan and K. Kennedy. Compiling programs for distributed-memory mul-
tiprocessors. Journal of Supercomputing, 2:151{169, October 1988.

[CKPK90] George Cybenko, Lyle Kipp, Lynn Pointer, and David Kuck. Supercomputer
Performance Evaluation and the Perfect Benchmarks. In Proceedings of ICS,
Amsterdam, Netherlands, pages 162{174, March 1990.

[EHLP91] R. Eigenmann, J. Hoeinger, Z. Li, and D. Padua. Experience in the automatic
parallelization of four Perfect-Benchmark programs. In Proc. 4-th Workshop on
Programming Languages and Compilers for Parallel Computing. Pitman/MIT
Press, August 1991.

[Fea88] P. Feautrier. Array expansion. In Proc. 1988 ACM Int'l Conf. on Supercomput-
ing, July 1988.

[FO84] G. C. Fox and S. W. Otto. Algorithms for concurrent processors. Phys. Today,
37:50{59, May 1984.

[GB92] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning tech-
niques for parallelizing compilers on multicomputers. IEEE Transactions on
Parallel and Distributed Systems, 3(2):179{193, March 1992.

20

[HKT91] S. Hiranandani, K. Kennedy, and Ch.-W. Tseng. Compiler support for machine-
independent parallel programming in Fortran D. Technical Report Rice COMP
TR91-149, Department of Computer Science, Rice University, January 1991.

[Kum88] M. Kumar. Measuring parallelism in computation-intensive science/engineering
applications. IEEE Transactions on Computers, 37(9):5{40, 1988.

[LC91] J. Li and M. Chen. The data alignment phase in compiling programs for
distributed-memory machines. Journal of Parallel and Distributed Computing,
13:213{221, 1991.

[Pad89] David A. Padua. The Delta Program Manipulation system | Preliminary de-
sign. CSRD Report 808, University of Illinois at Urbana-Champaign, Center for
Supercomp. R&D, June 1989.

[PP92] Paul Petersen and David Padua. Machine-Independent Evaluation of Paralleliz-
ing Compilers. In Advanced Compilation Techniques for Novel Architectures,
January 1992.

[PW86] D. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers.
Communications of the ACM, 29(12):1184{1201, December 1986.

[RAP87] Daniel A. Reed, Loyce M. Adams, and Merrell L. Patrick. Stencils and problem
partitionings: Their inuence on the performance of multiple processor systems.
IEEE Trans. on Computers, 36(7):845{858, July 1987.

[RP89] A. Rogers and K. Pingali. Process decomposition through locality of reference.
In Proc. the SIGPLAN '89 Conference on Program Language Design and Im-
plementation, June 1989.

[RS91] J. Ramanujam and P. Sadayappan. Compiler-time techniques for data distri-
bution in distributed memory machines. IEEE Transactions on Parallel and
Distributed Systems, 2(4):472{482, October 1991.

[ZBG88] H. Zima, H.-J. Bast, and M. Gerndt. Superb: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1{18, 1988.

21

