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Abstract Thus, since the available parallelism in theses types of applica-

tions cannot be determined statically by present parallelizing com-
In this paper we give a new run-time technique for finding an pilers [6, 8], compile-time analysis must be complemented by new
optimal parallel execution schedule for a partially parallel loop, i.e., methods capable of automatically extracting parallelisramttime
a loop whose parallelization requires synchronization to ensure thatRun—time techniques are needed because the access pattern of some
the iterations are executed in the correct order. Given the originalprograms cannot be statically determined, either because of limita-
loop, the compiler generataspectorcode that performs run—time  tions of current analysis algorithms or because the access pattern is
preprocessing of the loop’s access pattern, sofetduleicode that input data dependent. For example, most dependence analysis al-
schedules (and executes) the loop iterations. The inspector is fullygorithms conservatively assume dependences when presented with
parallel, uses no synchronization, and can be applied to any loop.non-linear or subscripted subscript expressions.
In addition, it can implement at run—time the two most effective During the past few years, techniques have been developed for the
transformations for increasing the amount of parallelism in a loop: run—time analysis and scheduling of loops[5, 9, 13, 17, 20, 23, 25, 26,
array privatizationand reduction parallelization(element—wise). 27,28, 29, 30, 33, 34]. The majority of this work has concentrated on
We also describe a new scheme for constructing an optimal paralleldeveloping run—time methods for constructing execution schedules
execution schedule for the iterations of the loop. for partially parallel loops, i.e., loops whose parallelization requires
synchronization to ensure that the iterations are executed in the
correct order. Given the original, @ourceloop, most of these
1 Introduction techniques generatespectorcode that analyzes, at run—time, the
cross-iteration dependences in the loop,safteduler/execut@ode

To achieve a high level of performance for a particular program that schedulesand executes the loop iterations using the dependence
on today’s supercomputers, software developers are often forced tQnformation extracted by the inspector [30].

tediously hand-code optimizations tailored to a specific machine.
Such hand-coding is difficult, error-prone, and often not portable
to different machines. Restructuring, or parallelizing, compilers
address these problems by detecting and exploiting parallelism in

sequential programs written in conventional languages. Although - . . .

; X . . - extracted). In addition, our inspector can implement at run—time the
compiler techniques for the automatic detection of parallelism havetwo most effective transformations for increasing the amount of par-
been studied extensively over the last two decades [22, 32], current g P

parallelizing compilers cannot extract a significant fraction of the ?;llzlrlr?:annﬂviig))p:Tiréagb[i)lirtlvattcl)zsjt:a%rtlif?/ndrir\(/e:trzigg gﬁ;a:lsgﬁi::gz
available parallelism in a loop if it has a complex and/or statically ) Y P

insufficiently defined access pattern. This is an extremely importantyanabIes Is very powerful since it eliminates the data dependences

issue because a large class of complex simulations used in industr jnvolving these variables anq Increases the a_vallal_ale pgrallellsm n
; . . S he loop. The schedule partitions the set of iterations into subsets
today have irregular domains and/or dynamically changing inter- - . .
. ; L ) calledwavefronts Iterations in each wavefront can be executed in
actions. Examples include SPICE for circuit simulation, DYNA— . ) i .
. . parallel, i.e., there are no data dependences between iterations in
3D and PRONTO-3D for structural mechanics modeling, GAUS-
. . . a wavefront. Although the wavefronts themselves are constructed
SIAN and DMOL for quantum mechanical simulation of molecules, one after another, the computation of each wavefront is fully parallel
CHARMM and DISCOVER for molecular dynamics simulation of ! P yp

. . . and requires no synchronization. The scheduling can be dynami-
organic systems, and FIDAP for modeling complexfluid flows [8] cally overlapped with the parallel execution of the loop iterations to

Our Results. We give a new inspector/scheduler/executor method
for finding an optimal parallel execution schedule for a partially par-
allel loop. Our inspector is fully parallel, uses no synchronization,
and can be applied to any loop (from which an inspector can be

$Due to space limitations, this paper is an extended abstract of [24]. utilize the machine more uniformly. Our new method improves on
tCenter for Supercomputing Research & Development, 1308 W. Main the previous techniques since none of them has all of these properties
St., Urbana, IL 61801, emaik:wer ger , padua@sr d. ui uc. edu. Re- (a comparison to previous work is contained in Section 4).
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relations between the statements in the loop body [22, 15, 3, 32, 35].
There are three possible types of dependences between two state-
ments that access the same memory locafiom (read after write),
anti (write after read), andutput(write after write). Flow depen-
dences express a fundamental relationship about the data flow in the
program. Anti and output dependences, also known as memory-
related dependences, are caused by the reuse of memory, e.g., pro-
gram variables. If there are flow dependences between accesses in



doi=1,n/2 do i=1, , ,
o= o= are required. Several techniques have been developed for the run—

S1: tmp = A(2*) doj=1,m ! . . - N .
C A@2Y) = A24-1) (@ SL: A() = AQ) + exp() (b) time analysis and scheduling of loops with cross-iteration depen-
52 pa)=tmp oo dences [5, 9, 13, 17, 20, 23, 28, 29, 30, 33, 34]. However, for

various reasons, such techniques have not achieved wide—spread
use in current parallelizing compilers.

In the following we describe a new run—time scheme for con-
different iterations of a loop, then the semantics of the loop cannot bestructing a parallel execution schedule for the iterations of a loop.
guaranteed unless those iterations are executed in order of iteratiod he general structure of our method is similar to the above cited
number because values that are computed (produced) in an iteratiofiun—time techniques: given the original, ssurceloop, the com-
of the loop are used (consumed) during some later iteration. If therepiler generatemspectorcode that analyzes, at run-time, the cross-
are no flow dependences, but there are anti or output dependenceéeration dependences in the logghedulecode that schedulesthe
between iterations of a loop, then the loop must be modified to re-100p iterations using the dependence information extracted by the
move all such dependences before these iterations can be executeispector, anéxecutocode that executes the loop iterations. In the
in parallel. In some cases, even flow dependences can be remove@revious technigues, the scheduler and the executor are tightly cou-
by simple algorithm substitution, e.g., reductions. Unfortunately, Pled codes which are collectively referred to as the executor, and the
not all such situations can be handled efficiently. In order to remove inspector and the scheduler/executor codes are usually decoupled
certain types of dependences two transformations can be applied td30]. Although our methods can also interleave the scheduler and
the loop: privatizationandreduction parallelization the executor, we treat them separately since they do tackle distinct

Privatizationcreates, for each processor cooperating on the ex- tasks.
ecution of the loop, private copies of the program variables that
give rise to anti or output dependences (see, e.g., [7, 18, 19, 31))3.1 The Inspector
The loop shown in Figure 1(a), is an example of a loop that can ) ) ) .
be executed in parallel by using privatization; the anti dependences Inthis sectionwe des_,crlbe anew inspector scheme that processes
between statemers2 of iterations and statemer1 of iteration the memory references in aloop and constructs a data structure which
i+1,forl < i< n/2, can be removed by privatizing the tempo- the sch_eduler can use to efflc_lently assign |terat|_ons to V\{avefronts.
rary variablet np. In this paper, the following criterion is used to In addition, our inspector can !mplement atrun—time two important
determine whether a variable may be privatized. transfor_mapons: (eleme_nt—W|se) array_prlvatl_zatlon anq reductlon

parallelization (see Section 2). The ability to identify privatizable
Privatization Criterion: Let A be a shared array (or array section) and reduction variables is very powerful since it eliminates the data

Figure 1:

that is referenced in a loop. A can beprivatizedif and only if dependences involving these variables. In particular, these trans-
every read access to an elementfois preceded by a write access  formations increase the available parallelism in the loop and also
to that same element of within the same iteration af. reduce the work required of the scheduler since it need not consider
In general, dependences that are generated by accesses to variabl@§pendencesinvolving such variables when it constructs the parallel
that are only used as workspace (e.g., temporary variabigsin execution schedule for the loop iterations.

an iteration can be eliminated by privatizing the workspace. The basic strategy of our methodiis for the inspector to preprocess

Reduction parallelizatioris another important technique for ~the memory references and determine the data dependencesfor each
transforming certain types of data dependent loops for concurrentMemory locatioraccessed. Later, the scheduler uses this memory-
execution. location dependenceinformation to determine the data dependences

. ) . ) ) between thdterations We describe the method as applied to a
peflnltlon: A r(_aductlon v_arlables a variable Whosealuels_used shared arrayd that is accessed through subscript arrays (see Fig-
in one associative operation of the foum= z @ ezp, whereg isthe 1 5a)) For simplicity, we first consider only the problem of
associative operatoram_bloes not occur 1Bz p OF anywhere elsein _identifying the cross—iteration dependences for each array element
the loop. If the ope_rator is not co_mmutatlvg thgn the |mplemen_tat|on(memory location). After describing the inspector, we discuss how
of the parallel equivalent reduction operation is more constrained. o dependence information it discovers can be used to identify the
Reduction variables are therefore accessed in a certain specific patarray elements that are read—only, privatizable, or reduction vari-
tern (which leads to a characteristic data dependence graph). Aables. The inspector has two main tasks.

simple but typical example of a reduction is staterhtin Fig- 1. For each array elemer{z], the inspector collects all the refer-
ure 1(b). The operatop is exemplified by thet operator, the encesto it into an array (or lisf, and stores them in iteration

access pattern of array(:) is read, modify, writeand the function order. For each reference it stores the iteration number and
performed by the loop is to add a value computed in eachiteration  5ccess type (i.e., read or write) (see Figure 2(b)).

to the value stored i(:). Once reduction variables are identi- h | he i . h
fied, methods are known for performing the reduction operation in 2. Foreach array e emeﬂl{ﬁ]_, t eflnspector determlneit e_data
parallel (see, e.g., [11, 14, 16, 35]). dependences between all its references and stores them in a data

structureH , for later use by the scheduler.

Below we discuss how the references to each array element can
3 Run-TimeAnalysis of L oops be collected and stored in the array (or li&). AssumingR. is
available, we first describe how the inspector determines the depen-
Given ado loop whose access pattern cannot be statically ana- dencesamong the referencedfe] and computes the data structure
lyzed, compilers have traditionally generated sequential code. SinceH .. The relations between the referencesife] can be organized
compile—time data dependence analysis techniques cannot be use@tonceptually) into an array element dependence giaph If ad-
on such programs, methods of performing the analysis at run—timejacent references iR. have different access types, then a flow or
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anti dependence exists, and if they are both writes, then an output
dependenceis signaled. These dependences are reflected by parerftigure 3: An example of the private element arrayR and hierarchy
child relationships ifD.. If adjacent references are both reads, then VvectorspH (c) when two processors are used in the inspestad | loop
there is no dependence between the elements, but they may have &) for the sourcelo loop (a).
common parent (child) iD.: the last write preceding (first write
following) them inR,. For example, the dependence grdph for
A[3] is shown in Figure 2(c).

Our goal is to encode the predecessor/successor information o
the (conceptual) dependence grdph in ahierarchy vectotH , so
that the scheduler can easily look-up the dependence information
for the references tel[z]. First, we add develfield to the records
in R, and store in it the reference’s level in the dependence graph
D. (see Figure 2(b)). Then, for each level, we storefip the
index (pointer to location) iR, of thefirst reference at that level.
Specifically,H . is an array and? ..[¢] contains the index iR, of
the first reference at levé) i.e., H, will serve as a look—up table
for the first reference iR, at any level (see Figure 2(d)). Note that
this implies that?, records the position i, of every write access

and of the first read access in any run of reads. . . . . .
We now give an example of how the hierarchy vector serves as alteratlonSz [n/p] through(i + 1)[n/p] — 1, wherep is the total
9 P Y number of processors, is the number of iterations in the loop,
look-up table for the predecessorsand successors of all the accesses,

X . . . . hdo < ¢ . Th ici i follows. First, inpaivate
Consider the read accessAg3] in the éth iteration, which appears ?1adrkin_ Zhészéeache ?oise(s:sgf?n;ﬂisth% (r)eerences in ﬁzl assigned
as thesth entry inRs. Its level is5, and thus it finds its successor gp P

. . iterations, and constructs element arr&sand hierarchy vectors
by _Iooklng at thes +1 = G.th ?'e”.‘e”‘ of the hierarchy vgctr&h, H. as described aboveyt only for the references in its assigned
which contains the valug indicating that its successor is ti8¢h : : . . .
element inRs. Similarly, its predecessoris found by looking in the iterations Then, in acrc_)ss—processoranaly&s phagtee hierarchy .
5 _ 1 — 4th element oflltIa which indicates that its predecessor is vectors for the Whole iteration space of the loop are formed using
the5th element ofRs. ! the processors’ hierarchy (sub)vectors.
The private marking phase proceeds as follows. Afts] be

Implementing the I nspector. We now consider how to collectthe  the shared array under scrutiny, and suppose each processor has
accesses to each array elemafit] into the arrays.. Regardless  a separatearraypR[1:s, 1:2n/p] in which to store the records of
of the technique used to construct these arrays, to ensure the scalahe references in its set of iterations. Each record contains the
bility of our methods we must processdrk the references to the jteration, type of reference, and level as described above. (The
shared arrayd in adoal | (see Figure 3(a) and (b)). The compu- second dimension of:2xn/p follows since at most one read and
tation performed in thear ki ng operations will depend uponthe  one write to any element need to be marked in each iteration, and
technique used to construct the arrdys. In any case, note that  each processor hagp iterations.) Assuming a processor marks its
since we are interested in cross—iteration data dependences we neégkrations in order of increasing iteration number, it canimmediately
only record at most one read and one write accesgdnfor any  place the records for the references into its agrRyin sorted order
particular iteration, i.e., subsequent reads or writedfg] in the of iteration number. In addition to the arrg\R, each processor
same iteration can be ignored. has a separate arrgy [1:s, 1:2n/p] used to store the hierarchy

Perhaps the simplest method of constructing the element arraysectors for the references in its assigned set of iterations. Again,

R, istofirst place a record for each memory reference into an array
R 4, and then sort the records lexicographically by array element
Tnumber(first key) and iteration number (second key). After sorting,
each arrayR, will occupy a contiguous portion (a subarray) in the
array R4. In this case the marking operations simply record the
information about the access inkbs. After the lexicographic sort,
the level of each reference M, can be computed by a prefix sum
computation.

However, since the range of the values to be sorted is known
in advance (it is given by the dimension of the shared aray
a linear timebucketor bin sort can be used in place of the more
generalO(n log n) lexicographic sort. Moreover, if the inspector’s
marking phase ishunked(i.e., statically scheduled), then further
optimization is possible. In this case, processwill be assigned



doall i=1,n

assuming thatiterations are processedin increasing order of iteration private integer |

number, the hierarchy vectors can be filled in at the same time that ~ doi=1,n do j=start(p,niter),end(p,niter)
the references are recordediR (see Figure 3(c)). 2; AK®D) = “IUALG) martwr(ijte(Kéi))
In the cross-processor analysis phase we need to find for eacts3:  A(R()) = AR()) + exp() $§£kI§a§§E(i§;))
array elementd[z] the predecessor, if any, of the first reference enddo markredux(L(i))
recorded by each processor, i.e., we need to fill in the value in @ engc‘jirk""”te(R('))
processok’s hierarchy vector for the reference that immediately enddoall
precedes (in the dependence grah}) the first reference td [z] that
was assigned to processgoiSimilarly, we must find the immediate (b)

?.UC;?ssgsr,g:);hf;?Sftirzszfr\in;re:c[ime]ctzgé(\;\;Zs(gjzfenses%?;)p;z;%s:; ;OrFigure_4: The transformation of thdo loop in (@) is shown in (b). The

. . . mar kwr i t e (mar kr ead) operation adds a record to the processor’s array
its hierarchy vectors by scanning the arrays of the processors lesg g (it its not a duplicate), and updates the hierarchy vesEdmppropriately.

than (larger thanj. For example, the “?" at the end @i/ [3] The mar kr edux operation invalidates the indicated array element as a
for processor 1 in Figure 3 would be filled in with a pointer to reduction variable since it is accessed outside the reduction stat&ent

the first element in the arrayR[3] of processor 2. Hence, the

initial and final entries in the hierarchy vectors also need to store the

processor number that contains the predecessor and successor. These Thus, the elements can be categorized by a similar process to
scans can be made more efficient by maintaining some auxiliary the one used to find the predecessors and successors when filling in
information, e.g., for each array element, each processor computethe processors’ hierarchy vectors. Finally, if we maintain a linked
the total number of accessesit recorded, and the indige® of the list of the non—empty rows opR as mentioned above, then the
first and last write to that element. In any case, we note that filling rows corresponding to elements that were found to be independent,
in the processors’ hierarchy vectors requires a minimal amount ofread—only, or privatizable are removed from the list, i.e., accessesto
interprocessor communication, i.e., it requires only a “connecting” these elements need not be considered when constructing the parallel
and not a full “merging” of the different hierarchy vectors. execution schedule for the loop iterations.

There are several ways in which the above sketched analysis ] o )
phase can be optimized. For example, in order to determine which W& now consider the problem of verifying that a statement is
array elements need predecessors and successors (i.e., the elemefgeduction using run—time data dependence analysis. Recall that
with non—empty arrayRR.), the processor needs to check each potential regiuctlon statements are generally _|dent|f|ed_ by syntacti-
row of its arraypR (row i of pR corresponds to the arrai;). cally matching the sFatement Wlt_h the generic re_ductlon template
This could be a costly operation if the dimension of the original ¢ = &® ezp, wherez is the reduction variable, amglis an associa-
array is large and the processor's assigned iterations have a spardiye operator. The statement is validated as a reduction if it can be
access pattern. However, the need to check each rgwRican shown tha_tc is neither r(_aferenced iezp nor anywhere in the loop
be avoided by maintaining a list of the non—empty rows. This list body out§|de the reo!uctl_on statement. For example,_although state-
can be constructed during the marking phase, and then traversed€ntS3 in the loop in Figure 4(a) matches a reduction statement,
in the analysis phase. Another source of inefficiency for machines!t IS Still necessary to prove that the elements of akagferenced

with many processors is the search for a particular predecessor (o S1 @ndS2 do not overlap with those accessed in statensnt

successor) since each processor might need to look for a predecessbf- that: K(2) # R(j) andL(z) # R(j), forall1 < 4,5 < n. It

in all the preceding (succeeding) processors' iterations. The cost oftUrns out that this condition can be tested in the same way that read—

these searches can be reduced fgota O(log p) using a standard only and prlvatl_zable array elements are |dent|f|_ed. In partlcular_,

parallel divide—and—conquer “pair-wise” merging approach [16], during the_marklng phase, whenever an_eler_nent is accessed outside

wherep is the total number of processors. the rec_iuctlon_ statement_ the processor invalidates that element asa
reduction variable. Again, the final status of each element is deter-

Privatization and Reduction Recognition. The basic inspector  mined in the cross—processor analysis phase, i.e., an element is a

described above can easily be augmented to find the array elementgeduction variable if and only if it was not invalidated as such by

that are independent (i.e., accessed in only one iteration), read-onlyany processor. This basic strategy can be extended to handle more

privatizable, or reduction variables. We first consider the problem of complex reduction operations (refer to [24] for details).

identifying independent, read—only, and privatizable array elements.

During the marking phase, a processor maintains the status of each

element referenced in its assigned iterationth respect to only Complexity of the I nspector. The worst case complexity of the in-

these iterationsin particular, if it finds than an elementis written in  spectorisD(a log p), wherea is the maximum number of references

any of its assigned iterations, then it is not read—only. If an elementassigned to each processor and the total number of processors.

is accessed in more than one of its assigned iterations, then it idn particular, using the bucket sort implementation, each processor

not independent. If an element was read before it was written in spends constant time on each of @§a) accesses in the marking

any of its assigned iterations, then it is not privatizable. Next, the phase, and the analysis phase takes tif¢log p) using a parallel

final status of each element is determined in the cross—processodivide—and—conquer pair-wise merging strategy [16]. We remark

analysis phase as follows. An element is independent if and onlythat since the cost of the analysis phase is proportional to the number

if it was classified as independent by exactly one processor, andof distinct elements accessed (i.e., the number of non—-empty rows

was not referenced on any other processor. An element is read-in thepR array) the complexity of this phase could be significantly

only if and only if it was determined to be read—only by every less thanO(alog p) if there are many repeated references in the

processor that referenced it. Similarly, an element is privatizableloop. Also, ifalog p > s, then the merge among the processes can

if and only if it was privatizable on every processor that accessedbe improved ta(s + log p) time by chunking the R arrays.



3.2 The Scheduler wi(1:numiter) = 0

done = .false.

cpl=1
The scheduler derives the more restrictive iteration-wise depen- 4 dowhile (done.eq. false.)
. . . . rdy(1:numiter) = .true.
dence relations from the memory location dependence information done = true.
found by the inspector. A valid parallel execution schedule for a 7 daall i=1, numaccess
. - . . . 8 a = access(i)
loop is a partition of the set of iterations into ordered subsets called 9 if (wi(a.iter) .eq. 0) then
wavefronts so that all cross-iteration dependences go from an it- 10 forfea\z?b (bin Pred(«';))
eration in a lower numbered wavefront to an iteration in a higher " if (Wi iter).2q.0) then
numbered wavefront. We saythat a valid parallel execution schedule rdy(a.iter) = .false. @)
is optimalif it has a minimum number of wavefronts, i.e., is has as oondfor
many wavefronts as the longest path @hécal path) in the directed 16  enddoall '
acyclic graph (dag) describing the cross-iteration dependencesin the 17 doal i=1,numiter . o
. 18 f (wf(i).eq. 0 .and. rdy(i).eq..true }f(i) = cpl

loop. We remark that the schedulers described below can be used 19 enldd(()\;v“(I) eq. 0 .and. rdy().eq..truep() = cp
to construct the full iteration schedule in advance (as described) or cpl=cpl+1

they can be interleaved with the executor, i.e., the iterations could enddo while

be executed as they are found to be ready.

Dy for A[X]
A simplescheduler. Asimple schedulerthat finds an optimal sched- level
ule is sketched in Figure 5(a). In the figure, an amfyi ) stores
the wavefront found for iteratiof) the global variablelone flags if 1 2\ iteration

all iterations have been scheduledy (i) signals if iteratiore is
ready to be executed, lower case letters) are used for references

to array elements. i t er is the iteration which contains reference

a, andPr ed(a) is the set of immediate predecessorgaadh the
array element dependence graphs. The scheduling is performed in ®)
phases (line 4) so that in phaséhe iterations belonging téth

wavefront are identified. In each phase, all the references recorded 4 g\b@%

in thepR arrays are processed (lines 7-16), and the predecessors

of all references whose iterations have not been scheduled (line 10Fjgure 5:A simple scheduler (a), and the dependence graph for one of the

are examined. An iteration it readyif the iterations of any of its memory locations accessed in the loop (b).

reference’s predecessors were not assigned to previous wavefronts . o )
(line 11). After all the references are processed, all the iterationsd"@Ph. First note that we can easily identify the accesses on each

are examined (lines 17-19) to see which can be added to the currenteVe! Of the array element dependence graphs since references are
wavefront: an iteratior is ready (line 18) if none of its references Stored in increasing level order in thé arrays and the I arrays
setrdy(i) to false. Advantages of this scheduler are that it is contain pointers the first access at each I(_avgl. To process only the
conceptually very simple and quite easy to implement. accesseson the lowest unscheduled level |t_ is useft_JI to h_ave a cqunt
of the total number of (recorded) accesses in each iteration—which
Optimizing thesimplescheduler. There are some sources of ineffi-  ¢an easily be extracted in the marking phase. Then, in the sched-
ciency in this scheduler. First, since a write access could potentially yjer, a count of the number of ready accesses for each iteration is
have many “parent” read accesses it could prove expensive to re-computed on a per processor basis in the @l | (lines 7—16).
quire eachwrite to checkall its “parents” (line 10). Fortunately, this | the secondioal | (lines 17—-19), the cross-processor sum of the
problem is easily circumvented by requiring an unscheduled readyeady access counts for each unscheduled iteration is compared to

access to inform its successor's iteration that inasready. Then,  ts total access count, and if they are equal the iteration is added to
a write access only needs to check its predecessor if the (single}ne current wavefront.
predecessor is also a write. In summary, we would expect the optimized version to outper-

Another source of inefficiency arises from the fact that eachinner form the original scheduler if there are multiple levels in the array
doal | (lines 7-16) requires tim@(n./p) to identify unscheduled  element dependence graphs. Hence, the determination of which
iterations (line 9), where, is the total number of accesses to the version to use should be made using knowledge gained about the
shared array anglis the number of processors. Thus, the scheduler access pattern by the inspector. In [24], we discuss ways to reduce
takes timeO((na/p)cpl), wherecpl is the length of the critical  scheduling overhead such as overlapping wavefront computation

path. Ifcpl > p, then it cannot be expected to offer any speedup with actual loop execution and using dynamic ready queues [21].
over sequential execution, and even worse, it could yield slowdowns

for longer critical paths. However, note that in any single iteration

of the scheduler, the only iterations that could potentially be added4 A Comparison with Previous M ethods

to the next wavefront must have all their accesses at the lowest un-

scheduled level in their respective element-wise dependencegraphs. We now compare the methods described in this paper to sev-
For example, consider the dependence graph shown in Figure 5(b)€ral other techniques that have been proposed for analyzing and
If iteration 2 (level 1) has not been scheduled yet, then none of Schedulingdo loops at run-time. Most of this work has concen-
the iterations with accesses in higher levels could be added to thelfated on developing inspectors. A high level comparison of the
current wavefront. Thus, in each of thg! iterations of thedo various methods is given in Table 1.

whi | e loop, we would like to examine only those references that Methods utilizing critical sections. The method of Zhu and Yew
are in the topmost unscheduled level of their respective dependenc§34] computes the wavefronts one after another using a method simi-



has also been studied extensively by Sattal. [5, 28, 29, 30, 33].

g;’tti"’r‘r;gsl Ccs’gtr?;?s ’Z?O“t';s rg/?‘;";s prc')‘:at Most of their work assumes that there are no output dependences
Method sched | portions | synch loop reduct |_nthe source loop. Idoa_cros_s p_aralle_llzatlon [28],_an |n_specFor
[New [ Yes [ No | No | No | PR | finds the (at most one) |terat|or_1 in vyhlch_each variable is written.

ARED) ot o VoD o NG The scheduler/exec_utor _start; iterations in a Wra_pped manner and
MP [20] Yos No Yo No No processors busy wait until their operands are available. In [30], the
KS [13] NO® No Yo No =) mspectqr constructs wavefronts Fhat respectthe flow depe_ndences by
CYT 9] Nol3 NoO Yes No No performing a sequential topological sort of the accessesin the loop,
SM [28] NoO3 No Yes Yed No and the scheduler/executor enforces any anti dependences using old
SMC [30] Yes Yedt Yes Yes No and new versions of each variable (possible since each variable in
LZ [17] Yes No Yes Yes No the source loop is written at most once). The topological sort can
P[23] No No No No No be parallelized somewhat usidgacr oss parallelization. Leung
RP[25 26] | No° No No No PR and Zahorjan [17] proposed methods of parallelizing the sequential

inspector of [30]. In theisectioningmethod, the loop is chunked
Table 1:A comparison of run—time parallelization techniquesforoops. and each processor computes an optimal schedule for its chunk,
In the table entrﬁasP and R show thpat the method identiclies privatigable and then.the.se schgdules are concaFenated Fogether &?eparated by
and reduction variables, respectively. The superscripts have the following SYNchronization barriers. Inootstrappingtechnique, the inspec-
meanings: 1, the method serializes all read accesses; 2, performance cafPr is parallelized (not optimally) using sectioning, but an optimal
degrade significantly in the presence of hotspots; 3, the scheduler/executoschedule is produced.
is e_ldoacr oss loop (iterations are started in a wrapped manngr) and busy Other methods. In contrast to the above methods which place
waits are used to enforce certain data dependences; 4, the inspector loo . . .
sequentially traverses the access pattern; 5, the method is applicable only t (_aratlons in the lowest possible wavefront, .Polychronopolou_s (23]
loops without output dependences (i.e., each memory location is written at9ives & method where wavefronts are maximal sets of contiguous
most once); 6, the method identifies only fully parallel loops. iterations with no cross-iteration dependences. Dependences are
detected using shadow versions of the variables, either sequentially,
lar to the simple scheduler described in Section 3.2. During a phaseor in parallel with the aid of critical sections as in [34].
an iteration is added to the current wavefront if none of the data  All of the above mentioned methods attempt to find a valid par-
accessed in that iteration is accessed by any lower unassigned iterag|le| execution schedule for the soude loop. Recently, we con-
tion; the lowest unassigned iteration to access any array element isidered a related problem [25, 26]: testing at run—time whether
found using atomicompare-and-swagynchronization primitives  the loop is fully parallel, i.e., whether there are any cross-iteration
and a shadow version of the array. Midkiff and Padua [20] extended dependencesin the loop. Our interest in fully parallel loops is moti-
this method to allow concurrent reads from a memory location in vated by the observation that they arise frequently in real programs.
multiple iterations. These methods run the risk of a severe degra-
dation in performance for access patterns contaihotgspotgi.e.,
many accesses to the same memory location). A feature of themd | mplementation and Experimental Results
is that they use only a shadow version of the shared array whereas ) )
all other methods (except [23, 25, 26]) unroll the loop and store all e present experimental results obtained on two modestly par-
accesses to the shared array. allel machines with 8 (Alliant FX/80 [1]) and 14 processors (Alliant
Krothapalli and Sadayappan [13] proposed a run—time schemeFX/2800 [2]). However, we remark _that the results scale with the
for removing anti and output dependences from loops. For eaChnumber of processors and the data size and thus they may be extrap-
memory location, their inspector counts the number references toolated for_masswely parallel processors (MPPs), the actual target of
it (using critical sections as in [34]), places them in a dynamically our_run—tlme methods. To _demonstrate that the new me_thod_s, can
allocated array, and then sorts them by iteration number. After achieve speedups, we applied them to three loops conFamed in the
building a dependence graph for each memory location (similar to PERFECT Benchmar_ks [4]. To analyze the overhead incurred by
our arraysR.), the inspector removes all anti and output depen- the methods we applled_them to access patterns taken from actual
dences by redirecting the accesses to dynamically allocated storag@rogramS and to synthgtlc access pa_tterns. )
(using an additional level of indirection). Flow dependences are The methods were |mplemen_ted In Cede_lr Fortran [12]'_ Thein-
enforced using fulllempty bits. To our knowledge, this is the only ;pectorwas essentially as descrlped in _Sectlon 3.1. In particular, we
other run—time privatization technique except for the one described'mplememed the bucket sort version using sepatitandp H data .
in [25, 26]. s_tructures for each processor. Each processor constr_ucted a linked
list of the non-empty rows in its R array during the marking phase.

Recently, Chen, Yew, and Torrellas [9] proposed an mspectorCheCks for independent, read—only, and privatizable elements were

hat fir il in priv r lists for h memory. - . .
that . st builds ( P ate sto age), access st_s or each memo y|mplemented in the inspector (we have not yet included the test for
location referenced in a processor’s assigned iterations (similar to

[13] and our inspector's marking phase, except they serialize readr.edUCtion variablgs). In the analysis phase, these elements are classi-
; ' . f||ed at the same time that the predecessors and successors are found
accesses), and then links them across processors using a gIOb‘:Tlor each row. An optimization that we did not yet implement was
Zhu/Yew algorithm [34]. Their scheduler/executorudeacr 0ss the “pair—wiée” merge across processors when searching for pre-
parallelization [28] (see below). Although this scheme potentially decessors or successors in the analysis phase (or when classifying

has less communication overhead than [34], it is still sensitive to hot . L .

. A s elements as independent, read—only, or privatizable). However, this
spots and there are cases (edgal | s) in which it proves inferior . . AR - . . h

0 [34] is animportant optimization since, as previously noted, without it the

analysis phase of the inspector may fail to scale with the number of
Methods for loops without output dependences. This problem processors. Since we implemented the optimized version of the sim-



ple scheduler described in Section 3.2, a count of the total numberl oops from the M A28 Solver

of accessesin each iteration was computed in the marking phase (no

inter-processor communication is needed to determine these count¥/ @Pplied the new methods to loops from real applications, both to

since each iteration is assigned to a single processor). For Simp|iC_demonstrate the diversity of partially parallel access patterns and also

ity, the scheduler and the executor were completely decoupled in thel® reconfirm the conclusions reached above using synthetic loops.

implementation, but better speedups should be obtainable by inter-FO" this purpose we chose Loop MA30cd/D0 from MA28 (a

leaving these two tasks (see Section 3.2). We remark that there ar@!0cked sparse non-symmetric linear solver [10]). We selected this

other issues to be considered when applying these methods in a redP©P: Which performs the forward-backward substitution in the final
application environment such as memory requirements and knownphase of the blocked sparse linear system solver, because it can gen-

bounds on the source loop’s available parallelism (refer to [24] for €Tate many diverse access patterns when using the Harwell-Boeing
more details). matrices as input. Unfortunately, the loop itself is not a good can-

didate for parallelization since it performs very little work and is
highly imbalanced.

We discuss two input sets: gemat12, which generates 4929 it-

Synthetic L oops erati_ons, and by 600, vv_hich ger_lerates 822 iterations. After ex-
tracting and precomputing the linear recurrences from the source
loop (based on the methods in [27]), we generated a parallel in-
spector and computed an optimal parallel execution schedule for the
loop. The parallelism profiles obtained (Figures 11 and 12) show
the wavefront sizes of the optimal parallel execution schedule and
Sllustrate how the same loop can generate vastly different depen-
" dence graphs given different input. Figure 11 shows that most of
the iterations of the loop can be executed in the initial wavefronts

Averageparallelism. Toisolate the effect of the average parallelism (cpl - 114), which §uggests that mterleavmg t_he wavefront com-
cputatlon and execution would be more beneficial than overlapping

in the source loop on the overhead of the methods, we generated a - -
L L tpem, so that parallelization can be abandoned when the sequential
cess patterns that were as similar as possible in all aspects eXCeRLY of the profile is reached. Although in Figure 12 most of the

for the average parallelism: each iteration had two accesses (a reacijl . . - S .
: lterations are also executed in the initial wavefronts, in this case it
followed by a write), and every array element was accessed approx- . . Lo
. ; appears that some benefit could be gained by overlapping, i.e., we
imately twice. “ :
_ o can take advantage of the “pauses”in parallelism to compute future
We would not expect the inspector’s execution time to be depen- (hopefully larger) wavefronts. The histograms in Figures 13 and 14
dent on the average parallelism in the source loop since it is fully underscore the need for scheduling and execution strategies that can
parallel. However, as the scheduler rungph steps, its execution  adapt dynamically depending upon the type of parallelism encoun-
time should be inversely correlated with the average parallelism. Intered. Figures 15 and 16 show that overhead speedup is invariant
Figures 6 and 7 we display results from a loop with 2048 iterations with the parallelism profile. Larger speedups were not obtained
run on 10 processors. The plot shows the overhead incurred for asince the loop is heavily imbalanced due to the blocked nature of the
loop with a critical path length of “Step.” As expected, the overhead algorithm used in MA28.
of the inspector is invariant with the length of the critical path, and

that of the scheduler grows linearly with this length.

Using synthetic loops, we studied the sensitivity of the overhead of
the methods to two characteristics of the sodi@éoop: itsaverage
parallelism (#iterationsépl) and itshotspot degreéhe maximum
number of repeated accessesto any array element). To simplify th
generation of the synthetic workloads, we did not identify indepen
dent, read—only, or privatizable elements in the analysis phase.

) Perfect Benchmark L oops
We also studied how overhead speedup relates to average par-

allelism. The inspector’s overhead is independent of the averageWe applied the methods to three loops contained in the PERFECT
parallelism since it is fully parallel. Although, the scheduler con- Benchmarks [4]. In the analysis phase it was found that one of the
sists ofcpl steps, it may still exhibit substantial speedups since eachloops was fully parallel, and that the other two could be transformed
step is fully parallel. In fact, in Figures 8 and 9 we show that intodoal | s by privatizing the shared array under test. Figures 17
almost identical speedups are obtained for sequential, partially parthrough 19 show the speedup measured for each loop as a function
allel, and fully parallel loops for both the inspector and scheduler. of the number of processors used. As a reference, we give the ideal
The slightly diminished slope of the inspector’s speedup curve after speedup, which was measured using an optimally parallelized (by
about 10 processors is because our implementation did not use dand) version of the loop. These graphs show that the speedupscales
“pair-wise” merge among the processors (Section 3.1). with the number of processors and is a significant percentage of the
ideal speedup. We note that these loops could also be identified
Hotspots. To isolate the effect of the hotspot degree in the source by the LRPD test [25, 26], a run—time test for identifying fully
loop on the overhead of the methods, we generated similar accesparallel loops, i.e., loops that can be transformeddiatal | s using
patterns differing only in hotspot degree: all loops had 2048 iter- privatization and reduction parallelization. Although the LRPD test
ations (each with two accesses), a critical path length of 40, and ahas a smaller overhead than the methods presented here, it cannot
loop with hotspot valué contained: references to each @048/h extract partial parallelism.
array elements. We would not expect the methods to be negatively In BDNA-ACTFOR-Loop 24Ghe shared array under test is
affected by the hot spot degree. In fact, a larger hotspot degreeaccessedthrough a subscriptarray computedinside the loop whichis
implies fewer non-empty rows in theR array, and thus we might  found to be privatizable in the analysis phase (Figure 17\ DG—
see improved results in the analysis and scheduling phases. ThéNTERF-Loop 1000it is also found that the shared array under
results in Figure 10 show that in fact the total overhead (inspector +test is privatizable in the analysis phase (Figure 18)OCEAN-
scheduler) is nearly the same for all hotspot degrees. FTRVMT-Loop 109all accesses to the shared array are found to



be unique in the analysis phase. Since this loop is invoked 26,000 [6] W. Blume and R. Eigenmann. Performance analysis of parallelizing

times, and accounts for 40% of the sequential execution time of the

program, it is an excellent candidate fghedule reusg80]. The
access pattern for each instantiation of the loop is determined by a [7]
set of five scalars. In order to apply schedule reuse, we checked
whether the current set of scalars matched a previously analyzed set.[g)
If not, then we applied the parallelization techniques, and if they did
match then we simply executed the loop adcal | . As can be
seen in Figure 19, with schedule reuse we obtain scalable speedupsygj
that are comparable to the ideal speedup.

6

Conclusion

[10]

Parallelizing statically intractable loops at run—time is an impor- [11]

tant task since automatic, compile—time parallelization had stopped

with regular, well-behaved, statically defined programs—whichrep-
resent only a fraction of all applications. We believe that aggressive,

dynamic techniques such as those described here can break this
barrier and extract much of the available parallelism from even the [12]
most complex programs. The scalability of our methods ensures that

their run—time overhead can be reduced to an insignificant fraction
of the program’s sequential execution time, which implies that their [1

significance will only increase with the advent of massively parallel
processors (MPPs).

Although these new methods illustrate the potential benefits o

run—time parallelization, there is still much work left to be done.
For example, there are many potential scheduling strategies that15]
needto be studied. Another important task is to devise effective, au-
tomatable strategies for determining when and how to use run—time
parallelization. Since speedups obtainable from run—time paral-[16]

lelization are upper bounded by the inherent parallelism of the loop,

f[14]

the compiler needs to estimate obtainable parallelism. Such esti{17]

mates can be produced only through collection and interpretation

of valid statistics from programs in different application domains. [1g

The new methods provide a useful tool for such studies since they
determine the dependence graph and parallelism profile of the loop,q

It should be noted that run—time overhead could be significantly
reduced through architectural support.

We view the methods described in this paper as a building blockin 5

an evolving framework of run—time parallelization as a complement
to the existing techniques [25, 26, 27].

Acknowledgment. We would like to thank Paul Petersen for his
useful advice, and William Blume and Brett Marsolf for identifying

and clarifying applications for our experiments. We are also grateful (22

to Richard Cole for suggestions regarding sorting algorithms.

References

[1] Alliant Computer Systems CorporatioRX/Series Architecture Man-

ual, 1986.

[2] Alliant Computers Systems CorporatioAlliant FX/2800 Series Sys-

(3]

[4]

(5]

tem Description1991.
U. Banerjee. Dependence Analysis for Supercomputini§luwer.
Boston, MA., 1988.

M. Berry and others. The PERFECT club benchmarks: Effective
performance evaluation of supercomputers. TR. 827, Ctr. for Super-
computing R.&D., Univ. of lllinois, Urbana, IL, May 1989.

H. Berryman and J. Saltz. A manual for PARTI runtime primitives.
Interim Report 90-13, ICASE, 1990.

[21]

]

[23]

[24]

[25]

[26]

[27]

compilers on the Perfect Benchmaf¥ Programs.IEEE Trans. on
Parallel and Distributed System3(6):643—-656, Nov. 1992.

M. Burke, R. Cytron, J. Ferrante, and W. Hsieh. Automatic generation
of nested, fork-join parallelisni. of Supercomputingp. 71-88, 1989.

W. J. Camp, S. J. Plimpton, B. A. Hendrickson, and R. W. Leland. Mas-
sively parallel methods for engineering and science probl&€uosm.
ACM, 37(4):31-41, April 1994.

D. K. Chen, P. C. Yew, and J. Torrellas. An efficient algorithm for the
run-time parallelization of doacross loops.Hroc. of Supercomputing
1994 pp. 518-527, Nov. 1994,

I. S. Duff. Ma28-a set of Fortran subroutines for sparse unsymmetric
linear equations. Tech. Rept. AERE R8730, HMSO, London, 1977.

R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in
the automatic parallelization of four Perfect-Benchmark programs. In
Lecture Notes in Comp. Science 589. Proc. of the 4th Workshop on
Languages and Compilers for Parallel Computing, Santa Clara, CA
pp. 6583, Aug. 1991.

M. Guzzi, D. Padua, J. Hoeflinger, and D. Lawrie. Cedar Fortran and
other vector and parallel Fortran dialecisSupercomput4(1):37-62,
March 1990.

3] V. Krothapalli and P. Sadayappan. An approach to synchronization of

parallel computing. IfProc. of the 1988 Int. Conf. on Supercomputing
pp. 573-581, June 1988.

C. Kruskal. Efficient parallel algorithms for graph problemsPhoc.
of the 1986 Int. Conf. on Parallel Processimp. 869-876, Aug. 1986.

D. J. Kuck, R. H. Kuhn, B. Leasure, D. A. Padua, and M. Wolfe.
Dependence graphs and compiler optimizationsPrwc. of 8th ACM
Symp. Princip. Prog. Langpp. 207-218, Jan. 1981.

F. Thomson Leightonlntroduction to Parallel Algorithms and Archi-
tectures: Arrays, Trees, Hypercubédorgan Kaufmann, 1992.

S. Leung and J. Zahorjan. Improving the performance of runtime
parallelization. Irdth PPOPR pp. 83-91, May 1993.

Zhiyuan Li. Array privatization for parallel execution of loops. In
Proc. of the 19th Int. Symp. on Comput. Arghp. 313-322, 1992.

] D.E.Maydan, S.P. Amarasinghe, and M. S. Lam. Data dependence and

data-flow analysis of arrays. Proc. 5th Workshop on Programming
Languages and Compilers for Parallel Computidgig. 1992.

] S. Midkiff and D. Padua. Compiler algorithms for synchronization.

IEEE Trans. ComputC-36(12):1485-1495, 1987.

J. Moreira and C. Polychronopoulos. Autoschedulingin a distributed
shared-memory environment . TR. 1373, Ctr. for Supercomputing
R.&D., Univ. of lllinois, Urbana, June 1994.

D. Padua and M. Wolfe. Advanced compiler optimizations for super-
computersCommunications of the ACM9:1184-1201, Dec. 1986.

C. Polychronopoulos. Compiler optimizations for enhancing paral-
lelism and their Impact on architecture desi¢faEE Trans. Comput.
C-37(8):991-1004, Aug. 1988.

L. Rauchwerger, N. Amato and D .Padua. Run-time methods for par-
allelizing partially parallel loops. TR. 1400, Ctr. for Supercomputing
R.&D., Univ. of lllinois, Urbana, IL, May 1989.

L. Rauchwerger and D. Padua. The privatizing doall test: A run-time
technique for doall loop identification and array privatizationPhoc.
of the 1994 Int. Conf. on Supercomputipg. 33—-43, July 1994.

L. Rauchwerger and D. Padua. The LRPD test: Speculative run-time
parallelization of loops with privatization and reduction paralleliza-
tion. In ACM SIGPLAN Conf. on Programming Language Design and
ImplementationJune, 1995.

L. Rauchwerger and D. Padua. Parallelizidy | e loops for multi-
processor systems. fith Int. Parallel Process. SymApril, 1995.



(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

J. Saltz and R. Mirchandaney. The preprocessed doacross loop. In
Dr. H.D. Schwetman, editoRroc. of the 1991 Int. Conf. on Parallel
Processingpp. 174-178. CRC Press, Inc., 1991. \ol. Il - Software.

J. Saltz, R. Mirchandaney, and K. Crowley. The doconsider loop. In
Proc. of the 1989 Int. Conf. on Supercomputiog. 29—-40, June 1989.

J. Saltz, R. Mirchandaney, and K. Crowley. Run-time parallelization
and scheduling of loop3EEE Trans. Comput40(5), May 1991.

P. Tu and D. Padua. Automatic array privatization.Phoc. 6th An-
nual Workshop on Languages and Compilers for Parallel Computing
Portland, OR, Aug. 1993.

M. Wolfe. Optimizing Compilers for Supercomputefdie MIT Press,
Boston, MA, 1989.

J.Wu, J. Saltz, S. Hiranandani, and H. Berryman. Runtime compilation
methods for multicomputers. In Dr. H.D. Schwetman, ediwac. of

the 1991 Int. Conf. on Parallel Processimp. 26—-30. CRC Press, Inc.,
1991. Vol. Il - Software.

C. Zhu and P. C. Yew. A scheme to enforce data dependence on
large multiprocessor system$EEE Trans. Softw. Engl13(6):726—
739, 1987.

H. Zima. Supercompilers for Parallel and Vector Compute ACM
Press, New York, NY, 1991.

Marking and Analysis Phase Overhead for:

Loops with Various Average Parallelism
Input : Synthetic Loop with N = 2048 Iterations

Overhead (msec)

0 1000 2000 3000
Steps

Figure 6:

Scheduling Phase Overhead for:
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Marking and Analysis Phase Speedup for:

Loops with Different Average Parallelism
Input : Synthetic Loop with N = 1024 Iterations
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Scheduling Phase Speedup for:

Loops with Different Average Parallelism
Input : Synthetic Loop with N = 1024 Iterations
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Run—Time Overhead for:
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Parallelism Profile of MA28/MA28CD/DO_120
Input : GEMAT_12 — Total Iterations: 4929
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Parallelism Profile of MA28/MA28CD/DO_120
Input : BP_1600 — Total Iterations: 822
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Figure 12:

Parallelism Histogram of MA28/MA28CD/DO_120
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% of Steps

1 2 4 8 16 32 64 128 256 512 1024
lterations/Step

Figure 13:

Parallelism Histogram of MA28/MA28CD/DO_120
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Overhead Speedup for MA28/MA28CD/DO_120
Input : GEMAT_12 — Total Iterations: 4929
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Overhead Speedup for MA28/MA28CD/DO_120
Input : BP_1600 — Total Iterations: 822
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Figure 16:
Speedup of Loop BDNA_ACTFOR_240
vs. Number of Processors (FX/2800)
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Speedup of Loop MDG_INTERF_1000
vs. Number of Processors (FX/2800)
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Figure 18:

Speedup of Loop OCEAN_FTRVMT_109
vs. Number of Processors (FX/2800)

with Schedule Reuse
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