
Run–Time Methods for Parallelizing Partially Parallel Loopsx

Lawrence Rauchwergery Nancy M. Amatoz David A. Paduay

University of Illinois Texas A&M University University of Illinois

Abstract

In this paper we give a new run–time technique for finding an
optimal parallel execution schedule for a partially parallel loop, i.e.,
a loop whose parallelization requires synchronization to ensure that
the iterations are executed in the correct order. Given the original
loop, the compiler generatesinspectorcode that performs run–time
preprocessing of the loop’s access pattern, andschedulercode that
schedules (and executes) the loop iterations. The inspector is fully
parallel, uses no synchronization, and can be applied to any loop.
In addition, it can implement at run–time the two most effective
transformations for increasing the amount of parallelism in a loop:
array privatizationand reduction parallelization(element–wise).
We also describe a new scheme for constructing an optimal parallel
execution schedule for the iterations of the loop.

1 Introduction

To achieve a high level of performance for a particular program
on today’s supercomputers, software developers are often forced to
tediously hand-code optimizations tailored to a specific machine.
Such hand-coding is difficult, error-prone, and often not portable
to different machines. Restructuring, or parallelizing, compilers
address these problems by detecting and exploiting parallelism in
sequential programs written in conventional languages. Although
compiler techniques for the automatic detection of parallelism have
been studied extensively over the last two decades [22, 32], current
parallelizing compilers cannot extract a significant fraction of the
available parallelism in a loop if it has a complex and/or statically
insufficiently defined access pattern. This is an extremely important
issue because a large class of complex simulations used in industry
today have irregular domains and/or dynamically changing inter-
actions. Examples include SPICE for circuit simulation, DYNA–
3D and PRONTO–3D for structural mechanics modeling, GAUS-
SIAN and DMOL for quantum mechanical simulation of molecules,
CHARMM and DISCOVER for molecular dynamics simulation of
organic systems, and FIDAP for modeling complex fluid flows [8].

xDue to space limitations, this paper is an extended abstract of [24].
yCenter for Supercomputing Research & Development, 1308 W. Main

St., Urbana, IL 61801, email:rwerger,padua@csrd.uiuc.edu. Re-
search supported in part by Intel and NASA GraduateFellowships, and Army
contract #DABT63-92-C-0033. This work is not necessarily representative
of the positions or policies of the Army or the Government.

zDepartment of Computer Science, Texas A&M University, College Sta-
tion, TX 77843-3112,email:amato@cs.tamu.edu. Research supported
in part by anAT&T Bell LaboratoriesGraduate Fellowship, NSF Grant CCR-
9315696, and the International Computer Science Institute, Berkeley, CA.

Thus, since the available parallelism in theses types of applica-
tions cannot be determined statically by present parallelizing com-
pilers [6, 8], compile-time analysis must be complemented by new
methodscapableof automaticallyextracting parallelism atrun–time.
Run–time techniquesare needed because the access pattern of some
programs cannot be statically determined, either because of limita-
tions of current analysis algorithms or because the access pattern is
input data dependent. For example, most dependence analysis al-
gorithms conservatively assume dependences when presented with
non–linear or subscripted subscript expressions.

During the past few years, techniques have been developed for the
run–time analysis andscheduling of loops [5, 9, 13, 17, 20, 23, 25, 26,
27, 28, 29, 30, 33, 34]. Themajority of this workhasconcentratedon
developing run–time methods for constructing execution schedules
for partially parallel loops, i.e., loops whose parallelization requires
synchronization to ensure that the iterations are executed in the
correct order. Given the original, orsourceloop, most of these
techniques generateinspectorcode that analyzes, at run–time, the
cross-iteration dependences in the loop,andscheduler/executorcode
that schedulesand executes the loop iterations using the dependence
information extracted by the inspector [30].

Our Results. We give a new inspector/scheduler/executor method
for finding an optimal parallel execution schedule for a partially par-
allel loop. Our inspector is fully parallel, uses no synchronization,
and can be applied to any loop (from which an inspector can be
extracted). In addition, our inspector can implement at run–time the
two most effective transformations for increasing the amount of par-
allelism in a loop: array privatization and reduction parallelization
(element–wise). The ability to identify privatizable and reduction
variables is very powerful since it eliminates the data dependences
involving these variables and increases the available parallelism in
the loop. The schedule partitions the set of iterations into subsets
calledwavefronts. Iterations in each wavefront can be executed in
parallel, i.e., there are no data dependences between iterations in
a wavefront. Although the wavefronts themselves are constructed
one after another, the computation of each wavefront is fully parallel
and requires no synchronization. The scheduling can be dynami-
cally overlapped with the parallel execution of the loop iterations to
utilize the machine more uniformly. Our new method improves on
the previous techniquessincenoneof them has all of these properties
(a comparison to previous work is contained in Section 4).

2 Preliminaries

In order to guarantee the semantics of a loop, the parallel exe-
cution schedule for its iterations must respect thedata dependence
relations between the statements in the loop body [22, 15, 3, 32, 35].
There are three possible types of dependences between two state-
ments that access the same memory location:flow(read after write),
anti (write after read), andoutput(write after write). Flow depen-
dences express a fundamental relationship about the data flow in the
program. Anti and output dependences, also known as memory-
related dependences, are caused by the reuse of memory, e.g., pro-
gram variables. If there are flow dependences between accesses in

A(2*i) = A(2*i-1)
tmp = A(2*i)

do

A(2*i-1) = tmp S2 :
enddo

S1:
 i = 1, n/2 do

(b)

 i=1, n
do j = 1, m

 A(j) = A(j) + exp()S1:
enddo

enddo

(a)

Figure 1:

different iterations of a loop, then the semanticsof the loop cannotbe
guaranteed unless those iterations are executed in order of iteration
number becausevalues that are computed (produced) in an iteration
of the loop are used (consumed) during some later iteration. If there
are no flow dependences, but there are anti or output dependences
between iterations of a loop, then the loop must be modified to re-
move all such dependences before these iterations can be executed
in parallel. In some cases, even flow dependences can be removed
by simple algorithm substitution, e.g., reductions. Unfortunately,
not all such situations can be handled efficiently. In order to remove
certain types of dependences two transformations can be applied to
the loop:privatizationandreduction parallelization.

Privatizationcreates, for each processor cooperating on the ex-
ecution of the loop, private copies of the program variables that
give rise to anti or output dependences (see, e.g., [7, 18, 19, 31]).
The loop shown in Figure 1(a), is an example of a loop that can
be executed in parallel by using privatization; the anti dependences
between statementS2 of iteration i and statementS1 of iteration
i+ 1, for 1 � i < n=2, can be removed by privatizing the tempo-
rary variabletmp. In this paper, the following criterion is used to
determine whether a variable may be privatized.

Privatization Criterion: LetA be a shared array (or array section)
that is referenced in a loopL. A can beprivatizedif and only if
every read access to an element ofA is preceded by a write access
to that same element ofA within the same iteration ofL.

In general, dependences that are generated by accesses to variables
that are only used as workspace (e.g., temporary variables)within
an iteration can be eliminated by privatizing the workspace.

Reduction parallelizationis another important technique for
transforming certain types of data dependent loops for concurrent
execution.

Definition: A reduction variableis a variable whosevalueis used
in one associative operation of the formx = x
exp, where
 is the
associative operator andx does not occur inexp or anywhere else in
the loop. If the operator is not commutative then the implementation
of the parallel equivalent reduction operation is more constrained.

Reduction variables are therefore accessed in a certain specific pat-
tern (which leads to a characteristic data dependence graph). A
simple but typical example of a reduction is statementS1 in Fig-
ure 1(b). The operator
 is exemplified by the+ operator, the
access pattern of arrayA(:) is read, modify, write, and the function
performed by the loop is to add a value computed in each iteration
to the value stored inA(:). Once reduction variables are identi-
fied, methods are known for performing the reduction operation in
parallel (see, e.g., [11, 14, 16, 35]).

3 Run–Time Analysis of Loops

Given ado loop whose access pattern cannot be statically ana-
lyzed, compilers have traditionally generated sequential code. Since
compile–time data dependence analysis techniques cannot be used
on such programs, methods of performing the analysis at run–time

are required. Several techniques have been developed for the run–
time analysis and scheduling of loops with cross-iteration depen-
dences [5, 9, 13, 17, 20, 23, 28, 29, 30, 33, 34]. However, for
various reasons, such techniques have not achieved wide–spread
use in current parallelizing compilers.

In the following we describe a new run–time scheme for con-
structing a parallel execution schedule for the iterations of a loop.
The general structure of our method is similar to the above cited
run–time techniques: given the original, orsourceloop, the com-
piler generatesinspectorcode that analyzes, at run–time, the cross-
iteration dependences in the loop,schedulercode that schedules the
loop iterations using the dependence information extracted by the
inspector, andexecutorcode that executes the loop iterations. In the
previous techniques, the scheduler and the executor are tightly cou-
pled codes which are collectively referred to as the executor, and the
inspector and the scheduler/executor codes are usually decoupled
[30]. Although our methods can also interleave the scheduler and
the executor, we treat them separately since they do tackle distinct
tasks.

3.1 The Inspector

In this section we describe a new inspector schemethat processes
the memory references in a loopand constructs adatastructure which
the scheduler can use to efficiently assign iterations to wavefronts.
In addition, our inspector can implement at run–time two important
transformations: (element–wise) array privatization and reduction
parallelization (see Section 2). The ability to identify privatizable
and reduction variables is very powerful since it eliminates the data
dependences involving these variables. In particular, these trans-
formations increase the available parallelism in the loop and also
reduce the work required of the scheduler since it need not consider
dependencesinvolving such variables when it constructs the parallel
execution schedule for the loop iterations.

Thebasicstrategy of our method is for the inspector to preprocess
the memory references and determine the data dependencesfor each
memory locationaccessed. Later, the scheduler uses this memory-
location dependenceinformation to determine the data dependences
between theiterations. We describe the method as applied to a
shared arrayA that is accessed through subscript arrays (see Fig-
ure 2(a)). For simplicity, we first consider only the problem of
identifying the cross–iteration dependences for each array element
(memory location). After describing the inspector, we discuss how
the dependence information it discovers can be used to identify the
array elements that are read–only, privatizable, or reduction vari-
ables. The inspector has two main tasks.

1. For each array elementA[x], the inspector collects all the refer-
ences to it into an array (or list)Rx and stores them in iteration
order. For each reference it stores the iteration number and
access type (i.e., read or write) (see Figure 2(b)).

2. For each array elementA[x], the inspector determines the data
dependencesbetween all its references and stores them in a data
structureHx for later use by the scheduler.

Below we discuss how the references to each array element can
be collected and stored in the array (or list)Rx. AssumingRx is
available, we first describe how the inspector determines the depen-
dencesamong the references toA[x]andcomputes the data structure
Hx. The relations between the references toA[x] can be organized
(conceptually) into an array element dependence graphDx. If ad-
jacent references inRx have different access types, then a flow or

9

type

iter

level

1 2 3 4 5 6 7 8 8
r w r r w r r w r

765543321

D
3

654321
R

3

9

iteration

access type

1
r

r
4

w
2

w
5

r
7

r
6

w

8
r
8

5 71 2 3 4 6level

3
r

3
H

3in R

7 8

do i = 1,8
 A(W(i)) = ...

 ... = A(R(i))
 work(i)

W(1:8) = [1 3 2 4 3 5 6 3]
R(1:8) = [3 7 3 3 8 3 3 3]

(a)

(b)

(c)

enddo

(d)

1 2 3 4 5 6 7

index
1 2 3 5 6 8

Figure 2:A (a) source loop, (b) the arrayR3 for A[3], (c) its dependence
graphD3, and (d) its hierarchy vectorH3.

anti dependence exists, and if they are both writes, then an output
dependence is signaled. These dependencesare reflected by parent-
child relationships inDx. If adjacent references are both reads, then
there is no dependence between the elements, but they may have a
common parent (child) inDx: the last write preceding (first write
following) them inRx. For example, the dependence graphD3 for
A[3] is shown in Figure 2(c).

Our goal is to encode the predecessor/successor information of
the (conceptual) dependence graphDx in ahierarchy vectorHx so
that the scheduler can easily look-up the dependence information
for the references toA[x]. First, we add alevelfield to the records
in Rx, and store in it the reference’s level in the dependence graph
Dx (see Figure 2(b)). Then, for each level, we store inHx the
index (pointer to location) inRx of thefirst reference at that level.
Specifically,Hx is an array andHx[i] contains the index inRx of
the first reference at leveli, i.e.,Hx will serve as a look–up table
for the first reference inRx at any level (see Figure 2(d)). Note that
this implies thatHx records the position inRx of every write access
and of the first read access in any run of reads.

We now give an example of how the hierarchy vector serves as a
look-up table for the predecessorsand successorsof all the accesses.
Consider the read access toA[3] in the6th iteration, which appears
as the6th entry inR3. Its level is5, and thus it finds its successor
by looking at the5 + 1 = 6th element of the hierarchy vectorH3,
which contains the value8 indicating that its successor is the8th
element inR3. Similarly, its predecessor is found by looking in the
5� 1 = 4th element ofH3, which indicates that its predecessor is
the5th element ofR3.

Implementing the Inspector. We now consider how to collect the
accesses to each array elementA[x] into the arraysRx. Regardless
of the technique used to construct these arrays, to ensure the scala-
bility of our methods we must process (mark) the references to the
shared arrayA in adoall (see Figure 3(a) and (b)). The compu-
tation performed in themarking operations will depend upon the
technique used to construct the arraysRx. In any case, note that
since we are interested in cross–iteration data dependenceswe need
only record at most one read and one write access inRx for any
particular iteration, i.e., subsequent reads or writes toA[x] in the
same iteration can be ignored.

Perhaps the simplest method of constructing the element arrays

..

index

1

2

3

pR

Proc 2

r
5 6 7 8 8
w w rr
1 2 2 3 4

type
iter

w
1

1 level

w
1

3

1 3 42
rr w r

1 32 3
...

index

1

2

3

.

private

Proc 1

pR

......
21 3 ?

1 ? index in PR

1 ?

? 1 2 4 5

index

1

2

3

index

1

2

3

pH pH

do i = 1,8
 A(W(i)) = ...

 ... = A(R(i))
 work(i)

W(1:8) = [1 3 2 4 3 5 6 3]
R(1:8) = [3 7 3 3 8 3 3 3]

enddo

(b)(a)

(c)

doall p = 1,nproc

enddoall

integer j

enddo
 markread(R(j))
 markwrite(W(j))
do j=start(p,niter),end(p,niter)

Figure 3: An example of the private element arrayspR and hierarchy
vectorspH (c) when two processors are used in the inspectordoall loop
(b) for the sourcedo loop (a).

Rx is to first place a record for each memory reference into an array
RA, and then sort the records lexicographically by array element
number (first key) and iteration number (second key). After sorting,
each arrayRx will occupy a contiguous portion (a subarray) in the
arrayRA. In this case the marking operations simply record the
information about the access intoRA. After the lexicographic sort,
the level of each reference inDx can be computed by a prefix sum
computation.

However, since the range of the values to be sorted is known
in advance (it is given by the dimension of the shared arrayA),
a linear timebucketor bin sort can be used in place of the more
generalO(n log n) lexicographic sort. Moreover, if the inspector’s
marking phase ischunked(i.e., statically scheduled), then further
optimization is possible. In this case, processori will be assigned
iterationsidn=pe through(i + 1)dn=pe � 1, wherep is the total
number of processors,n is the number of iterations in the loop,
and0 � i < p. The basic idea is as follows. First, in aprivate
marking phase, each processor marks the references in its assigned
iterations, and constructs element arraysRx and hierarchy vectors
Hx as described above,but only for the references in its assigned
iterations. Then, in across–processoranalysis phase, the hierarchy
vectors for the whole iteration space of the loop are formed using
the processors’ hierarchy (sub)vectors.

The private marking phase proceeds as follows. LetA[1:s] be
the shared array under scrutiny, and suppose each processor has
a separatearraypR[1:s; 1:2n=p] in which to store the records of
the references in its set of iterations. Each record contains the
iteration, type of reference, and level as described above. (The
second dimension of1:2n=p follows since at most one read and
one write to any element need to be marked in each iteration, and
each processor hasn=p iterations.) Assuming a processor marks its
iterations in order of increasing iteration number, it can immediately
place the records for the references into its arraypR in sorted order
of iteration number. In addition to the arraypR, each processor
has a separate arraypH[1:s; 1:2n=p] used to store the hierarchy
vectors for the references in its assigned set of iterations. Again,

assuming that iterations are processedin increasingorder of iteration
number, the hierarchy vectors can be filled in at the same time that
the references are recorded inpR (see Figure 3(c)).

In the cross-processor analysis phase we need to find for each
array elementA[x] the predecessor, if any, of the first reference
recorded by each processor, i.e., we need to fill in the value in
processori’s hierarchy vector for the reference that immediately
precedes (in the dependencegraphDx) the first reference toA[x] that
was assigned to processori. Similarly, we must find the immediate
successorof the last reference toA[x] that was assigned to processor
i. Processori can find the predecessors (successors) needed for
its hierarchy vectors by scanning the arrays of the processors less
than (larger than)i. For example, the “?” at the end ofpH[3]
for processor 1 in Figure 3 would be filled in with a pointer to
the first element in the arraypR[3] of processor 2. Hence, the
initial and final entries in the hierarchy vectors also need to store the
processor number that contains the predecessor andsuccessor. These
scans can be made more efficient by maintaining some auxiliary
information, e.g., for each array element, each processor computes
the total number of accessesit recorded, and the indices inpR of the
first and last write to that element. In any case, we note that filling
in the processors’ hierarchy vectors requires a minimal amount of
interprocessor communication, i.e., it requires only a “connecting”
and not a full “merging” of the different hierarchy vectors.

There are several ways in which the above sketched analysis
phase can be optimized. For example, in order to determine which
array elements need predecessors and successors (i.e., the elements
with non–empty arraysRx), the processor needs to check each
row of its arraypR (row i of pR corresponds to the arrayRi).
This could be a costly operation if the dimension of the original
array is large and the processor’s assigned iterations have a sparse
access pattern. However, the need to check each row inpR can
be avoided by maintaining a list of the non–empty rows. This list
can be constructed during the marking phase, and then traversed
in the analysis phase. Another source of inefficiency for machines
with many processors is the search for a particular predecessor (or
successor) since eachprocessor might need to look for a predecessor
in all the preceding (succeeding) processors’ iterations. The cost of
these searches can be reduced fromp to O(log p) using a standard
parallel divide–and–conquer “pair–wise” merging approach [16],
wherep is the total number of processors.

Privatization and Reduction Recognition. The basic inspector
described above can easily be augmented to find the array elements
that are independent (i.e., accessed in only one iteration), read–only,
privatizable, or reduction variables. We first consider the problem of
identifying independent, read–only, and privatizable array elements.
During the marking phase, a processor maintains the status of each
element referenced in its assigned iterationswith respect to only
these iterations. In particular, if it finds than an element is written in
any of its assigned iterations, then it is not read–only. If an element
is accessed in more than one of its assigned iterations, then it is
not independent. If an element was read before it was written in
any of its assigned iterations, then it is not privatizable. Next, the
final status of each element is determined in the cross–processor
analysis phase as follows. An element is independent if and only
if it was classified as independent by exactly one processor, and
was not referenced on any other processor. An element is read–
only if and only if it was determined to be read–only by every
processor that referenced it. Similarly, an element is privatizable
if and only if it was privatizable on every processor that accessed

i = 1, n
S1: A(K(i)) =
S2: = A(L(i))
S3: A(R(i)) = A(R(i)) + exp()

enddo

markwrite(K(i))
markredux(K(i))
markread(L(i))
markredux(L(i))

do

markwrite(R(i))

j

(b)

(a)

i = 1, ndoall

enddoall
enddo

private
do j=start(p,niter),end(p,niter)

integer

Figure 4: The transformation of thedo loop in (a) is shown in (b). The
markwrite (markread) operation adds a record to the processor’s array
pR (if its not a duplicate), and updates the hierarchyvectorpH appropriately.
The markredux operation invalidates the indicated array element as a
reduction variable since it is accessed outside the reduction statementS3.

it. Thus, the elements can be categorized by a similar process to
the one used to find the predecessors and successors when filling in
the processors’ hierarchy vectors. Finally, if we maintain a linked
list of the non–empty rows ofpR as mentioned above, then the
rows corresponding to elements that were found to be independent,
read–only, or privatizable are removed from the list, i.e., accesses to
theseelementsneednot be consideredwhenconstructing the parallel
execution schedule for the loop iterations.

We now consider the problem of verifying that a statement is
a reduction using run–time data dependence analysis. Recall that
potential reduction statements are generally identified by syntacti-
cally matching the statement with the generic reduction template
x = x
exp, wherex is the reduction variable, and
 is an associa-
tive operator. The statement is validated as a reduction if it can be
shown thatx is neither referenced inexp nor anywhere in the loop
body outside the reduction statement. For example, although state-
mentS3 in the loop in Figure 4(a) matches a reduction statement,
it is still necessary to prove that the elements of arrayA referenced
in S1 andS2 do not overlap with those accessed in statementS3,
i.e., that:K(i) 6= R(j) andL(i) 6= R(j), for all 1 � i; j � n. It
turns out that this condition can be tested in the same way that read–
only and privatizable array elements are identified. In particular,
during the marking phase, whenever an element is accessed outside
the reduction statement the processor invalidates that element as a
reduction variable. Again, the final status of each element is deter-
mined in the cross–processor analysis phase, i.e., an element is a
reduction variable if and only if it was not invalidated as such by
any processor. This basic strategy can be extended to handle more
complex reduction operations (refer to [24] for details).

Complexity of the Inspector. The worst case complexity of the in-
spector isO(a log p), wherea is the maximum number of references
assigned to each processor andp is the total number of processors.
In particular, using the bucket sort implementation, each processor
spends constant time on each of itsO(a) accesses in the marking
phase, and the analysis phase takes timeO(a log p) using a parallel
divide–and–conquer pair–wise merging strategy [16]. We remark
that since the cost of the analysis phase is proportional to the number
of distinct elements accessed (i.e., the number of non–empty rows
in thepR array) the complexity of this phase could be significantly
less thanO(a log p) if there are many repeated references in the
loop. Also, if a log p > s, then the merge among the processes can
be improved toO(s+ log p) time by chunking thepR arrays.

3.2 The Scheduler

The scheduler derives the more restrictive iteration-wise depen-
dence relations from the memory location dependence information
found by the inspector. A valid parallel execution schedule for a
loop is a partition of the set of iterations into ordered subsets called
wavefronts, so that all cross-iteration dependences go from an it-
eration in a lower numbered wavefront to an iteration in a higher
numberedwavefront. We say that a valid parallel executionschedule
is optimal if it has a minimum number of wavefronts, i.e., is has as
many wavefrontsas the longestpath (thecritical path) in the directed
acyclic graph (dag) describing the cross-iteration dependencesin the
loop. We remark that the schedulers described below can be used
to construct the full iteration schedule in advance (as described) or
they can be interleaved with the executor, i.e., the iterations could
be executed as they are found to be ready.

A simple scheduler. A simple scheduler that findsan optimal sched-
ule is sketched in Figure 5(a). In the figure, an arraywf(i) stores
the wavefront found for iterationi, the global variabledone flags if
all iterations have been scheduled,rdy(i) signals if iterationi is
ready to be executed, lower case letters (a,b) are used for references
to array elements,a.iter is the iteration which contains reference
a, andPred(a) is the set of immediate predecessors ofa in the
array element dependence graphs. The scheduling is performed in
phases (line 4) so that in phasei the iterations belonging toith
wavefront are identified. In each phase, all the references recorded
in thepR arrays are processed (lines 7–16), and the predecessors
of all references whose iterations have not been scheduled (line 10)
are examined. An iteration isnot readyif the iterations of any of its
reference’s predecessors were not assigned to previous wavefronts
(line 11). After all the references are processed, all the iterations
are examined (lines 17–19) to see which can be added to the current
wavefront: an iterationi is ready (line 18) if none of its references
setrdy(i) to false. Advantages of this scheduler are that it is
conceptually very simple and quite easy to implement.

Optimizing the simple scheduler. There are some sourcesof ineffi-
ciency in this scheduler. First, since a write access could potentially
have many “parent” read accesses it could prove expensive to re-
quire each write to check all its “parents” (line 10). Fortunately, this
problem is easily circumvented by requiring an unscheduled read
access to inform its successor’s iteration that it isnot ready. Then,
a write access only needs to check its predecessor if the (single)
predecessor is also a write.

Another source of inefficiencyarises from the fact that each inner
doall (lines 7–16) requires timeO(na=p) to identify unscheduled
iterations (line 9), wherena is the total number of accesses to the
shared array andp is the number of processors. Thus, the scheduler
takes timeO((na=p)cpl), wherecpl is the length of the critical
path. If cpl � p, then it cannot be expected to offer any speedup
over sequential execution, and even worse, it could yield slowdowns
for longer critical paths. However, note that in any single iteration
of the scheduler, the only iterations that could potentially be added
to the next wavefront must have all their accesses at the lowest un-
scheduledlevel in their respectiveelement–wisedependencegraphs.
For example, consider the dependence graph shown in Figure 5(b).
If iteration 2 (level 1) has not been scheduled yet, then none of
the iterations with accesses in higher levels could be added to the
current wavefront. Thus, in each of thecpl iterations of thedo
while loop, we would like to examine only those references that
are in the topmost unscheduled level of their respective dependence

4

3

1

2

D for A[x]

iteration2
w

4
r

5
r

7
r

8
r

9

x

r

wf(i) = cpl

23
r

22
r

21
r

w
17

(a)

(b)

9
8

10
11

4

7

16
17
18
19

level

wf(1:numiter) = 0
done = .false.
cpl = 1
do while (done.eq..false.)

 done = .true.

 a = access(i)

(wf(b.iter).eq.0)if

if (wf(a.iter) .eq. 0) then
for each (b in Pred(a))

doall i = 1, numaccess

then
done = .false.
rdy(a.iter) = .false.

 endfor
 endif

enddoall
doall

if
 i = 1,numiter

enddoall

enddo while
 cpl = cpl + 1

 rdy(1:numiter) = .true.

 (wf(i).eq. 0 .and. rdy(i).eq..true.)

Figure 5:A simple scheduler (a), and the dependencegraph for one of the
memory locations accessed in the loop (b).

graph. First note that we can easily identify the accesses on each
level of the array element dependence graphs since references are
stored in increasing level order in thepR arrays and thepH arrays
contain pointers the first access at each level. To process only the
accesseson the lowest unscheduled level it is useful to have a count
of the total number of (recorded) accesses in each iteration—which
can easily be extracted in the marking phase. Then, in the sched-
uler, a count of the number of ready accesses for each iteration is
computed on a per processor basis in the firstdoall (lines 7–16).
In the seconddoall (lines 17–19), the cross-processor sum of the
ready access counts for each unscheduled iteration is compared to
its total access count, and if they are equal the iteration is added to
the current wavefront.

In summary, we would expect the optimized version to outper-
form the original scheduler if there are multiple levels in the array
element dependence graphs. Hence, the determination of which
version to use should be made using knowledge gained about the
access pattern by the inspector. In [24], we discuss ways to reduce
scheduling overhead such as overlapping wavefront computation
with actual loop execution and using dynamic ready queues [21].

4 A Comparison with Previous Methods

We now compare the methods described in this paper to sev-
eral other techniques that have been proposed for analyzing and
schedulingdo loops at run–time. Most of this work has concen-
trated on developing inspectors. A high level comparison of the
various methods is given in Table 1.

Methods utilizing critical sections. The method of Zhu and Yew
[34] computes the wavefronts one after another using a method simi-

obtains contains requires restricts privat
optimal serial global type of or

Method sched portions synch loop reduct

New Yes No No No P,R

ZY [34] No1 No Yes2 No No
MP [20] Yes No Yes2 No No
KS [13] No3 No Yes2 No P
CYT [9] No1;3 No Yes No No
SM [28] No3 No Yes Yes5 No
SMC [30] Yes Yes4 Yes Yes5 No
LZ [17] Yes No Yes Yes5 No
P [23] No No No No No
RP [25, 26] No6 No No No P,R

Table 1:A comparison of run–time parallelization techniques fordo loops.
In the table entries,P andR show that the method identities privatizable
and reduction variables, respectively. The superscripts have the following
meanings: 1, the method serializes all read accesses; 2, performance can
degrade significantly in the presence of hotspots; 3, the scheduler/executor
is adoacross loop (iterations are started in a wrapped manner) and busy
waits are used to enforce certain data dependences; 4, the inspector loop
sequentially traverses the access pattern; 5, the method is applicable only to
loops without output dependences (i.e., each memory location is written at
most once); 6, the method identifies only fully parallel loops.

lar to the simple scheduler described in Section 3.2. During a phase,
an iteration is added to the current wavefront if none of the data
accessed in that iteration is accessed by any lower unassigned itera-
tion; the lowest unassigned iteration to access any array element is
found using atomiccompare-and-swapsynchronization primitives
and a shadow version of the array. Midkiff and Padua [20] extended
this method to allow concurrent reads from a memory location in
multiple iterations. These methods run the risk of a severe degra-
dation in performance for access patterns containinghot spots(i.e.,
many accesses to the same memory location). A feature of them
is that they use only a shadow version of the shared array whereas
all other methods (except [23, 25, 26]) unroll the loop and store all
accesses to the shared array.

Krothapalli and Sadayappan [13] proposed a run–time scheme
for removing anti and output dependences from loops. For each
memory location, their inspector counts the number references to
it (using critical sections as in [34]), places them in a dynamically
allocated array, and then sorts them by iteration number. After
building a dependence graph for each memory location (similar to
our arraysRx), the inspector removes all anti and output depen-
dences by redirecting the accesses to dynamically allocated storage
(using an additional level of indirection). Flow dependences are
enforced using full/empty bits. To our knowledge, this is the only
other run–time privatization technique except for the one described
in [25, 26].

Recently, Chen, Yew, and Torrellas [9] proposed an inspector
that first builds (in private storage) access lists for each memory
location referenced in a processor’s assigned iterations (similar to
[13] and our inspector’s marking phase, except they serialize read
accesses), and then links them across processors using a global
Zhu/Yew algorithm [34]. Their scheduler/executorusesdoacross
parallelization [28] (see below). Although this scheme potentially
has less communication overhead than [34], it is still sensitive to hot
spots and there are cases (e.g.,doalls) in which it proves inferior
to [34].

Methods for loops without output dependences. This problem

has also been studied extensively by Saltzet al. [5, 28, 29, 30, 33].
Most of their work assumes that there are no output dependences
in the source loop. Indoacross parallelization [28], an inspector
finds the (at most one) iteration in which each variable is written.
The scheduler/executor starts iterations in a wrapped manner and
processors busy wait until their operands are available. In [30], the
inspectorconstructswavefronts that respect the flowdependencesby
performing a sequential topological sort of the accesses in the loop,
and the scheduler/executor enforces any anti dependencesusing old
and new versions of each variable (possible since each variable in
the source loop is written at most once). The topological sort can
be parallelized somewhat usingdoacross parallelization. Leung
and Zahorjan [17] proposed methods of parallelizing the sequential
inspector of [30]. In theitsectioningmethod, the loop is chunked
and each processor computes an optimal schedule for its chunk,
and then these schedules are concatenated together separated by
synchronization barriers. Inbootstrappingtechnique, the inspec-
tor is parallelized (not optimally) using sectioning, but an optimal
schedule is produced.

Other methods. In contrast to the above methods which place
iterations in the lowest possible wavefront, Polychronopolous [23]
gives a method where wavefronts are maximal sets of contiguous
iterations with no cross-iteration dependences. Dependences are
detected using shadow versions of the variables, either sequentially,
or in parallel with the aid of critical sections as in [34].

All of the above mentioned methods attempt to find a valid par-
allel execution schedule for the sourcedo loop. Recently, we con-
sidered a related problem [25, 26]: testing at run–time whether
the loop is fully parallel, i.e., whether there are any cross-iteration
dependences in the loop. Our interest in fully parallel loops is moti-
vated by the observation that they arise frequently in real programs.

5 Implementation and Experimental Results

We present experimental results obtained on two modestly par-
allel machines with 8 (Alliant FX/80 [1]) and 14 processors (Alliant
FX/2800 [2]). However, we remark that the results scale with the
number of processors and the data size and thus they may be extrap-
olated for massively parallel processors (MPPs), the actual target of
our run–time methods. To demonstrate that the new methods can
achieve speedups, we applied them to three loops contained in the
PERFECT Benchmarks [4]. To analyze the overhead incurred by
the methods we applied them to access patterns taken from actual
programs and to synthetic access patterns.

The methods were implemented in Cedar Fortran [12]. The in-
spector was essentially as described in Section 3.1. In particular, we
implemented the bucket sort version using separatepR andpH data
structures for each processor. Each processor constructed a linked
list of the non-empty rows in itspR array during the marking phase.
Checks for independent, read–only, and privatizable elements were
implemented in the inspector (we have not yet included the test for
reduction variables). In the analysisphase, theseelementsare classi-
fied at the same time that the predecessorsand successorsare found
for each row. An optimization that we did not yet implement was
the “pair–wise” merge across processors when searching for pre-
decessors or successors in the analysis phase (or when classifying
elements as independent, read–only, or privatizable). However, this
is an important optimization since, as previouslynoted, without it the
analysis phase of the inspector may fail to scale with the number of
processors. Since we implemented the optimized version of the sim-

ple scheduler described in Section 3.2, a count of the total number
of accessesin each iteration was computed in the marking phase (no
inter-processor communication is needed to determine these counts
since each iteration is assigned to a single processor). For simplic-
ity, the scheduler and the executor were completely decoupled in the
implementation, but better speedups should be obtainable by inter-
leaving these two tasks (see Section 3.2). We remark that there are
other issues to be considered when applying these methods in a real
application environment such as memory requirements and known
bounds on the source loop’s available parallelism (refer to [24] for
more details).

Synthetic Loops

Using synthetic loops, we studied the sensitivity of the overhead of
the methods to two characteristics of the sourcedo loop: itsaverage
parallelism(#iterations/cpl) and itshotspot degree(the maximum
number of repeated accesses to any array element). To simplify the
generation of the synthetic workloads, we did not identify indepen-
dent, read–only, or privatizable elements in the analysis phase.

Averageparallelism. To isolate the effect of the averageparallelism
in the source loop on the overhead of the methods, we generated ac-
cess patterns that were as similar as possible in all aspects except
for the average parallelism: each iteration had two accesses (a read
followed by a write), and every array element was accessedapprox-
imately twice.

We would not expect the inspector’s execution time to be depen-
dent on the average parallelism in the source loop since it is fully
parallel. However, as the scheduler runs incpl steps, its execution
time should be inversely correlated with the average parallelism. In
Figures 6 and 7 we display results from a loop with 2048 iterations
run on 10 processors. The plot shows the overhead incurred for a
loop with a critical path length of “Step.” As expected, the overhead
of the inspector is invariant with the length of the critical path, and
that of the scheduler grows linearly with this length.

We also studied how overhead speedup relates to average par-
allelism. The inspector’s overhead is independent of the average
parallelism since it is fully parallel. Although, the scheduler con-
sists ofcpl steps, it may still exhibit substantial speedups since each
step is fully parallel. In fact, in Figures 8 and 9 we show that
almost identical speedups are obtained for sequential, partially par-
allel, and fully parallel loops for both the inspector and scheduler.
The slightly diminished slope of the inspector’s speedup curve after
about 10 processors is because our implementation did not use a
“pair–wise” merge among the processors (Section 3.1).

Hotspots. To isolate the effect of the hotspot degree in the source
loop on the overhead of the methods, we generated similar access
patterns differing only in hotspot degree: all loops had 2048 iter-
ations (each with two accesses), a critical path length of 40, and a
loop with hotspot valueh containedh references to each of2048=h
array elements. We would not expect the methods to be negatively
affected by the hot spot degree. In fact, a larger hotspot degree
implies fewer non-empty rows in thepR array, and thus we might
see improved results in the analysis and scheduling phases. The
results in Figure 10 show that in fact the total overhead (inspector +
scheduler) is nearly the same for all hotspot degrees.

Loops from the MA28 Solver

We applied the new methods to loops from real applications, both to
demonstrate the diversity of partially parallel accesspatterns and also
to reconfirm the conclusions reached above using synthetic loops.
For this purpose we chose Loop MA30cd/DO120 from MA28 (a
blocked sparse non-symmetric linear solver [10]). We selected this
loop, which performs the forward–backwardsubstitution in the final
phase of the blockedsparse linear system solver, because it can gen-
erate many diverse access patterns when using the Harwell-Boeing
matrices as input. Unfortunately, the loop itself is not a good can-
didate for parallelization since it performs very little work and is
highly imbalanced.

We discuss two input sets: gemat12, which generates 4929 it-
erations, and bp1600, which generates 822 iterations. After ex-
tracting and precomputing the linear recurrences from the source
loop (based on the methods in [27]), we generated a parallel in-
spector and computed an optimal parallel execution schedule for the
loop. The parallelism profiles obtained (Figures 11 and 12) show
the wavefront sizes of the optimal parallel execution schedule and
illustrate how the same loop can generate vastly different depen-
dence graphs given different input. Figure 11 shows that most of
the iterations of the loop can be executed in the initial wavefronts
(cpl = 114), which suggests that interleaving the wavefront com-
putation and execution would be more beneficial than overlapping
them, so that parallelization can be abandoned when the sequential
tail of the profile is reached. Although in Figure 12 most of the
iterations are also executed in the initial wavefronts, in this case it
appears that some benefit could be gained by overlapping, i.e., we
can take advantage of the “pauses” in parallelism to compute future
(hopefully larger) wavefronts. The histograms in Figures 13 and 14
underscore the need for scheduling and execution strategies that can
adapt dynamically depending upon the type of parallelism encoun-
tered. Figures 15 and 16 show that overhead speedup is invariant
with the parallelism profile. Larger speedups were not obtained
since the loop is heavily imbalanced due to the blockednature of the
algorithm used in MA28.

Perfect Benchmark Loops

We applied the methods to three loops contained in the PERFECT
Benchmarks [4]. In the analysis phase it was found that one of the
loops was fully parallel, and that the other two could be transformed
into doalls by privatizing the shared array under test. Figures 17
through 19 show the speedup measured for each loop as a function
of the number of processors used. As a reference, we give the ideal
speedup, which was measured using an optimally parallelized (by
hand) version of the loop. Thesegraphs showthat the speedupscales
with the number of processors and is a significant percentage of the
ideal speedup. We note that these loops could also be identified
by the LRPD test [25, 26], a run–time test for identifying fully
parallel loops, i.e., loops that canbe transformed intodoalls using
privatization and reduction parallelization. Although the LRPD test
has a smaller overhead than the methods presented here, it cannot
extract partial parallelism.

In BDNA–ACTFOR–Loop 240, the shared array under test is
accessedthrough a subscriptarray computedinside the loop which is
found to be privatizable in the analysis phase (Figure 17). InMDG–
INTERF–Loop 1000, it is also found that the shared array under
test is privatizable in the analysis phase (Figure 18). InOCEAN–
FTRVMT–Loop 109, all accesses to the shared array are found to

be unique in the analysis phase. Since this loop is invoked 26,000
times, and accounts for 40% of the sequential execution time of the
program, it is an excellent candidate forschedule reuse[30]. The
access pattern for each instantiation of the loop is determined by a
set of five scalars. In order to apply schedule reuse, we checked
whether the current set of scalars matched a previously analyzedset.
If not, then we applied the parallelization techniques, and if they did
match then we simply executed the loop as adoall. As can be
seen in Figure 19, with schedule reuse we obtain scalable speedups
that are comparable to the ideal speedup.

6 Conclusion

Parallelizing statically intractable loops at run–time is an impor-
tant task since automatic, compile–time parallelization had stopped
with regular, well–behaved,statically defined programs—which rep-
resent only a fraction of all applications. We believe that aggressive,
dynamic techniques such as those described here can break this
barrier and extract much of the available parallelism from even the
most complex programs. The scalability of our methodsensures that
their run–time overhead can be reduced to an insignificant fraction
of the program’s sequential execution time, which implies that their
significance will only increase with the advent of massively parallel
processors (MPPs).

Although these new methods illustrate the potential benefits of
run–time parallelization, there is still much work left to be done.
For example, there are many potential scheduling strategies that
need to be studied. Another important task is to devise effective, au-
tomatable strategies for determining when and how to use run–time
parallelization. Since speedups obtainable from run–time paral-
lelization are upper boundedby the inherent parallelism of the loop,
the compiler needs to estimate obtainable parallelism. Such esti-
mates can be produced only through collection and interpretation
of valid statistics from programs in different application domains.
The new methods provide a useful tool for such studies since they
determine the dependence graph and parallelism profile of the loop.
It should be noted that run–time overhead could be significantly
reduced through architectural support.

We view the methods described in thispaper asa building block in
an evolving framework of run–time parallelization as a complement
to the existing techniques [25, 26, 27].

Acknowledgment. We would like to thank Paul Petersen for his
useful advice, and William Blume and Brett Marsolf for identifying
and clarifying applications for our experiments. We are also grateful
to Richard Cole for suggestions regarding sorting algorithms.

References

[1] Alliant Computer Systems Corporation.FX/Series Architecture Man-
ual, 1986.

[2] Alliant Computers Systems Corporation.Alliant FX/2800 Series Sys-
tem Description, 1991.

[3] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer.
Boston, MA., 1988.

[4] M. Berry and others. The PERFECT club benchmarks: Effective
performance evaluation of supercomputers. TR. 827, Ctr. for Super-
computing R.&D., Univ. of Illinois, Urbana, IL, May 1989.

[5] H. Berryman and J. Saltz. A manual for PARTI runtime primitives.
Interim Report 90-13, ICASE, 1990.

[6] W. Blume and R. Eigenmann. Performance analysis of parallelizing
compilers on the Perfect BenchmarksTM Programs.IEEE Trans. on
Parallel and Distributed Systems, 3(6):643–656, Nov. 1992.

[7] M. Burke, R. Cytron, J. Ferrante, and W. Hsieh. Automatic generation
of nested, fork-joinparallelism.J. of Supercomputing,pp. 71–88,1989.

[8] W. J. Camp, S. J. Plimpton, B. A. Hendrickson,and R. W. Leland. Mas-
sively parallel methods for engineering and science problems.Comm.
ACM, 37(4):31–41, April 1994.

[9] D. K. Chen, P. C. Yew, and J. Torrellas. An efficient algorithm for the
run-time parallelization of doacross loops. InProc. of Supercomputing
1994, pp. 518–527, Nov. 1994.

[10] I. S. Duff. Ma28–a set of Fortran subroutines for sparse unsymmetric
linear equations. Tech. Rept. AERE R8730, HMSO, London, 1977.

[11] R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in
the automatic parallelization of four Perfect-Benchmark programs. In
Lecture Notes in Comp. Science 589. Proc. of the 4th Workshop on
Languages and Compilers for Parallel Computing, Santa Clara, CA,
pp. 65–83, Aug. 1991.

[12] M. Guzzi, D. Padua, J. Hoeflinger, and D. Lawrie. Cedar Fortran and
other vector and parallel Fortran dialects.J. Supercomput., 4(1):37–62,
March 1990.

[13] V. Krothapalli and P. Sadayappan. An approach to synchronization of
parallel computing. InProc. of the 1988 Int. Conf. on Supercomputing,
pp. 573–581, June 1988.

[14] C. Kruskal. Efficient parallel algorithms for graph problems. InProc.
of the 1986 Int. Conf. on Parallel Processing, pp. 869–876, Aug. 1986.

[15] D. J. Kuck, R. H. Kuhn, B. Leasure, D. A. Padua, and M. Wolfe.
Dependence graphs and compiler optimizations. InProc. of 8th ACM
Symp. Princip. Prog. Lang., pp. 207–218, Jan. 1981.

[16] F. Thomson Leighton.Introduction to Parallel Algorithms and Archi-
tectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[17] S. Leung and J. Zahorjan. Improving the performance of runtime
parallelization. In4th PPOPP, pp. 83–91, May 1993.

[18] Zhiyuan Li. Array privatization for parallel execution of loops. In
Proc. of the 19th Int. Symp. on Comput. Arch., pp. 313–322, 1992.

[19] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Data dependence and
data-flow analysis of arrays. InProc. 5th Workshop on Programming
Languages and Compilers for Parallel Computing, Aug. 1992.

[20] S. Midkiff and D. Padua. Compiler algorithms for synchronization.
IEEE Trans. Comput., C-36(12):1485–1495, 1987.

[21] J. Moreira and C. Polychronopoulos. Autoscheduling in a distributed
shared-memory environment . TR. 1373, Ctr. for Supercomputing
R.&D., Univ. of Illinois, Urbana, June 1994.

[22] D. Padua and M. Wolfe. Advanced compiler optimizations for super-
computers.Communications of the ACM, 29:1184–1201, Dec. 1986.

[23] C. Polychronopoulos. Compiler optimizations for enhancing paral-
lelism and their Impact on architecture design.IEEE Trans. Comput.,
C-37(8):991–1004, Aug. 1988.

[24] L. Rauchwerger, N. Amato and D .Padua. Run-time methods for par-
allelizing partially parallel loops. TR. 1400, Ctr. for Supercomputing
R.&D., Univ. of Illinois, Urbana, IL, May 1989.

[25] L. Rauchwerger and D. Padua. The privatizing doall test: A run-time
technique for doall loop identification and array privatization. InProc.
of the 1994 Int. Conf. on Supercomputing, pp. 33–43, July 1994.

[26] L. Rauchwerger and D. Padua. The LRPD test: Speculative run-time
parallelization of loops with privatization and reduction paralleliza-
tion. In ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June, 1995.

[27] L. Rauchwerger and D. Padua. Parallelizingwhile loops for multi-
processor systems. In9th Int. Parallel Process. Symp., April, 1995.

[28] J. Saltz and R. Mirchandaney. The preprocessed doacross loop. In
Dr. H.D. Schwetman, editor,Proc. of the 1991 Int. Conf. on Parallel
Processing, pp. 174–178. CRC Press, Inc., 1991. Vol. II - Software.

[29] J. Saltz, R. Mirchandaney, and K. Crowley. The doconsider loop. In
Proc. of the 1989 Int. Conf. on Supercomputing,pp. 29–40, June 1989.

[30] J. Saltz, R. Mirchandaney, and K. Crowley. Run-time parallelization
and scheduling of loops.IEEE Trans. Comput., 40(5), May 1991.

[31] P. Tu and D. Padua. Automatic array privatization. InProc. 6th An-
nual Workshop on Languages and Compilers for Parallel Computing,
Portland, OR, Aug. 1993.

[32] M. Wolfe. Optimizing Compilers for Supercomputers. The MIT Press,
Boston, MA, 1989.

[33] J. Wu, J. Saltz, S. Hiranandani,and H. Berryman. Runtime compilation
methods for multicomputers. In Dr. H.D. Schwetman, editor,Proc. of
the 1991 Int. Conf. on Parallel Processing, pp. 26–30. CRC Press, Inc.,
1991. Vol. II - Software.

[34] C. Zhu and P. C. Yew. A scheme to enforce data dependence on
large multiprocessor systems.IEEE Trans. Softw. Eng., 13(6):726–
739, 1987.

[35] H. Zima. Supercompilers for Parallel and Vector Computers. ACM
Press, New York, NY, 1991.

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

