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ABSTRACT

The elimination of induction variables and the parallelization of reductions in FORTRAN codes is

integral to performance improvement on shared-memory multi-processors ([11]). As part of the Polaris

Project, compiler passes which do induction variable substitution and reduction recognition have been

implemented and evaluated.
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CHAPTER 1

INTRODUCTION

The parallelization of loops requires resolution of many types of data dependences ([5], [22], [2]). In

particular, cross-iteration dependences caused by inductions may prohibit parallel execution. Induction

variable substitution is an important technique for resolving certain classes of such dependences. In

addition, induction solution provides the environment within which privatization of arrays can take

place. In the presence of induction variables which index arrays, induction solution is a prerequisite to

the resolution of cross-iteration dependences on array accesses. When combined with array privatization,

induction variable substitution becomes a powerful tool for removing cross-iteration dependences ([23]).

Current compilers are able to handle induction statements with loop invariant right hand sides in

multiply nested \rectangular" loops. In our manual analysis of programs we have found two additional

important cases: one, when induction variables appear in the (right hand side) increment of other

induction variables (we have termed these coupled induction variables), and two, when induction variables

occur within triangular loop nests1.

When an anti-output-ow dependence occurs which cannot be solved by induction substitution there

is still opportunity for parallelism using techniques for solving reductions in parallel. Current compilers

are able to solve simple scalar reductions and in some cases, single dimensional array reductions with

1In triangular loop nests, inner loop bounds depend on outer loop indices
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invariant indices. Based on work completed in [11], however, two additional classes of reductions were

determined important: single address reductions, which occur on a scalar or on an array of one or more

dimensions with loop invariant indices; and histogram reductions, which occur on arrays with loop variant

indices.

The following table outlines the slowdowns experienced when the above techniques are not imple-

mented ([11], page 3):

Technique A
D
M

A
R
C
2D

B
D
N
A

D
Y
F
E
S
M

F
L
O
52

M
D
G

M
G
3D

O
C
E
A
N

Q
C
D

S
P
E
C
77

T
R
A
C
K

T
R
F
D

induction substitution 8.3a 12.7
parallel reductions b 3.3 2.1 1.1 21 15.2 3.4 c

Table 1.1:
Performance loss from disabling individual restructuring techniques in terms of factor increase
of the best execution time

aThis is a speedup cited from [10]
bADM contains reductions in signi�cant loops. Most of them can be parallelized using existing synchronization tech-

niques without excessive overhead
cTRFD contains accumulationoperations that would become important for parallelization if advanced inductionvariable

substitution and array privatization were not available.

The results presented in the above table are based on experiments conducted on the the Alliant/FX80

and Cedar multi-processors. In these experiments, the Perfect Club Benchmark codes ([3]) were manually

parallelized, and speedups for various transformations measured, including induction variable substitu-

tion and parallel reductions.
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CHAPTER 2

PROBLEM PRESENTATION

2.1 What is Induction Variable Substitution?

Consider the following example code segment:

K = 0
Do I = 1; N

K = K + 1
A(K) = 0

EndDo

Due to loop-carried ow, anti, and output dependences on K, this loop cannot be executed in parallel.

However, it is possible to automatically solve the recurrence relation represented by the induction on K

as follows:

DOALL I = 1; N
Kprivate = I
A(Kprivate) = 0

EndDo

This loop can now be executed in parallel using the processor private variable Kprivate. This is the

simplest case of an induction variable, and serves as a basis for the more complex inductions observed

in real codes.
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As a second example of an induction, consider the following fragment of code:

K = 0
Do I = 1; N

Do J = 1; I
K = K + 1
A(K) = 0

EndDo
EndDo

This code segment is termed a triangular loop due to the triangular iteration space formed by the

indices I and J. This pattern is quite common in many codes, including forward and back substitution for

triangular systems, Gaussian elimination,LU factorization, Cholesky factorization, and QR factorization.

The induction on K is termed triangular.

The recurrence represented by the triangular induction on K has the following closed form solution:

DOALL I = 1; N
DOALL J = 1; I

Kprivate = J + (I2 � I)=2
A(Kprivate) = 0

EndDo
EndDo

A second class of inductions important to the parallelization of the aforementioned benchmarks1 are

termed coupled inductions. For example:

K1 = 0
K2 = 0
Do I = 1; N

Do J = 1; I
K1 = K1 + 1
A(K2) = 0

EndDo
K2 = K2 +K1

EndDo

1E.g., in the Perfect Club Benchmark code TRFD, subroutine OLDA [19]
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Here the induction variable K2 is dependent on the (triangular) induction variable K1. The closed

form of this induction is:

K1 = 0
K2 = 0
DOALL I = 1; N

DOALL J = 1; I
K1private = J + (I2 � I)=2
A(((I3 + 2 � I)=3� I)=2) = 0

EndDo
K2private = ((I3 + 2 � I)=3 � I)=2

EndDo

The third and �nal class of inductions involve multiplicative inductions2. For example:

K = 1
Do I = 1; N

K = K � 2
A(K) = 0

EndDo

The closed form for this example multiplicative induction is:

K = 1
DOALL I = 1; N

Kprivate = 2 � 2((�1)+I)

A(Kprivate) = 0
EndDo

Collectively, we have termed these three classes of inductions Generalized Induction Variables, or

GIVs.

2.2 What is Reduction Recognition?

Consider the following example code segment:

2Important in the Perfect Club Benchmark code OCEAN [20]
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Do I = 1; N
� � �
sum = sum +A(I)
� � �

EndDo

Due to loop-carried ow, anti, and output dependences on sum, this loop cannot be executed in

parallel (note that sum is not referenced elsewhere in the loop). However, it is possible to solve this

reduction by a number of methods which take better advantage of parallel hardware. One such solution

is:

DOALL I = 1; N
� � �
begin critical section

sum = sum+ A(I)
end critical section

� � �
EndDo

In this case begin critical section and end critical section enable parallel execution of this loop. Note

that in general this kind of solution is warranted only where there is enough other work in the loop to

balance the added cost of parallelization and synchronization. While this is a very simple case, it serves

as a basis for the more complex reductions observed in real codes.

Consider now the following example code where A may be either scalar or multidimensional, and �

and � may be multivariate functions of the loop indice(s)3:

Do I = 1; N
� � �
A(�(i; : : :)) = A(�(i; : : :)) + �(i; : : :)
� � �

EndDo

Given that A is not referenced in either � or �, these reductions can be solved in several ways, one of

which we term privatized reductions:

3For the sake of clarity all examples shown involve single dimensional arrays
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DOALL I = 1; N
begin preamble

Aprivate(lbp : ubp) = 0
end preamble

� � �
Aprivate(�(ip; : : :)) = Aprivate(�(ip; : : :)) + �(ip; : : :)
� � �
begin postamble

begin critical section

A(lbp : ubp) = A(lbp : ubp) +Aprivate(lbp : ubp)
end critical section

end postamble

EndDo

Here we have de�ned a prologue to the loop termed a preamble which contains code executed once

per participating processor. Likewise, there is a postamble which is executed by each processor upon

completion of its slice of the iteration space. The array Aprivate is initialized in the preamble from lbp

to ubp, which represents the slice of the iteration space assigned to processor P . The total size of these

slices is determined symbolically based on the access pattern to the array A. Similarly, A is reduced

across processors in the postamble. The notation ip on the privatized reduction statement in the main

loop body represents the range of the index i for a given processor P 4.

Additional speedup comes from the fact that the accesses to Aprivate will be local in nature on

architectures where the memory is physically distributed5. On the other hand, on an architecture in

which the memory is not distributed6, array expansion removes the need for synchronization in the

postamble:

lb = min(�(1 : n))
ub = max(�(1 : n))
Aexpanded(lb : ub; 1 : Pmax) = 0
DOALL I = 1; N

� � �
Aexpanded(�(ip; : : :); Pk) = Aexpanded(�(ip; : : :); Pk) + �(ip; : : :)
� � �

EndDo
A(lb : ub)) = A(lb : ub) +Aexpanded(lb : ub; 1 : Pmax)

4The example given below in Section 3.2.5 will clarify how these reductions work in practice
5e.g., the Convex Exemplar
6e.g., the SGI Challenge
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Here Pk refers to the processor currently executing in a given iteration, Pmax refers to the number of

processors executing in parallel, and ip refers to the iteration counter in the slice of the iteration space

executing on processor Pk. The initialization and �nal reduction are represented in triplet notation, and

both of these operations can be executed in parallel7.

In summary, the two general classes of reductions under consideration are exempli�ed as follows:

Do I = 1; N
� � �
A(�(i; : : :)) = A(�(i; : : :)) + �(: : :)
� � �
A(�(i; : : :)) = A(�(i; : : :)) + (: : :)
� � �

EndDo

In this case, �, �, �, and  may be either the same or di�erent functions. In either case, if both �

and � are loop invariant, the reductions are termed single address reductions.

On the other hand, if either � or � vary within the loop (as is the case here where � and � are

functions of the enclosing loop index), the combination of reductions on A forms a histogram reduction8.

7The Polaris reduction backend does so for the initialization section
8This occurs in the Perfect Club Benchmark code MDG, which is analyzed in Section 3.2.4
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CHAPTER 3

IMPLEMENTATION

The induction substitution and reduction recognition passes are implemented on a basic infrastructure

provided by the Polaris programming environment ([7]). This environment will be described briey for

the sake of clarity.

Within Polaris, access to the internal representation (IR) is controlled through a data-abstraction

mechanism. Operations built onto the internal representation are de�ned such that the programmer is

prevented from violating its structure or leaving it in an incorrect state at any point during a transfor-

mation. Further, transformations are never allowed to let the code enter a state in which it no longer has

proper FORTRAN syntax. The system also guarantees the correctness of all control ow information.

This is realized through automatic incremental updates of this information as a transformation proceeds

([4]).

The two passes discussed in the paper, along with Polaris, have been implemented in C ++. C ++ pro-

vides the necessary data-abstraction for manipulating programs represented in the Polaris IR. Through

personal experience the author has found implementation using Polaris straightforward. Debugging

posed a bit of a problem in that GNU C ++ was used for compilation, but no insurmountable di�culties

were encountered.
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3.1 Induction Variable Substitution

As noted above, induction variable substitution is a necessary prerequisite to privatization. As such,

the induction pass is executed before privatization in the Polaris compiler.

3.1.1 Algorithm Overview

Induction variable substitution takes place in three distinct phases. First, we have a recognition

phase, in which candidate induction variables are recognized. These candidates are then pruned to

include the classes of induction variables of interest. In the second phase, the induction variables are

topologically sorted and closed forms symbolically calculated. Finally, the uses of the inductions are

substituted with the closed forms in the third and �nal phase.

3.1.2 Induction Variable Substitution Algorithm

At a high level, the induction substitution algorithm is as follows:

For each ProgramUnit
Normalize wrap-around loop bounds
For each DO loop in the ProgramUnit

Recognize candidate induction variables
Topologically sort and prune candidate list
For each induction variable

Symbolically solve recurrences
For each use of each induction variable

Substitute the closed-form solution of the recurrence
EndFor

EndFor
EndFor

Prior to calling the induction substitution pass, a prepass is executed which normalizes control ow

(e.g., removing GOTO statements). The outermost loop then iterates over all ProgramUnits in the

Program1. Next, loops are searched for wrap-around loop bounds2. At the next level, we iterate over all

1This includes such semantic units as subroutines, functions, block data, etc.
2This step is described in Section 3.1.6
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do loops in the current ProgramUnit. It is at this level that phase one takes place. Initially, candidate

induction variables of two types are recognized: multiplicative and additive. Together, these take the

form:

ivi = ivi f�; �g f(ivj ; ivk; :::; invariant1; invariant2; :::; loop indexi; loop indexj ; :::)

The induction variable on the left, ivi, may be coupled with one or more induction variables when

the operation is f+g or f-g3. The remaining portion of the right hand side increment is a multivariate

function of the enclosing loop indices and other loop invariant variables. In the current implementation

the presence of ow control statements other than DO cause the candidate to be rejected.

The next step is to topologically sort the list of successful candidates in order to determine the correct

order of solution for coupled inductions. This sort may result in additional pruning should a recurrence

requiring simultaneous solution occur4. This phase results in a directed acyclic graph (DAG) of the

dependence relation between induction variables within one iteration of the loop5. Once this sort has

been completed, initial values are determined, the closed forms are calculated, and substitution takes

place.

At a high level, the calculation of the closed form of an induction variable involves a sweep through

the loop which recurses upon encountering an inner loop. As the sweep proceeds through each loop, two

expressions are formed to represent the closed form, one at the loop header and a second at the exit.

We will now turn to the details of the calculation of the closed forms. We will �rst treat additive

inductions, then return to multiplicative inductions.

3.1.3 Additive Inductions

De�nition 1

3i != fj,k,...g
4e.g., i = i + j; j = j + i
5This approach ignores loop nesting, and thus could be optimized to allow a coupled recurrence across nests
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Given a loop L with index iter, the total increment  Liv (iter) of the additive induction variable iv

in a single iteration of the body of L is de�ned as:

 Liv (iter) =

loop exitX
s=loop entry

increments to iv

Here s iterates over the statements in loop L from loop entry to loop exit6.

De�nition 2

The increment at iteration i of the additive induction variable iv at the header of loop L is de�ned

as:

i@iLiv =

iterationi�1 by stepX
iter=loop init

 Liv (iter)

Here  Liv (iter) is summed over the iteration space of L from the lower bound to the i�1st iteration.

De�nition 3

The increment at n of the additive induction variable iv upon completion of loop L is de�ned as:

i@nLiv =

loop limit n by stepX
iter=loop init

 Liv (iter)

Here we are summing  Liv (iter) over the entire iteration space of L from the lower bound loop init

to the upper bound n by step.

6Note that  is de�ned  � 0 for loops which have no (possibly nested) induction sites for iv
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Initially, is computed by a lexical scan which forms a symbolic sum of the right hand side increments

at all induction sites of a given induction variable iv. Once  has been computed for a given iv, the

symbolic expressions i@i and i@n are computed using a symbolic sum function7.

The algorithm proceeds recursively when an inner loop is encountered. The current value for i@i in

the enclosing loop is used as the initial value of the iv at entry to the nested loop. The sum  is then

determined for the inner loop (recursing again as necessary), and the expression i@i is formed for the

inner loop. In other words, when iv occurs inside a nested loop,  can only be partially calculated for

outer loops and becomes fully known inside these outer loops only as Phase 2 of the algorithm recursively

returns inner loop sums.

As the recursion unwinds and loop exits are encountered, the expressions i@n are calculated. These

are the last values which will be used outside the loop if the induction variables' live range extends

beyond the loop exit.

The overall picture should be one of a statement-wise traversal of a given loop body, �rst summing

increments, then multiplying across iteration spaces, all done recursively as necessary.

Let's trace the algorithm through an example. For the sake of simplicity, only examples with a

stepsize of one will be used. However, any integer stepsize is allowable.

M = 0
Do J = 1; U

Do K = 1; J
M =M + 1
A(M ) = 0

EndDo
EndDo

In this case, we have a triangular loop with a nesting depth of two. Each phase of the algorithm will

now be considered in turn.

7The implementation of this sum function is discussed in Section 3.1.8



14

Phase 1 { Recognition

During the �rst phase, the anti-output-ow dependence on M is recognized. This is done very

simply by pattern matching on assignments to scalar variables. Next, the induction is tested to

determine if the right hand side increment varies by subtracting the left hand side from the right

hand side. In the above case, M is classi�ed as an additive induction with an invariant right hand

side (the constant 1). Since no coupled inductions exist and ow control is limited to DO loops,

M becomes a valid induction. The �nal step is to calculate  :

 Km (k) =
EndDoX
s=DOK

increments to M = 1

This completes the recognition phase.

Phase 2 { Calculating the closed form

In this phase, processing begins with entry into the initial DO loop with index J8. Temporary

values for i@i and i@n are formed within the context of this loop. Control immediately recurses

on encountering the DO K loop. Since the limit of nesting has been reached, we now form the

actual values of i@i and i@n in the context of the K loop:

i@iKm =
k�1X
k0=1

1 = k � 1

i@nKm =

jX
k0=1

1 = j

These expressions are now returned to the caller (DO J) where  , i@i, and i@n are formed:

8In this thesis we assume, for the sake of simplicity, that all additive induction variables have an initial value of 0
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 Jm (j) =
EndDoX
s=DOJ

increments to M = j

Note that  is the index of the current loop.

i@iJm =

j�1X
j0=1

j0 = j � (j � 1)=2

i@nJm =
uX

j0=1

j0 = u � (u+ 1)=2

Phase 3 { Substitution

The substitution phase proceeds as follows:

For each Statement S in Loop L
Switch (S:type)

case DoLenc : For each InductionVariable iv in \ivs in L"
If iv is an additive iv

Increment RSiv by i@iLenciv

Else

Multiply RSiv by m@iLenciv

case EndDoLenc : For iv in \ivs in L"
If iv is an additive iv

Decrement RSiv by  
Lenc
iv (iter) and by i@iLenciv

Increment RSiv by i@nLenciv

Else

Divide RSiv by m@iLenciv and by �Lenciv (iter)

Multiply RSiv by m@nLenciv

case Assignment: For iv in \ivs in L"
If S is an InductionVariableStmt

If iv is an additive iv
Increment RSiv by the current right hand side increment

Else
Multiply RSiv by the current right hand side multiplier

Else
For each scalar Variable V used in S

For iv in \ivs in L"
If V = iv

For each use of iv in S
Replace iv with the Closed-form of iv
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EndFor
Break

EndIf
EndFor

EndFor
EndIf

EndSwitch
EndFor

In our example (repeated below for convenience), substitution proceeds by �rst iterating through the

body of the J loop. A running sum RS is kept for each iv9, and is updated according to the statement

type encountered. The initial value of RS at the header of loop J is j � (j � 1)=2. When the K loop

header is reached, RS is incremented by i@iKm , resulting in RS = (k � 1) + (j � (j � 1)=2). Next, the

induction site M =M + 1 is reached, and RS is updated with the right hand side increment +1. Thus,

at the induction site, RS takes the value k+ (j � (j � 1))=2. Finally the use of M is encountered in the

assignment statement to A(M ), and the current value of RS (k+ (j � (j � 1))=2) is substituted for M .

M = 0
Do J = 1; U

Do K = 1; J
M =M + 1
A(M ) = 0

EndDo
EndDo

The resulting code looks like this:

M = 0
DOALL J = 1; U

DOALL K = 1; J
Mprivate = K + (J � (J � 1))=2
A(K + (J � (J � 1))=2) = 0

EndDo
EndDo

9stored in the variable � current value { see Section 3.1.7
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The assignment to M now becomes unnecessary and the statement can be removed.

We are not quite �nished because substitution now proceeds through the rest of the J loop. First

the K EndDo is processed, and RS is updated with i@nKm . There are no other uses of M in the J loop,

so upon encountering the J EndDo, RS is updated with i@nJm. This completes the substitution phase.

Let's turn our attention to multiplicative induction variables now.

3.1.4 Multiplicative Inductions

Similar de�nitions as those for additive induction variables hold for multiplicative induction variables:

De�nition 1

Given a loop L with index iter, the product �Liv (iter) of the multiplicative induction variable iv in

the body of L is de�ned as:

�Liv (iter) =

loop exitY
s=loop entry

multipliers of iv

Here s iterates over the statements in loop L from loop entry to loop exit10:

De�nition 2

The multiplier at iteration i of the multiplicative induction variable iv at the header of loop L is

de�ned as:

m@iLiv =

iterationi�1 by stepY
iter=loop init

�Liv (iter)

Here the product of  Liv (iter) is taken over the iteration space of L from the lower bound to the

i � 1st iteration.

10Note that � is de�ned � � 1 for loops which have no (possibly nested) induction sites for iv
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De�nition 3

The multiplier at n of the multiplicative induction variable iv upon completion of loop L is de�ned

as:

m@nLiv =

loop limit n by stepY
iter=loop init

�Liv (iter)

Here we are taking the product of  Liv (iter) over the entire iteration space of L from the lower bound

loop init to the upper bound n by step.

Consider the following example:

K = 1
Do J = 1;M

K = K � 2
A(K) = 0

EndDo

The following phases of the induction algorithm are executed:

Phase 1 { Recognition

During the �rst phase, the anti-output-ow dependence on K is recognized. This is done very

simply by pattern matching on assignments to scalar variables11. Next, the induction is tested

to determine if the right hand side increment varies by subtracting the left hand side from the

right hand side. In the above case, this fails to identify K as an induction variable, so a further

test is made to determine the nature of the operator. Once the operator has been recognized as

multiplication, the multiplier is tested for invariance. In this case, 2 is invariant so K remains an

active candidate. Since no coupled inductions exist and ow control is limited to DO loops, K

becomes a valid induction. The �nal step is to calculate �:

11Using Polaris FORBOL primitives [26]
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�Jk (j) =
EndDoY
s=DOJ

multipliers of K = 2

This completes the recognition phase.

Phase 2 { Calculating the closed form

In this phase, processing begins with entry into the initial DO loop with index J . Temporary

values for m@i and m@n are formed within the context of this loop. Since the limit of nesting has

been reached, we now form the actual values of m@i and m@n in the context of the J loop:

m@iJk =

j�1Y
j0=1

2 = 2j�1

m@nJk =
mY

j0=1

2 = 2m

This completes phase 2 of the algorithm.

Phase 3 { Substitution

The substitution phase uses the same algorithm as that used for additive inductions, and proceeds

by �rst iterating through the body of the J loop. The running sum RS has an initial value at the

header of the J loop of 2j�1. As control reaches the induction site, RS is multiplied by the right

hand side multiplier 2. This results in the expression 2j . When the use of K is encountered, K

is substituted for the current value of RS = 2j . Finally, control reaches the J EndDo, and RS is

divided by �Jk and m@iJk
12, and multiplied by m@nJk . This completes phase 3, yielding the �nal

value RS = 2m.

The resulting code looks like this:

12This results in RS � 1
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K = 1
DOALL J = 1;M

Kprivate = 2 � 2 � �(J � 1)
A(2 � 2 � �(J � 1)) = 0

EndDo

Before going on with more detailed examples of the induction algorithm, the implementation of the

zero-trip test will be discussed.

3.1.5 Zero Trip Test

Zero trip loops pose a problem for induction substitution due to the potential for generating incorrect

closed forms in the presence of loops with unknown symbolic bounds.

In a prototype implementation, the induction pass used the symbolic algebra package MapleTM

to solve recurrences. However, as has been pointed out in [16], there are serious drawbacks to both

MathematicaTM and Maple. Both of these packages are unable to handle the problem of zero-trip loops.

For example, consider the following:

K = 0
READ *,M
Do I = 1; N

Do J = 1;M
K = K + 1
A(K) = 0

EndDo
EndDo

Without the accompanying context of the READ statement onM , both Maple and Mathematica will

produce a closed form for the induction variable K which is incorrect if M is negative. It is therefore

necessary to combine the functionality of a powerful symbolic algebra package with the semantics of

the program. The induction substitution pass does this. As part of the pass, a powerful symbolic

sum function works in conjunction with the recently developed Symbolic Range Propagation algorithm

([6]). The range propagation algorithm does a detailed analysis of the program semantics and determines
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relationships between variables at any point in the program. In the above example, the input dependence

of M would be discovered by the algorithm and, in the absence of additional information such as user

assertions, the resulting range of M would be determined to be unknown. This information would then

be communicated to the induction pass and used by the zero-trip test to determine that the value of M

is unknown, with the result that the recurrence on K would be solved only in the J loop.

Consider the following de�nition:

De�nition

Given upper and lower loop bounds UB and LB, an exact zero-trip is executed when UB =

LB � 1.

Normally, the intuitive understanding of loops leads one to the conclusion that UB � LB , i@n.

In other words, if the loop upper bound is greater than or equal to the lower bound, i@n is correct.

However, this is not the case. To understand intuitively why this is so, take a look at the following

example:

Parameter(UB = 10)
M = 0
If (P ) Then

U = 0
Else

U = UB
Do J = 1; UB

Do K = 1; U
M =M + 1
A(M ) = 0

EndDo
Count =M

EndDo

In this case,  , i@i, and i@n for the K loop are:



22

 Km (k) =
EndDoX
s=DOK

increments to M = 1

i@iKm =
k�1X
k0=1

1 = k � 1

i@nKm =
uX

k0=1

1 = u

And in the J loop:

 Jm (j) =
EndDoX
s=DOJ

increments to M = u

i@iJm =

j�1X
j0=1

u = (j � 1) � u

i@nJm =
ubX
j0=1

u = u � ub

After induction solution the code becomes:

Parameter(UB = 10)
M = 0
If (P ) Then

U = 0
Else

U = UB
DOALL J = 1; UB

DOALL K = 1; U
Mprivate = K + (J � 1) � U
A(K + (J � 1) � U ) = 0

EndDo
Countprivate = J � U

EndDo

The point to note is this: the value of Count will be correct no matter which control path is taken

to de�ne U . In both cases, the value of Count is identical to the value in the original code: if U is 0,

Count = J �U � 0, and if U is UB, Count = J �U � J � UB. As a result the induction pass can relax

the constraints when testing for zero trip loops. As we will see, this will come in handy later on.
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3.1.6 Wrap Around Variables

A wrap around variable is classically de�ned as a variable which takes on the value of an induction

variable after one iteration of a loop ([21]). There is at least one important case in the Perfect Club

Benchmark codes where a wrap around induction variable of this type occurs as the bound of a loop

containing an induction site. This wrap around induction variable must be recognized as such in order

to solve the induction at the level of the enclosing loop.

Loop 280 in OLDA do300 contains an example of such a wrap around variable:

LMIN=MJ

LMAX=MI

DO 290 MK=MI,MORB

DO 280 ML=LMIN,LMAX

MIJKL=MIJKL+1

280 XIJKL(MIJKL)=XKL(ML)

LMIN=1

LMAX=MK+1

290 CONTINUE

The variable LMAX takes the value MI initially, and from then on takes the value of the 290 loop

index MK. In addition to this wrap around variable which takes on the value of an induction variable,

the lower bound of loop 280 also takes on a constant value after one iteration.

The recognition of both of these wrap around variables can be accomplished by representing the

ProgramUnit in SSA form and using back substitution ([24]). For example, consider the SSA form of the

above code fragment13:

LMIN_$1 = MJ_$0

LMAX_$1 = MI_$0

DO MK_$1 = MI, MORB, 1

MIJKL_$1 = PHI(MIJKL_$0, MIJKL_$2)

ML_$1 = PHI(ML_$0, ML_$2)

LMIN_$2 = PHI(LMIN_$1, LMIN_$3)

LMAX_$2 = PHI(LMAX_$1, LMAX_$3)

DO ML_$2 = LMIN_$2, LMAX_$2, 1

MIJKL_$2 = PHI(MIJKL_$1, MIJKL_$3)

MIJKL_$3 = MIJKL_$2+1

13For reasons of brevity I assume some familiarity with the SSA form. For additional information, see [8]
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280 LABEL 280

ENDDO

LMIN_$3 = 1

LMAX_$3 = MK_$1+1

290 LABEL 290

ENDDO

Let's trace the value of LMAX through to it's use as the upper bound of the ML loop 28014.

The �rst assignment of interest to LMAX is LMAX $1 = MI $0. Next, LMAX $2 = �(LMAX $1,

LMAX $3), so the initial value of LMAX $2 (the ML loop upper bound), is MI $0. LMAX $2

takes it's next value from LMAX $3 = MK $1 + 1, which is the loop index of the MK loop plus 1.

Within the MK loop, we can use back substitution to replace the term LMAX $3 with MK $1 + 1

in �(LMAX $1; LMAX $3). This results in a new � function �(LMAX $3;MK $1 + 1). Similarly,

by forward substitution (for LMAX $1), we get �(MI $0;MK $1 + 1). Since each back substitution

corresponds to the execution of a single iteration of the loop, we conclude that after one iteration the

value of LMAX takes on the value of the MK loop index (plus a constant term), and thus loop ML

is triangular with loop MK. In a similar way, it can be determined that LMIN takes on the constant

value 1 after one iteration. Thus, the entire loop nest can been reduced to a triangular entity simply by

recognizing these relationships and peeling the �rst iteration of the MK loop15.

We will now turn our attention to the C++ data structures employed in the induction variable

substitution pass.

3.1.7 Data Structure Highlights

The use of object oriented features in Polaris in general was discussed briey in the introduction to

this section. In general the induction pass takes good advantage of the facility o�ered by such languages.

Speci�cally, the data structure of the InductionVariable object logically conjoins both the control ow

and data representation issues in a coherent manner, making both the understanding and enhancement of

14The SSA form presented here is taken from one of the Polaris internal representations
15An algorithm to accomplish this wrap around loop bound recognition is under development
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the algorithm straightforward16. The InductionVariable object consists of two classes: InductionVariable

and increment info. The increment info class tracks closed forms across multiple loops when inductions

occur within multiply nested loops. The loop speci�c expressions  ; i@i; i@n; �;m@i and m@n are stored

here. The best way to think about this is to realize that an induction on a given variable can occur at

multiple sites across multiply nested loops, and information speci�c to each loop must be maintained to

properly solve the recurrence in all these di�erent environments. Thus, multiple increment info objects

can exist for a single induction variable. In fact, these objects are stored in the list iv info in the

InductionVariable object (see the declaration of iv info in the InductionVariable class below). Other

key data members of InductionVariable include initial value and current value, both of which are used

during the substitution phase. The private data members for each of these classes are displayed below:

class increment info : public Listable f
friend class InductionVariable;
private:

Statement � enclosing do loop;
Expression � sum of incs;
Expression � prod of mults;
Expression � closed form;
Expression � last value;
int visited;
RefList<increment info> enclosed loops;

g;
class InductionVariable : public Listable f

private:
Symbol � symbol;
InductionVarType type;
Expression � initial value;
Expression � current value;
Expression � sum of incs;
Expression � prod of mults;
Expression � vvar current value;
Expression � outermost use;
List<increment info> iv info;
RefSet<Symbol> vvarsyms;
int variant;
int solved;

g;

16It took only about �ve hours to add the functionality to solve multiplicative induction variables on top of the existing
pass
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Although not part of the induction pass, the Listable class is worth mentioning due to its frequent

(and invaluable) use. An essential part of the Polaris infrastructure, the Listable class provides, via

inheritance, the basic framework upon which both the InductionVariable and increment info classes are

built.

3.1.8 Symbolic Sum Function

A symbolic sum function was implemented as part of the Polaris infrastructure. Based on Bernoulli

Numbers (after Jakob Bernoulli), the sum function computes the sums of mth powers17:

Let Sm(n) be de�ned as:

Sm(n) = 0m + 1m + � � �+ (n � 1)m =
n�1X
k=0

km

The discovery of Bernoulli can be summarized as:

Sm(n) =
1

m + 1

mX
k=0

0
BB@

m + 1

k

1
CCABkn

m+1�k (3:1)

Where

0
BB@

m+ 1

k

1
CCA is the combinatorial function m+1 choose k18 = (m�1)!

k!(m�k�1)! .

To complete the above summation it is necessary to calculate the coe�cients Bk. This is algorith-

mically possible using the following de�nition([14], page 270):

mX
j=0

0
BB@

m + 1

j

1
CCABj =

8>><
>>:

1 if m = 0

0 for m > 0

The Polaris Summation class implements an algorithmic solution to this implicit recurrence. Given

the coe�cients Bk, expressions are factored into monomial form and summed according to 3.1 above.

17Material drawn from [14], page 269
18Normally denoted C(n; r)
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3.1.9 Induction Variable Substitution in TRFD

TRFD, one of the Perfect Club Benchmark codes, is a kernel simulating the computational aspects of

a two-electron integral transformation. It's interest to us lies in the presence of some unusually complex

induction variables.

The kernel of code we will be studying occurs in the subroutine OLDA, and has the following form:

NRS = (NUM * (NUM + 1))/2

NIJ = (MORB * (MORB + 1))/2

MIJ = 0

MIJKL = 0

MLEFT = NRS - NIJ

DO MI = 1, MORB, 1

DO MJ = 1, MI, 1

MIJ = MIJ+1

LMIN = MJ

LMAX = MI

DO MK = MI, MORB, 1

DO ML = LMIN, LMAX, 1

MIJKL = MIJKL+1

ENDDO

LMIN = 1

LMAX = MK+1

ENDDO

MIJKL = MIJKL+MIJ+MLEFT

ENDDO

ENDDO

This code fragment has been extracted from OLDA do300, a loop nest which accounts for 28% of

the serial execution time of the benchmark19. As can be seen, the triangular induction variable MIJ is

coupled to the triangular induction variable MIJKL20.

There is an added complication in this loop which must be solved prior to the solution of the coupled

inductions on MIJ and MIJKL. Namely, you will notice the bounds of the inner loop ML are loop

variant wrap-around variables. The induction algorithm handles this as outlined above in Section 3.1.6.

After manually completing the transformation described above, the code becomes:

19measured on the SGI Challenge
20In fact, the induction site inside loop MK is doubly-triangular in nature
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NRS = (NUM * (NUM + 1))/2

NIJ = (MORB * (MORB + 1))/2

MIJ = 0

MIJKL = 0

MLEFT = NRS - NIJ

DO MI = 1, MORB, 1

DO MJ = 1, MI, 1

MIJ = MIJ+1

DO ML = MJ, MI, 1

MIJKL = MIJKL+1

ENDDO

DO MK = MI+1, MORB, 1

DO ML = 1, MK, 1

MIJKL = MIJKL+1

ENDDO

ENDDO

MIJKL = MIJKL+MIJ+MLEFT

ENDDO

ENDDO

After performing this transformation, it turns out that the MK loop fails to satisfy the relation

MORB � MI+1 in the last iteration of the MI loop. Fortunately this does not pose a problem, due to

the fact that the MK loop executes an exact zero-trip on the last iteration (discussed in section 3.1.5).

As we will see below, the closed form i@nMK
mikjl is:

i@nMK
mijkl =

morbX
mk0=mi+1

mk0 = (morb +morb2 �mi �mi2)=2

When MI = MORB (in the last iteration of the outermost MI loop), i@nMK
mijkl � 0, and as a

result, the contribution of i@nMK
mijkl to i@n

MI
mijkl is also 0. This preserves the semantics of the original

untransformed MK loop.

We are now ready to proceed with an exact trace of the TRFD example through the three phases of

the induction solution algorithm.
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Phase 1

There are two induction variables in this example, MIJ and MIJKL. During the recognition

phase, MIJ becomes a valid candidate with a constant right hand side increment. Likewise,

MIJKL is incremented by a loop invariant (MLEFT ) and a candidate iv, MIJ21.

In determining the sum of increments  for these �ve loops, it becomes immediately clear that

at this point in the algorithm,  can only be calculated for loops in which induction sites occur.

Thus we have:

 MJ
mij (mj) =

EndDoX
s=DOMJ

increments to MIJ = 1

 MJ
mijkl (mj) =

EndDoX
s=DOMJ

increments to MIJKL = mleft

 MLMK

mijkl (mlmk) =
EndDoX

s=DOMLMK

increments to MIJKL = 1

 MLMJ

mijkl (mlmj ) =
EndDoX

s=DOMLMJ

increments to MIJKL = 1

Note that  MJ
mijkl is only a partial sum at this point. The complete value for  MJ

mijkl, as well as the

remainder of the values for  in the MK, MJ , and MI loops, must be determined during the

calculation of the closed forms.

Lastly, since no control ow structures other than DO loops occur inside loopMI, we may proceed

to Phase 2 of the algorithm.

21Note that the order in which the coupled induction variables occur is unimportant. The dependence between them
will be determined and resolved (if possible) during Phase 2
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Phase 2

The sorting stage is fairly straightforward22. The dependence relation between MIJ andMIJKL

is determined, and MIJ is solved �rst. Although values for i@imij and i@nmij exist in each loop,

they are of importance only in the MI loop, since this is the environment within which we solve

the induction on MIJ , as well as reference it. The values for i@imij and i@nmij are derived as

follows:

i@iMJ
mij =

mj�1X
mj0=1

1 = mj � 1

i@nMJ
mij =

miX
mj0=1

1 = mi

i@iMI
mij =

mi�1X
mi0=1

mi = (mi � (mi � 1))=2

i@nMI
mij =

morbX
mi0=1

mi = (morb � (morb + 1))=2

Likewise, the values for i@imijkl and i@nmijkl are as follows:

The MLMJ loop:

i@iMLMJ

mijkl =
ml�1X

ml0=mj

1 = ml �mj

i@nMLMJ

mijkl =
miX

ml0=mj

1 = 1 +mi �mj

The MLMK loop:

i@iMLMK

mijkl =
ml�1X
ml0=1

1 = ml � 1

22In fact, the topological sort is done concurrently with the calculation of the closed forms
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i@nMLMK

mijkl =
mkX

ml0=1

1 = mk

The MK loop:

i@iMK
mijkl =

mk�1X
mk0=mi+1

mk0

= (mk2 �mi �mk �mi2)=2

i@nMK
mijkl =

morbX
mk0=mi+1

mk0

= (morb +morb2 �mi �mi2)=2

The MJ loop:

i@iMJ
mijkl =

mj�1X
mj0=1

(mj0 +mleft + (mi2 �mi)=2 + i@nMK
mijkl + i@nMLMJ

mijkl )

= mj � 1 + (�morb�morb2 +mj �morb+mj �morb2)=2�mleft +mj �mleft

i@nMJ
mijkl =

miX
mj0=1

(mj0 +mleft + (mi2 �mi)=2 + i@nMK
mijkl + i@nMLMJ

mijkl )

= mi + (mi �morb+mi �morb2)=2 +mi �mleft

The MI loop:

i@iMI
mijkl =

mi�1X
mi0=1

�
mi0 + (mi0 �morb+mi0 �morb2)=2 +mi0 �mleft

�

= ((morb�mi2+mi2�morb2�mi�morb�mi�morb2)=2+mi2�mi+mleft�mi2�mi�mleft)=2

i@nMI
mijkl =

morbX
mi0=1

�
mi0 + (mi0 �morb+mi0 �morb2)=2 +mi0 �mleft

�

= (morb + (morb2 + 2 �morb3 +morb4)=2 +morb2 +morb �mleft +mleft �morb2)=2
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Phase 3

The third and �nal phase begins with RSMI
mij equal to (mi � (mi � 1))=2. Upon entering the

MJ loop, RS is updated with mj � 1 and becomes mj � 1 + (mi � (mi � 1))=2. Next, we

encounter the induction site MIJ = MIJ + 1, and RS is updated to mj + (mi � (mi � 1))=2,

the value which is later substituted for MIJ on the right hand side of the MIJKL induction

site at the bottom of the MJ loop. Although this substitution does not take place at this point

in the algorithm, when it does take place the MIJKL induction site will become MIJKL =

MIJKL +mj + (mi � (mi � 1))=2 +mleft23.

Continuing with MIJKL now, we start out with an initial value for RS of:

RSMI
mijkl = ((morb �mi2 +mi2 �morb2 �mi �morb

�mi �morb2)=2 +mi2 �mi +mleft �mi2

�mi �mleft)=2

Upon encountering the MJ loop, this value is incremented by mj � 1 + (�morb �morb2 +mj �

morb+mj�morb2)=2�mleft+mj�mleft. Next, we enter theMLMJ loop, and RS is incremented

by ml � mj. Now we have reached the �rst induction site, MIJKL = MIJKL + 1 inside the

MLMJ loop, and RS becomes:

RS = ((morb �mi2 +mi2 �morb2 �mi �morb

�mi �morb2)=2 +mi2 �mi +mleft �mi2

�mi �mleft)=2 +ml � 1 + (�morb �morb2 +mj �morb

23Note that the current value of RSmij is carried through the loopsMLMJ, MK, and MLMK without change, to this
induction site
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+mj �morb2)=2�mleft +mj �mleft

Next the MLMJ EndDo is reached, and RS is decremented by i@iMLMJ

mijkl , then incremented by

i@nMLMJ

mijkl , and �nally decremented by  MLMJ

mijkl . The resulting value is:

RS = mi + ((morb �mi2 +mi2 �morb2 �mi �morb

�mi �morb2)=2 +mi2 �mi �morb�morb2

+mj �morb +mj �morb2 +mleft �mi2 �mi �mleft)=2

�mleft +mj �mleft

The next two statements encountered are the MK and MLMK loops. RS is incremented by

(mk2 �mi �mk �mi2)=2 (i@iMK
mijkl) and ml � 1 (i@iMLMK

mijkl ). The resulting sum is:

RS = ml � 1 + ((morb �mi2 +mi2 �morb2 �mi �morb

�mi �morb2)=2 +MK2 �MK �morb �morb2

+mj �morb +mj �morb2 +mleft �mi2 �mi �mleft)=2

�mleft +mj �mleft

Control ow now reaches the second induction site and RS is incremented by 1. As control

leaves the MLMK and MK loop nests, RS is decremented by  MLMK

mijkl (which is 1), as well as by

i@iMLMK

mijkl
and i@iMK

mijkl. Then RS is incremented by (morb+morb2�mi�mi2)=2 (i@nMK
mijkl) and

mk (i@nMLMK

mijkl ), yielding the value:
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RS = ((morb �mi2 +mi2 �morb2 �mi �morb

�mi �morb2)=2 +mj �morb+mj �morb2

+mleft �mi2 �mi �mleft)=2 �mleft +mj �mleft

Finally we encounter the remaining induction site in the MJ loop. At this site, RS is incremented

by  MJ
mijkl, which at this point in the processing has become mj + (mi � (mi � 1))=2 + mleft24.

The resulting value is:

RS = mj + ((morb �mi2 +mi2 �morb2 �mi �morb

�mi �morb2)=2 +mi2 �mi +mj �morb +mj �morb2

+mleft �mi2 �mi �mleft)=2 +mj �mleft

As control ows out of the MJ loop, RS is decremented by  MJ
mijkl, i@i

MJ
mijkl, i@n

MLMJ

mijkl , and

i@nMK
mijkl. It is then incremented by i@nMJ

mijkl with the result:

RS = (mi + (morb �mi2 +mi2 �morb2 �mi �morb

�mi �morb2)=2 +mi2 +mi �morb +mi �morb2

+mleft �mi2 �mi �mleft)=2 +mi �mleft

The �nal update takes place upon encountering the MI EndDo, where RS is decremented by

i@nMJ
mijkl and incremented by i@nMI

mijkl with the result:

24This is just the closed form of MIJ plus mleft
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RS = (morb + (morb2 +morb4)=2 +morb2 +morb3

+mleft �morb+mleft �morb2)=2

3.1.10 Induction Variable Substitution in OCEAN

The following is an excerpt from the Perfect Club Benchmark OCEAN25, subroutine FTRVMT. A

multiplicative induction occurs on the complex variable EXJ inside loop 109. However, due to the

complexity of control ow within this loop, the iteration space must be partitioned prior to induction

solution. An algorithm to accomplish this partitioning is under development. The unpartitioned code

follows:

SUBROUTINE FTRVMT (DATA,EX)

...

DO 109 JL=1,I2K

IF(JL-1) 102,102,104

102 EXJ=(1.,0.)

DO 103 JJ=JL,NPTS,I2KP

DO 103 MM=1,MTRN

JS=(JJ-1)*NSKIP+(MM-1)*MSKIP+1

H=DATA(JS)-DATA(JS+I2KS)

DATA(JS)=DATA(JS)+DATA(JS+I2KS)

DATA(JS+I2KS)=H

103 CONTINUE

GO TO 109

104 IF(JL-JLI) 105,107,105

C

C INCREMENT JL-DEPENDENT EXPONENTIAL FACTOR

C

105 EXJ=EXJ*EXK

DO 106 JJ=JL,NPTS,I2KP

DO 106 MM=1,MTRN

JS=(JJ-1)*NSKIP+(MM-1)*MSKIP+1

H=DATA(JS)-DATA(JS+I2KS)

DATA(JS)=DATA(JS)+DATA(JS+I2KS)

DATA(JS+I2KS)=H*EXJ

25See [20]
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106 CONTINUE

GO TO 109

107 EXJ=CMPLX(0.,SGN1)

DO 108 JJ=JL,NPTS,I2KP

DO 108 MM=1,MTRN

JS=(JJ-1)*NSKIP+(MM-1)*MSKIP+1

H=DATA(JS)-DATA(JS+I2KS)

DATA(JS)=DATA(JS)+DATA(JS+I2KS)

DATA(JS+I2KS)=CMPLX(-SGN1*HH(2),SGN1*HH(1))

108 CONTINUE

109 CONTINUE

...

RETURN

END

After manual partitioning, the code becomes:

SUBROUTINE FTRVMT(DATA,EX)

...

EXJ = (1.,0.)

DO 103 JJ = 1, NPTS, I2KP

DO 103 MM = 1, MTRN, 1

JS = (JJ-1)*NSKIP+(MM-1)*MSKIP+1

H = DATA(JS)-DATA(JS+I2KS)

DATA(JS) = DATA(JS)+DATA(JS+I2KS)

DATA(JS+I2KS) = H

103 CONTINUE

DO 109A JL = 2, JLI-1, 1

EXJ = EXJ*EXK

DO 106A JJ = JL, NPTS, I2KP

DO 106A MM = 1, MTRN, 1

JS = (JJ-1)*NSKIP+(MM-1)*MSKIP+1

H = DATA(JS)-DATA(JS+I2KS)

DATA(JS) = DATA(JS)+DATA(JS+I2KS)

DATA(JS+I2KS) = H*EXJ

106A CONTINUE

109A CONTINUE

IF (JLI.NE.1) then

EXJ = CMPLX(0.,SGN1)

DO 108 JJ = JLI, NPTS, I2KP

DO 108 MM = 1, MTRN, 1

JS = (JJ-1)*NSKIP+(MM-1)*MSKIP+1

H = DATA(JS)-DATA(JS+I2KS)

DATA(JS) = DATA(JS)+DATA(JS+I2KS)

DATA(JS+I2KS) = CMPLX(-SGN1*HH(2),SGN1*HH(1))

108 CONTINUE

ENDIF

DO 109B JL = JLI+1, I2K, 1

EXJ = EXJ*EXK

DO 106B JJ = JL, NPTS, I2KP
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DO 106B MM = 1, MTRN, 1

JS = (JJ-1)*NSKIP+(MM-1)*MSKIP+1

H = DATA(JS)-DATA(JS+I2KS)

DATA(JS) = DATA(JS)+DATA(JS+I2KS)

DATA(JS+I2KS) = H*EXJ

106B CONTINUE

109B CONTINUE

...

RETURN

END

Essentially what we've done is to peel the �rst iteration, execute the next JLI �2 iterations (in loop

109A), peel the JLIth iteration, and then execute the �nal I2K � JLI iterations (loop 109B).

Let's trace the induction substitution algorithm through the three phases of solution for this loop.

Phase 1 { Recognition

Recognition of the induction variable EXJ proceeds very much like that for K is the previous

example. EXJ is recognized as a multiplicative induction variable within the context of the two

JL loops (hereafter referred to as JL1 and JL2). Again similar to the previous example, EXK

is invariant within both JL loops, and since no coupled inductions exist EXJ becomes a valid

induction. The �nal step is to calculate �26:

�JL1

exj (jl1) =
EndDoY

s=DOJL1

multipliers of EXJ = exk

�
JJJL1
exj (jjjl1 ) =

EndDoY
s=DOJJ

multipliers of EXJ � 1

�
MMJL1

exj (mmjl1 ) =
EndDoY

s=DOMM

multipliers of EXJ � 1

�JL2

exj (jl2) =
EndDoY

s=DOJL2

multipliers of EXJ = exk

26Note that �JJJLexj and �MMJL

exj are by de�nition 1 for both loops because no induction site exists inside either of these

loops (even though EXJ is used)
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�
JJJL2
exj (jjjl2 ) =

EndDoY
s=DOJJ

multipliers of EXJ � 1

�
MMJL2

exj (mmjl2 ) =
EndDoY

s=DOMM

multipliers of EXJ � 1

This completes the recognition phase.

Phase 2 { Calculating the closed form

In this phase, processing begins with entry into the initial DO loop with index JL1. However, the

issue of initial values must be dealt with explicitly. EXJ is a complex variable, and like additive

induction variables, it's initial value must be a appear in the expression for the closed form27. In

this example, EXJ has an initial value of CMPLX(1:0; 0:0) outside the JL1 loop. If the initial

value for any induction variable can be determined as a constant (or loop invariant), that value

will be used in the closed form. If however, the initial value cannot be determined statically, a

temporary is created outside the parallel loop and assigned the value of the induction variable at

that point. In this example, a temporary EXJ0 is created and the assignment EXJ0 = EXJ

placed just outside the JL1 loop header28.

Continuing with Phase 2 now, temporary values for m@i and m@n are formed within the context

of the JL1 loop. Since the limit of nesting has been reached with respect to induction sites for

EXJ29, we now form the actual values ofm@i andm@n in the context of this �rst loop. Processing

then continues with the JL2 loop, resulting in the following four equations:

m@iJL1

exj =

jl1�1Y
jl0
1
=2

exk = exkjl�2

27We sidestepped this issue when dealing with additive inductions simply by assuming initial values of 0
28The induction solution pass is relatively simple when it comes to determining initial values { if control ow diverges

while searching for an initial value, the search ends and a temporary variable is created and assigned at the header of the
parallel loop

29For the sake of consistency,m@iexj andm@nexj in
�
JJJL1 ;MMJL1 ; JJJL2 ;MMJL2

	
are all de�ned per their proper

de�nitions with �exj � 1
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m@nJL1

exj =

jli�1Y
jl0
1
=2

exk = exkjli�2

m@iJL2

exj =

jl2�1Y
jl0
2
=jli+1

exk = exkjl�(jli+1)

m@nJL2

exj =
i2kY

jl0
2
=jli+1

exk = exki2k�jli

This completes phase 2 of the algorithm.

Phase 3 { Substitution

The substitution phase begins in loop JL1 with RS = m@iJL1

exj = exkjl�2. As control reaches the

induction statement EXJ = EXJ � EXK, RS is multiplied by both EXK and the initial value

EXJ0 with the result that RS = exj0� exkjl�1. Control ow now enters the JJJL1 loop, and the

value of RS remains unchanged (m@i
JJJL1
exj � 1). Likewise, upon entry to the MMJL1 loop, RS

remains unchanged.

We next encounter the use of EXJ in the statement DATA(JS + I2KS) = H �EXJ , and EXJ

is substituted by RS yielding DATA(JS + I2KS) = H � EXJ0 � EXKJL�1. As control leaves

the JJ and MM inner loops, RS is divided by m@i
MMJL1

exj , m@i
JJJL1
exj , �exj (for both loops), and

multiplied by m@n
MMJL1

exj and m@n
JJJL1
exj , yielding RS = ((((((RS=1)=1)=1)=1) � 1) � 1) = RS30.

Control has now reached the JL1 EndDo, and RS is divided by m@iJL1

exj = exkjl�2 � �JL1

exj = exk

(with the result RS = 1), and multiplied by m@nJL1

exj = exkjli�2. The last value of EXJ in the

JL1 loop is thus exj0 � exkjli�2.

Processing for the JL2 loop is almost identical, the only di�erence being in the bounds of the loop.

This completes Phase 3 of the algorithm, and we will now turn our attention to Reduction Recog-

nition.

30In fact the implementation doesn't actually do the division or multiplication in this case. Instead, upon entry to and
exit from a loop, the values for i@i, m@i, i@n, m@n,  , and � are �rst checked, and only if they exist (are non-NULL),
is the operation completed
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3.2 Reduction Recognition

As the title of this section suggests, solving reductions in parallel is handled in more than one step.

It's should be mentioned that Polaris is, in general, a tool for recognizing parallelism. Parallel reductions

are solved within this framework, and as a result the work described in this section blends naturally with

Polaris' overall goal. Nonetheless, the implementation of parallel reductions is of critical importance,

and will be discussed below in Section 3.2.4.

3.2.1 Algorithm Overview

The �rst step in the solution of parallel reductions is recognition of potential reductions. Following

this, a second, data-dependence test pass analyzes these candidate reductions to determine if they are

indeed reductions [5]. In the case where the data-dependence test fails to determine independence, the

algorithm conservatively assumes that a reduction actually exists so that, in e�ect, we are still able to

parallelize the loop.

The algorithm for recognizing reductions searches for assignment statements of the form:

A(�(i; j; k; :::)) = A(�(i; j; k; :::))+ �(l;m; n; :::)

where A may be a multi-dimensional array, � and � may be multivariate, neither � nor � contain a

reference to A, A is not referenced elsewhere in the loop outside of de�nition-use pairs in other reduction

statements, and � may be null (i.e., A is scalar).

We found a pattern-matching approach to be of su�cient power to recognize commonly occurring,

performance critical reductions in our test program suite. The reduction recognition pass of Polaris is

thus based on powerful pattern-matching primitives that are part of the Polaris FORBOL environment31.

As a rule we assume that the + operation is associative, and we have not run into any numerical problems

to date.

31Discussed further in Data Structure Highlights Section 3.2.3
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3.2.2 Outline of Recognition Algorithm

At a high level the algorithm is as follows:

For each ProgramUnit in the Program
Normalize loops
For each do loop in the ProgramUnit

For each statement in the loop body
Match (potentially multiple) de�nition-use pairs of variables of the form:

A(�(i; j; k; :::)) = A(�(i; j; k; :::))+ �(l;m; n; :::)
(This includes possible de�nition-use pairs based on equivalences)

Insure that neither A nor its equivalences are referenced in either � or �
EndFor
For each successful candidate reduction statement

Eliminate any variable (or its equivalence) that is de�ned or used elsewhere
in the loop in a statement which is not itself a candidate reduction statement

EndFor
EndFor

EndFor

As is clear from the algorithm above, reduction recognition iterates through each program unit in

the program32. For each ProgramUnit, the algorithm normalizes loops to have a lower bound of 1. All

references to the loop index within a given loop are adjusted accordingly33.

Next we iterate through each do loop in a given ProgramUnit and each statement in the loop. The

performance critical reductions identi�ed in [11] are additive reductions. As a result, at this stage of the

algorithm we look only at assignment statements of the form outlined in the algorithm above.

Having identi�ed a list of all assignment statements of this form, the candidate list is then pruned to

exclude statements for which a singular de�nition or use of the reduction variable occurs. For example,

the array B in the following code would be removed from the candidate list:

K = constant
Do I = 1; N

� � �
B(K; : : :) = B(K; : : :) + �(i; : : :)
� � �

32In fact ProgramUnit is a Polaris C ++ class representing a FORTRAN semantic unit (e.g., a subroutine)
33This normalization proved necessary due to the interaction between the reduction recognition pass and the data-

dependence test (ddtest) pass
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: : : = B(I; : : :)
� � �

EndDo

Finally, the successful candidate list of reductions is attached to the loop header of each enclosing

loop. This is done so that when a parallel loop is chosen34 at code generation, the reduction information

is available in the proper environment.

The reduction on A in the algorithm above depicts A as a single dimensioned array indexed by the

possibly multi-variate function �. However, the algorithm supports reductions on arrays of multiple

dimensions { the only constraint is that no more than one dimension may vary within a given loop. This

was done, however, to ease implementation, and the algorithm could be extended to handle variation in

multiple dimensions as well.

To recap, the algorithm above recognizes potential reductions which fall into the two classes of

histogram reductions and single address reductions. Assertions are created for each reduction variable,

and the ddtest pass then processes these statements to determine their dependence relation. If ddtest

can prove that there are no loop-carried dependences involving the reduction variable, the assertion is

deleted; otherwise, it is left intact.

3.2.3 Data Structure Highlights

The reduction recognition pass in Polaris primarily makes use of the class Wildcard35. For example,

the pattern used to match de�nition-use pairs in the form:

A(�(i; j; k; :::)) = A(�(i; j; k; :::))+ �(l;m; n; :::)

is implemented as

34Possibly from among several alternatives
35Part of the FORBOL environment mentioned above [26]
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wildcard not(wildcard contains(id(symbol))).

This translates to the creation of a Wildcard object which does not contain a reference to id(symbol),

where id(symbol) returns a reference to the array name A shown above36. All structure matching is

then done using these objects.

For further detail on the implementation of the WildCard class structure, an excellent source can be

found in [26], which treats the FORBOL environment in Polaris.

There is much of interest and importance to discuss in the reduction backend, and this is the topic

of the next section.

3.2.4 Code Generation Overview

As noted in the introduction to this section, reduction recognition is only the �rst step. The im-

plementation of parallel reductions is architecture speci�c, and this section deals with many of these

issues.

In the reduction backend, three di�erent transformations are possible. They are termed blocked,

privatized, and expanded. Currently the user determines which transformation to use on a program-

global basis, but eventually we hope to have the compiler determine the most e�cient transformation

on a loop-by-loop basis.

The �rst solution, termed blocked, involves the insertion of synchronization primitives around each

reduction statement. This method is desirable simply because it always works37. However, the overhead

is not insigni�cant.

In privatized reductions, a variable that is private to each processor is created. All reductions are

summed into this new private variable, be it a scalar or an array. This method requires initialization

in a preamble to the parallel loop, and a global reduction (across processors) in the corresponding

postamble. The advantages are twofold: one, the loop may now be executed in a parallel doall fashion

36When seen in more detail, this statement expands to: new WildCardNot (new WildCardContains (id(symbol)))
37Modulo numerical considerations
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without the need for synchronization (modulo the reduction in the postamble); and two, on logically

shared, physically distributed memory (LSPDM) architectures, locality of reference is improved38. In our

current implementation, the global reduction in the postamble is done using synchronization primitives.

The third category, termed expanded, uses a global array that has an additional dimension equal to

the number of processors executing in parallel. All reduction variables (again, be they scalar or multi-

dimensional in nature), are replaced by references to this new, global array. Index expressions in the

original N dimensions remain unchanged; however, the �nal, newly created dimension is indexed by the

processor id of the processor currently executing a given iteration. Similar to privatized reductions, no

dependences remain, and the loop may be executed entirely in parallel. The advantages in expansion

lie in the lack of a need for synchronization. Although similar to privatization in that initialization and

global reductions are necessary prior to and following execution of the parallel loop, unlike privatization,

both of these operations can be done completely in parallel 39.

Let's now consider an example.

3.2.5 Parallel Reductions in MDG

Consider the following excerpt from the Perfect Club Benchmark code MDG:

SUBROUTINE INTERF(X, Y, Z, FX, FY, FZ, XM, YM, ZM, VIR)

...

IW1 = 1

IWO = 2

IW2 = 3

CSRD$ LOOPLABEL 'INTERF_do1000'

CSRD$ ASSERT NATOMS.GE.0

DO I = 1, NMOL1, 1

JW1 = IW1

JWO = IWO

JW2 = IW2

CSRD$ LOOPLABEL 'INTERF_do1100'

DO J = I+1, NMOL, 1

JW1 = JW1+NATOMS

JWO = JWO+NATOMS

38E.g., the Convex Exemplar
39This point will further discussed below
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JW2 = JW2+NATOMS

IF ((-9)+KC.NE.0) THEN

...

G110 = GG(10)+GG(1)*C1

G23 = GG(2)+GG(3)

G45 = GG(4)+GG(5)

FX(IWO) = FX(IWO)+G110+GG(11)+GG(12)+C1*G23

FX(JWO) = (((FX(JWO)-G110)-GG(13))-GG(14))-C1*G45

TT1 = GG(1)*C2

TT = G23*C2+TT1

FX(IW1) = FX(IW1)+GG(6)+GG(7)+GG(13)+TT+GG(4)

FX(IW2) = FX(IW2)+GG(8)+GG(9)+GG(14)+TT+GG(5)

TT = G45*C2+TT1

FX(JW1) = ((((FX(JW1)-GG(6))-GG(8))-GG(11))-TT)-GG(2)

FX(JW2) = ((((FX(JW2)-GG(7))-GG(9))-GG(12))-TT)-GG(3)

...

ENDIF

1100 CONTINUE

ENDDO

IW1 = IW1+NATOMS

IWO = IWO+NATOMS

IW2 = IW2+NATOMS

1000 CONTINUE

...

ENDDO

RETURN

END

MDG-INTERF do1000 contains a series of reductions on the three arrays FX, FY, and FZ40. After

induction solution and loop normalization, the above code becomes:

SUBROUTINE INTERF(X, Y, Z, FX, FY, FZ, XM, YM, ZM, VIR)

...

IW1 = 1

IWO = 2

IW2 = 3

CSRD$ LOOPLABEL 'INTERF_do1000'

DO I = 1, NMOL1, 1

JW1 = 1+(-1)*NATOMS+I*NATOMS

JWO = 2+(-1)*NATOMS+I*NATOMS

JW2 = 3+(-1)*NATOMS+I*NATOMS

CSRD$ LOOPLABEL 'INTERF_do1100'

DO J = 1, NMOL+(-1)*I, 1

JW1 = 1+(-1)*NATOMS+I*NATOMS+J*NATOMS

JWO = 2+(-1)*NATOMS+I*NATOMS+J*NATOMS

JW2 = 3+(-1)*NATOMS+I*NATOMS+J*NATOMS

40The pattern exhibited on the array FX is repeated twice more for FY and FZ
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...

IF ((-9)+KC.NE.0) THEN

...

FX(2+(-1)*NATOMS+I*NATOMS) = FX(2+(-1)*NATOMS+I*NATOMS)+GG(11)+

*GG(12)+G110+C1*G23

FX(2+(-1)*NATOMS+I*NATOMS+J*NATOMS) = FX(2+(-1)*NATOMS+I*NATOMS

*+J*NATOMS)+(-1)*GG(13)+(-1)*GG(14)+(-1)*G110+(-1)*C1*G45

TT1 = GG(1)*C2

TT = TT1+C2*G23

FX(1+(-1)*NATOMS+I*NATOMS) = FX(1+(-1)*NATOMS+I*NATOMS)+GG(4)+G

*G(6)+GG(7)+GG(13)+TT

FX(3+(-1)*NATOMS+I*NATOMS) = FX(3+(-1)*NATOMS+I*NATOMS)+GG(5)+G

*G(8)+GG(9)+GG(14)+TT

TT = TT1+C2*G45

FX(1+(-1)*NATOMS+I*NATOMS+J*NATOMS) = FX(1+(-1)*NATOMS+I*NATOMS

*+J*NATOMS)+(-1)*GG(2)+(-1)*GG(6)+(-1)*GG(8)+(-1)*GG(11)+(-1)*TT

FX(3+(-1)*NATOMS+I*NATOMS+J*NATOMS) = FX(3+(-1)*NATOMS+I*NATOMS

*+J*NATOMS)+(-1)*GG(3)+(-1)*GG(7)+(-1)*GG(9)+(-1)*GG(12)+(-1)*TT

...

ENDIF

1100 CONTINUE

ENDDO

IW1 = 1+I*NATOMS

IWO = 2+I*NATOMS

IW2 = 3+I*NATOMS

1000 CONTINUE

ENDDO

...

RETURN

END

As discussed in Section 3.1, the cross-iteration dependences resulting from the induction variables have

been removed.

The following code is generated when using calls to the custom locking routine TAS to solve the histogram

reduction on the array FX41:

SUBROUTINE INTERF(X, Y, Z, FX, FY, FZ, XM, YM, ZM, VIR)

...

CALL TAS((-1), 3+(-1)*NATOMS+NATOMS*NMOL)

C$DOACROSS LOCAL(GG,G110,K,J,I0,TT1,YL,TT,XL,ZL,RS,RL,G23,G45,KC,FTEMP,

C$& FF,I),SHARE(NMOL1,NMOL,XM,X,NATOMS,BOXH,BOXL,YM,Y,ZM,Z,CUT2,REF4,

C$& QQ4,REF2,QQ2,REF1,QQ,B1,AB1,B2,AB2,B4,AB4,B3,AB3,C1,FX,C2,FY,FZ),

C$& REDUCTION(VIR)

41This code example is targeted for the SGI Challenge at NCSA. The DOACROSS directive on the Challenge series
subsumes the DOALL model of parallel execution
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CSRD$ LOOPLABEL 'INTERF_do1000'

DO I = 1, NMOL1, 1

CSRD$ LOOPLABEL 'INTERF_do1100'

DO J = 1, NMOL+(-1)*I, 1

...

IF ((-9)+KC.NE.0) THEN

...

G110 = GG(10)+GG(1)*C1

G23 = GG(2)+GG(3)

G45 = GG(4)+GG(5)

CALL TAS(1, 2+(-1)*NATOMS+I*NATOMS)

FX(2+(-1)*NATOMS+I*NATOMS) = FX(2+(-1)*NATOMS+I*NATOMS)+GG(11)+

*GG(12)+G110+C1*G23

CALL TAS(0, 2+(-1)*NATOMS+I*NATOMS)

CALL TAS(1, 2+(-1)*NATOMS+I*NATOMS+J*NATOMS)

FX(2+(-1)*NATOMS+I*NATOMS+J*NATOMS) = FX(2+(-1)*NATOMS+I*NATOMS

*+J*NATOMS)+(-1)*GG(13)+(-1)*GG(14)+(-1)*C1*G45+(-1)*G110

CALL TAS(0, 2+(-1)*NATOMS+I*NATOMS+J*NATOMS)

TT1 = GG(1)*C2

TT = TT1+C2*G23

CALL TAS(1, 1+(-1)*NATOMS+I*NATOMS)

FX(1+(-1)*NATOMS+I*NATOMS) = FX(1+(-1)*NATOMS+I*NATOMS)+GG(4)+G

*G(6)+GG(7)+GG(13)+TT

CALL TAS(0, 1+(-1)*NATOMS+I*NATOMS)

CALL TAS(1, 3+(-1)*NATOMS+I*NATOMS)

FX(3+(-1)*NATOMS+I*NATOMS) = FX(3+(-1)*NATOMS+I*NATOMS)+GG(5)+G

*G(8)+GG(9)+GG(14)+TT

CALL TAS(0, 3+(-1)*NATOMS+I*NATOMS)

TT = TT1+C2*G45

CALL TAS(1, 1+(-1)*NATOMS+I*NATOMS+J*NATOMS)

FX(1+(-1)*NATOMS+I*NATOMS+J*NATOMS) = FX(1+(-1)*NATOMS+I*NATOMS

*+J*NATOMS)+(-1)*GG(2)+(-1)*GG(6)+(-1)*GG(8)+(-1)*GG(11)+(-1)*TT

CALL TAS(0, 1+(-1)*NATOMS+I*NATOMS+J*NATOMS)

CALL TAS(1, 3+(-1)*NATOMS+I*NATOMS+J*NATOMS)

FX(3+(-1)*NATOMS+I*NATOMS+J*NATOMS) = FX(3+(-1)*NATOMS+I*NATOMS

*+J*NATOMS)+(-1)*GG(3)+(-1)*GG(7)+(-1)*GG(9)+(-1)*GG(12)+(-1)*TT

CALL TAS(0, 3+(-1)*NATOMS+I*NATOMS+J*NATOMS)

...

ENDIF

1100 CONTINUE

ENDDO

1000 CONTINUE

ENDDO

...

RETURN

END
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The synchronization primitives used above are a custom implementation for the SGI Challenge series.

Su�ce it to say that using a vector of locks provided signi�cant speedup over a single lock implementation

due to reduction in contention42.

If, after solving the inductions, either privatization or expansion is used to implement the solution,

the index expressions are analyzed to determine the nature of the reduction. In this example, JWO,

JW1, and JW2 vary in the innermost (J) loop, so the reduction on FX is recognized as a histogram

reduction. The ranges of the six distinct index expressions43 are merged and the required allocation of

scratch memory space made according to the solution method employed.

In the case of privatized reductions, processor private memory is allocated on LSPDM architectures

(e.g, the Convex Exemplar). However, the implementation and code generation for such an architecture

is still underway at the time of writing, so the concepts will be exempli�ed using a logically shared,

physically shared memory (LSPSM) architecture44:

SUBROUTINE INTERF(X, Y, Z, FX, FY, FZ, XM, YM, ZM, VIR)

...

ALLOCATE (FX0(1:3+(-1)*NATOMS+NATOMS*NMOL, 1:CPU_COUNT_()))

...

C$DIR FORCE_PARALLEL

DO PROCIN = CPUVAR, 1, -1

C Loop prologue -- Initialization

VIR0 = 0.0

DO TPINIT = 1, 3+(-1)*NATOMS+NATOMS*NMOL, 1

FX0(TPINIT, GETCID()+1) = 0.0

ENDDO

...

TPSIGN = ISIGN(1, 1)

II1 = TPSIGN+((-1)+NMOL1)/CPUVAR

II2 = 1+(-1)*II1+II1*PROCIN

CSRD$ LOOPLABEL 'INTERF_do1000'

DO I = II2, MIN0(TPSIGN*(II2+(II1-TPSIGN)), TPSIGN*NMOL1)/TPSIGN,1

CSRD$ LOOPLABEL 'INTERF_do1100'

DO J = 1, NMOL+(-1)*I, 1

...

IF (KC+(-9).NE.0) THEN

...

42Speedups will be analyzed in the following section 4 on Evaluation
43IWO, IW1, IW2, JWO, JW1, JW2
44This code example is targeted for the Convex C3880 at NCSA
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G110 = GG(10)+GG(1)*C1

G23 = GG(2)+GG(3)

G45 = GG(4)+GG(5)

FX0(2+(-1)*NATOMS+I*NATOMS, GETCID()+1) = FX0(2+(-1)*NATOMS+

*I*NATOMS, GETCID()+1)+GG(11)+GG(12)+G110+C1*G23

FX0(2+(-1)*NATOMS+I*NATOMS+J*NATOMS, GETCID()+1) = FX0(2+(-1

*)*NATOMS+I*NATOMS+J*NATOMS, GETCID()+1)+(-1)*GG(13)+(-1)*GG(14)+(-

*1)*C1*G45+(-1)*G110

TT1 = GG(1)*C2

TT = TT1+C2*G23

FX0(1+(-1)*NATOMS+I*NATOMS, GETCID()+1) = FX0(1+(-1)*NATOMS+

*I*NATOMS, GETCID()+1)+GG(4)+GG(6)+GG(7)+GG(13)+TT

FX0(3+(-1)*NATOMS+I*NATOMS, GETCID()+1) = FX0(3+(-1)*NATOMS+

*I*NATOMS, GETCID()+1)+GG(5)+GG(8)+GG(9)+GG(14)+TT

TT = TT1+C2*G45

FX0(1+(-1)*NATOMS+I*NATOMS+J*NATOMS, GETCID()+1) = FX0(1+(-1

*)*NATOMS+I*NATOMS+J*NATOMS, GETCID()+1)+(-1)*GG(2)+(-1)*GG(6)+(-1)

**GG(8)+(-1)*GG(11)+(-1)*TT

FX0(3+(-1)*NATOMS+I*NATOMS+J*NATOMS, GETCID()+1) = FX0(3+(-1

*)*NATOMS+I*NATOMS+J*NATOMS, GETCID()+1)+(-1)*GG(3)+(-1)*GG(7)+(-1)

**GG(9)+(-1)*GG(12)+(-1)*TT

...

ENDIF

1100 CONTINUE

ENDDO

1000 CONTINUE

ENDDO

...

C Loop epilogue -- Final reduction across processors

C$DIR FORCE_PARALLEL

DO TPINIT = 3+(-1)*NATOMS+NATOMS*NMOL, 1, -1

CALL LOCK(LKBYTE(TPINIT))

FX(TPINIT) = FX(TPINIT)+FX0(TPINIT, GETCID()+1)

CALL LOCK(LKBYTE(TPINIT))

ENDDO

...

ENDDO

DEALLOCATE (FX0)

...

RETURN

END

Privatization has been accomplished by stripmining the original parallel loop and creating a new, en-

closing parallel loop. This is necessary on architectures such as the Convex C3880 and SGI Challenge

which do not support loop prologues and epilogues45.

45There is a signi�cant e�ect on performancewhich can be alleviated by using expanded reductions. In fact, the observant
reader will notice that the solution actually employs expanded arrays due to the LSPS nature of the architecture
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Initially, private storage must be allocated. This is accomplished through the ALLOCATE intrinsic46.

Upon entering the parallel loop, the preamble is executed. In this example, the preamble need only

initialize the private array FX047. In the body of the loop, accesses are made to FX0 using the id of the

processor currently executing a given iteration48.

Finally, the actual array FX is updated in the postamble using Convex C3880 synchronization prim-

itives inside a parallel loop49. Following this, the private storage is deallocated outside the parallel loop.

The implementation of expanded reductions is exempli�ed by the following extract from code gener-

ated for a 32 processor SGI Challenge:

SUBROUTINE INTERF(X, Y, Z, FX, FY, FZ, XM, YM, ZM, VIR)

...

POINTER (PTR1,FX0)

CPUVAR = MP_NUMTHREADS()

PTR1 = MALLOC(24*CPUVAR+(-8)*NATOMS*CPUVAR+8*NATOMS*NMOL*CPUVAR)

...

C$DOACROSS LOCAL(I,TPINIT),SHARE(CPUVAR,NATOMS,NMOL,FX0,FY0,FZ0)

DO I = 1, CPUVAR, 1

DO TPINIT = 1, 3+(-1)*NATOMS+NATOMS*NMOL, 1

FX0(TPINIT, I) = 0.0

ENDDO

...

ENDDO

C$DOACROSS LOCAL(G110,K,J,I0,TT1,TT,G23,G45,KC,FTEMP,FF0,RL0,RS0,ZL0,

C$& XL0,YL0,GG0,I),SHARE(NMOL1,PROCID,NMOL,XM,X,NATOMS,BOXH,BOXL,YM,Y,

C$& ZM,Z,CUT2,REF4,QQ4,REF2,QQ2,REF1,QQ,B1,AB1,B2,AB2,B3,AB3,B4,AB4,C1,

C$& FX0,C2,FY0,FZ0),REDUCTION(VIR)

CSRD$ LOOPLABEL 'INTERF_do1000'

DO I = 1, NMOL1, 1

PROCID = MP_MY_THREADNUM()+1

CSRD$ LOOPLABEL 'INTERF_do1100'

DO J = 1, NMOL+(-1)*I, 1

...

IF (KC+(-9).NE.0) THEN

46This intrinsic is supported both by Polaris and the Convex FORTRAN compiler. On LSPDM architectures such as
the Convex Exemplar this allocation will be done in processor local memory

47Note that this is overkill in the sense that we have allocated enough storage in the array FX0 to cover all accesses by
all processors

48While GETCID() on the C3880 does incur the overhead of a function call, on other architectures (such as the SGI
Challenge), the id is \globally" accessible

49Again, this is overkill because we don't actually use all the locations in FX0, so a simple optimization would be to
guard the update with a conditional test for FX0(TPINIT,GETCID()+1) != 0
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...

G110 = GG0(10)+GG0(1)*C1

G23 = GG0(2)+GG0(3)

G45 = GG0(4)+GG0(5)

FX0(2+(-1)*NATOMS+I*NATOMS, PROCID) = FX0(2+(-1)*NATOMS+I*NATOM

*S, PROCID)+GG0(11)+GG0(12)+G110+C1*G23

FX0(2+(-1)*NATOMS+I*NATOMS+J*NATOMS, PROCID) = FX0(2+(-1)*NATOM

*S+I*NATOMS+J*NATOMS, PROCID)+(-1)*GG0(13)+(-1)*GG0(14)+(-1)*G110+(

*-1)*C1*G45

TT1 = GG0(1)*C2

TT = TT1+C2*G23

FX0(1+(-1)*NATOMS+I*NATOMS, PROCID) = FX0(1+(-1)*NATOMS+I*NATOM

*S, PROCID)+GG0(4)+GG0(6)+GG0(7)+GG0(13)+TT

FX0(3+(-1)*NATOMS+I*NATOMS, PROCID) = FX0(3+(-1)*NATOMS+I*NATOM

*S, PROCID)+GG0(5)+GG0(8)+GG0(9)+GG0(14)+TT

TT = TT1+C2*G45

FX0(1+(-1)*NATOMS+I*NATOMS+J*NATOMS, PROCID) = FX0(1+(-1)*NATOM

*S+I*NATOMS+J*NATOMS, PROCID)+(-1)*GG0(2)+(-1)*GG0(6)+(-1)*GG0(8)+(

*-1)*GG0(11)+(-1)*TT

FX0(3+(-1)*NATOMS+I*NATOMS+J*NATOMS, PROCID) = FX0(3+(-1)*NATOM

*S+I*NATOMS+J*NATOMS, PROCID)+(-1)*GG0(3)+(-1)*GG0(7)+(-1)*GG0(9)+(

*-1)*GG0(12)+(-1)*TT

...

ENDIF

1100 CONTINUE

ENDDO

1000 CONTINUE

ENDDO

DO I = 1, CPUVAR, 1

DO TPINIT = 1, 3+(-1)*NATOMS+NATOMS*NMOL, 1

FX(TPINIT) = FX(TPINIT)+FX0(TPINIT, I)

ENDDO

...

ENDDO

CALL FREE(PTR1)

...

RETURN

END

As mentioned above, the initialization section is executed in parallel50. In the original (now parallel)

loop, accesses to FX are now made to a \private" section of the global FX0. The resulting \private"

sums are then summed across processors in the sequential loop which follows51.

50This could be further optimized by merging the three inner loops (not shown)
51As noted previously, this nest also can be executed in parallel if the loops are interchanged
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A few words are in order as to how the ranges of the six reductions are determined and merged.

This is a non-trivial problem in symbolic analysis, and is currently handled by new techniques developed

in [6] known as Symbolic Range Propagation52. The range of each reduction statement is determined

using interprocedural symbolic analysis, and the resulting ranges are merged to give an overall range of

1 : 3+ (�1) �NATOMS +NATOMS �NMOL for the six statements. This merged range is then used

to allocate the correct amount of memory for the expanded53 array FX0. It is also used as the loop

upper bound in the initialization and �nal reduction phases prior to and following the parallel loop.

52Discussed earlier in section 3.1.5
53or privatized
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CHAPTER 4

EVALUATION

This section will discuss two codes taken from the Perfect Club Benchmark suite and one additional

code which is a candidate for membership in the newly created HPSC/SPEC (High Performance Steering

Committee SPEC) suite.

I will briey introduce each of these codes. From the Perfect Club Benchmark suite, we have TRFD,

and MDG. TRFD is a kernel simulating the computational aspects of a two-electron integral transfor-

mation. MDG is a molecular dynamic simulation of a exible water molecule.

The candidate code from the HPSC/SPEC suite is TURB3D. Turb3d is a uid dynamics code capable

of solving turbulent uid ow problems of up to 2563 double precision (64 bit) elements in size1.

Important2 reductions occur in conjunction with inductions in two of the three codes under consid-

eration:

Technique M
D
G

T
u
rb
3
d

T
R
F
D

parallel reductions 6.3 4.9
induction substitution 6.3 2.7

Table 4.1: Speedups over serial execution time on an 8 processor set on an SGI Challenge

1The problem size used for all timings reported here is 643
2Important in terms of overall program execution time
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4.1 Timing results on the SGI Challenge

The following tables summarize the timing results for these three benchmarks:

wallclock seconds speedup
serial 194.029 1

SGI (PFA, default optimization) 98.658 1.967
SGI (PFA, aggressive optimization) 187.394 1.035

Polaris (with transformations) 30.408 6.380
Polaris (without reduction transformation) 1105.690 (-5.698)
Polaris (without induction transformation) 1671.404 (-8.614)

Table 4.2: Overall Program Timings and Speedup for MDG

wallclock seconds speedup
serial 21.15 1

SGI (PFA, default optimization) 95.786 ( -4.529)
SGI (PFA, aggressive optimization) 108.712 ( -5.140)
Polaris (with both transformations) 7.612 2.778

Polaris (without reduction transformation) 7.670 2.757
Polaris (without induction transformation) 226.078 (-10.69)

Table 4.3: Overall Program Timings and Speedup for TRFD

wallclock seconds speedup
serial 156.716 1

SGI (PFA, default optimization) 45.842 3.419
SGI (PFA, aggressive optimization) 36.204 4.328

Polaris (with reduction transformation) 31.872 4.917
Polaris (without reduction transformation) 44.698 3.506

Table 4.4: Overall Program Timings and Speedup for TURB3D

The above timings are wall-clock execution time averaged over �ve executions made in \ash"

mode3;4. Parallel processes are executed on a processor set consisting of 2, 4 or 8 processors5 , and

3Flash mode sets the master processes' priority to a non-degrading maximum which is inherited by all spawned (slave)
processes [9]

4Timing was performed by the timex command which reports wall-clock, user, and system times to 1=100 second
5For background on processor sets see [15]
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all processes were set to spin-wait (rather than block) while waiting for a parallel section to begin

execution6. In the above tests all parallel timing was conducted on an 8-processor processor set with the

exception of the single processor times. These were obtained by running on a two-processor processor

set and disabling migration between processors (i.e., executing on only a single processor)7 .

For comparison purposes, the three benchmarks under discussion were compiled and executed using

the commercially available SGI product Power Fortran Accelerator, PFA (see [9] for detail).

Compilation commands were as follows: for the serial runs, \f77 -O2 -mips2"; for the Polaris parallel

runs, \f77 -mp -O2 -mips2"; and for the PFA runs, \f77 -pfa keep -O2 -mips2"8. A second batch of

runs was made using PFA with optimization switches \-ag=a -r=3" to provide a comparison with a

commercial product using more aggressive optimizations9.

4.2 Discussion of the Major Loops

The table below shows the total amount of wall-clock time in seconds spent in the major loops of

these three codes:

loop serial parallel speedup
MDG-INTERF do1000 175.192 22.920 7.644
MDG-POTENG do2000 13.534 1.816 7.453
TRFD-OLDA do100 13.820 3.310 4.175
TRFD-OLDA do300 5.988 1.618 3.70
TURB3D-ENR do2 13.780 2.038 6.76

Table 4.5: Loop timings for key loops in MDG, TRFD, and TURB3D

Instrumentation for the results displayed in Table 4.5 was performed by the Polaris utility p-

instrument, which instruments on a loop-by-loop basis by enclosing outermost parallel loops. The timing

6This eliminates startup overhead which would otherwise be incurred by the master on behalf of the slaves
7This had the desired e�ect of maximizing cache utilization during the single processor runs
8The lower -O2 optimization was used for all compilations after I found that it produced faster code than the higher

-O3 optimization level in several cases
9The code was actually preprocessed with the command \pfa -ag=a -r=3" and then compiled with the same f77

command as above
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for the loop-by-loop results was done by etime10, called from an interval library developed at CSRD and

ported to the Challenge.

4.2.1 MDG-INTERF do1000

This is the outermost loop of the subroutine INTERF, and consumes over 90% of the execution time.

It is a triangular loop nest containing 18 sites of combined histogram and single-address reductions on

three di�erent arrays indexed by six di�erent additive induction variables.

The special handling required for these reductions is discussed in Section 3.2.4. However, it should

be noted that the near linear speedup achieved for this loop is attributable to the solution of the additive

inductions (Section 3.1) in conjunction with reduction recognition and code generation. These results

are based on expanded reductions, and as expected tests made using a vector of locks around each

reduction site resulted in a marked decrease in speedup11.

To understand the impact of these two transformations, separate timings were made by turning o�

each optimization in turn (these timings are reported in Table 4.2). In this case, when either parallel

reduction solution or induction variable substitution is turned o�, this loop is not parallelized. The

timing results show the devastating e�ects which result.

As an aside, it's interesting to note that the execution time for solving only reductions was 33% longer

than that when solving only inductions. The cause for this is found in the fact that several small trip

count loops in do1000 which contain reductions were parallelized, incurring a large degree of overhead12.

Heuristics to handle this situation better are under development.

10accurate to 1=100 of a second [9]
11On the order of 4, versus the 6.3 reported above
12These inner loops are of course not parallelized when do1000 is parallelized
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4.2.2 MDG-POTENG do2000

This loop accounts for less than 2% of the execution time, however it too has a very good speedup.

Like INTERF do1000, this loop also contains a battery of six interdependent additive inductions, the

solution of which is a prerequisite to DOALL parallelization.

Similar observations hold in terms of the speedups when not using the two transformations as outlined

above for INTERF do1000.

4.2.3 TRFD-OLDA do100

This is the �rst loop of three contained in the subroutine OLDA, and consumes over 65% of the

execution time. Discussed in Section 3.1, this loop contains three induction variables and, in addition,

histogram reductions occur at two di�erent sites. Due to the solution of these complex triangular induc-

tions, the reductions are solvable using array privatization ([23]) and no further reduction processing is

necessary for DOALL parallelism in this loop13.

The separate timings resulting from turning o� each optimization in turn hold no surprises; although

do100 does contain reductions, as noted in Table 1.1 in Section 1, these only become important if

the inductions are not solved. However, although these reductions are solved when induction solution

is turned o�, as demonstrated by the results in Table 4.3 there is not enough work contained in these

parallel loops to o�set the cost of parallel execution.

4.2.4 TRFD-OLDA do300

In some sense OLDA do300 is the agship of the induction substitution pass, because it is here that

the most complex coupled, triangular inductions occur. Responsible for 28% of the execution time of the

benchmark, OLDA do300 contains three induction variables, one triangular, one doubly triangular, and

one coupled, doubly triangular induction variable14. In addition, similar to OLDA do100, two histogram

13Because the inner loops containing the reductions are now executed serially inside the enclosing parallel loop
14Coupled to a triangular induction variable, which makes the closed form a quartic
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reductions occur in this loop. Like OLDA do100, induction variable solution paves the way for array

privatization, and not only is the loop executed with DOALL parallelism, but as was the case with

OLDA do100, no special reduction processing is necessary.

The speedup of these two loops is not as impressive as those in MDG-INTERF. One potential cause is

the complexity of the closed-form expressions used to index arrays in inner loops. While not con�rmed at

this point, applying strength reduction and loop invariant hoisting to those loops which are not chosen

to execute in parallel will likely reduce this overhead.

4.2.5 TURB3D-ENR do2

The �nal loop under consideration occurs in subroutine ENR do2, and accounts for about 8.8% of

the execution time of the benchmark. It contains a single-address reduction in a quadruply nested loop.

On the SGI Challenge, single-address reductions may be agged with a directive, and are solved as

privatized reductions by the back-end code generator. The reduction recognition pass in Polaris agged

this reduction, and the Polaris postpass generated the necessary SGI directive to allow the solution in a

privatized DOALL fashion.

On comparison with the timing made with reduction solution turned o�, it is clear that the solution

of this reduction contributes signi�cantly to the speedups achieved.

It is also interesting to note that this same reduction was solved by PFA using the more aggressive

compilation options \-ag=a -r=3", which allow transformations based on associativity. The resulting

speedups for PFA as reported in Table 4.4 reect this fact, as well as the fact that the performance of

Polaris was slightly better. While not con�rmed at this time, the reason for this result is most likely

due to Polaris' greater success in identifying parallel loops.
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CHAPTER 5

RELATED WORK

In [11], induction variable substitution and parallel reductions were recognized as two of four per-

formance-critical techniques necessary for the parallelization of the Perfect Club Benchmark codes. This

section deals with several alternative approaches to the solution of these two problems.

At a high level, all these approaches fall under the category of symbolic analysis. Harrison and

Ammarguellat use abstract interpretation to map each variable assigned in a loop to a symbolic form

(expression), and match these against template patterns which represent commonly occurring recurrences

([1]). Haghighat and Polychronopoulos symbolically execute loops and use �nite di�erence methods in

conjunction with interpolation to determine the closed form for a given recurrence ([17]). Wolfe et al

derive relations between variables by matching against cycles in the SSA graph, and then use matrix

inversion (among other methods) to determine the closed forms ([13]).

5.1 Symbolic Execution

While we have logically separated recognition and closed-form solution, Haghighat's approach uni�es

these two phases of the algorithm. The methods employed �rst perform preprocessing, which determines

an abstract model for each reducible loop in the owgraph ([17]). Based on this model, a loop is

symbolically executed and recurrence relations determined for families of induction variables. These
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relations are then solved using a �nite di�erencing scheme. The di�erencing scheme is based on a user-

determinable heuristic which sets an upper bound on the depth of the di�erence table, thereby limiting

the degree of the interpolating polynomial1. Using Newton's forward formula, the di�erence table is

used for interpolation and the characteristic function (i.e., the closed form) is determined.

The strength of this approach lies in the ability of the algorithm to handle a variety of both induction

variables and generalized induction expressions under a variety of control ow conditions.

5.2 Abstract Interpretation

Harrison and Ammarguellat's approach is based on abstract interpretation, and represents syntactic

constructs as maps from variables to expressions which encapsulate the state prior to entry to the

construct. Termed an abstract store, this map summarizes the net e�ect of a single iteration of a given

loop on each variable assigned in the loop2.

Once the abstract stores have been composed across a loop body, the maps are uni�ed with user-

de�ned templates which express various recurrence relations. A simple example of such a template is

X 7! X �K. An induction such as m = m + 1 would bind X ! m; � ! +, and K ! 1. The template

contains a prede�ned closed form which is, in this case, X � (K �0 u), where u is the upper bound of the

loop and �0 repeats the + operation u times (equivalent to the K � u).

One of the strengths of this approach lie in its capability to recognize inductions which cross con-

ditional control ow structures. However, at the time of writing no capability was present to handle

nested loops, and it has been determined that no further work has been conducted in this direction

([18]). Thus, although it appears that the framework is capable of supporting the solution of inductions

in multiple loops, it has not been implemented.

A second feature of [1] is the uni�cation of recurrences with prede�ned templates containing closed

forms. The authors make the point that \This allows the scheme to be tailored to the recognition of a

1The default value is three
2This stage is very similar in function to the Recognition phase described in Section 3.1.3
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variety of recurrence relations, appropriate to the particular language or applications being compiled."

([1], page 10).

5.3 SSA Based Classi�cation

Wolfe et al base their approach on the Static Single Assignment representation of the program.

The algorithm breaks induction variable substitution down into two phases similar to the �rst two

phases of our algorithm3. During the recognition (and classi�cation) stage, the SSA form of the graph

is searched for patterns representing recurrences4 . A variant of Tarjan's algorithm is used to detect

strongly connected components (SCCs) in the SSA graph. An SCC which carries a variable \around the

loop" represents a sequence variable. In the base case, a basic linear induction variable, for example, is

detected when four conditions are met: �rst, it occurs in an SCC with a single � function; second, the

SCC is composed of addition or subtraction of loop invariants and other linear variables (in conjunction

with loads and stores); third, the induction variable occurs only once in the right hand side expression

of the induction statement; and fourth, no � functions occur in the SCC5.

The solution method employed for basic linear induction variables is multiplication by the basic

loop counter hl, which has an initial value of 0 and is incremented by 1 each iteration. Other more

sophisticated methods are employed for polynomial and geometric induction variables6, varying from

matrix inversion to symbolic execution of the loop body7.

The strength of Wolfe et al lies in their classi�cation scheme. As noted above, they have divided

the types of sequence variables into several disjoint classes. The schemes employed to classify a given

variable are based on a priori knowledge of classes of sequence variables matched against the SCC under

3The current implementation of their work does not do substitution [27]
4This operates in a manner similar to that we have implemented for the detection of wrap-around loop bounds in

Section 3.1.6
5� and � functions are distinguished in a way similar to [25]. � is a special case of � that has an arity of two with

reaching de�nitions coming from outside and inside the loop respectively
6The induction variable types we have termed triangular and multiplicative fall into these two classes
7Used in the solution of non-constant periodic sequences
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investigation. This is the technique we have employed to recognize wrap-around loop bounds (discussed

in section 3.1.6).

As of the date of this writing, Wolfe et al are in the process of implementing the techniques necessary

to solve and substitute inductions of the form discussed in Section 3.1.9 ([27]).
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CHAPTER 6

CONCLUSION

The goal of the Polaris project has been to parallelize real codes and achieve real speedups on shared

memory architectures. To that end we have focussed on two techniques which were clearly identi�ed as

important in [11] { induction variable substitution and parallel reductions.

The approaches discussed in the Section 5 solve recurrence relations in one degree or another, but

none of the reported work has demonstrated actual speedups on real benchmark codes. It is di�cult to

determine the actual bene�t of a transformation without the ability to conduct empirical tests. Thanks

to the integration of the Range Test, array privatization, the internal representation, and many other

tools and utilities, with induction variable substitution and reduction recognition in Polaris, it has become

possible to measure performance on real parallel machines ([4],[5],[12],[25]).

Although the results for only three codes have been presented above, the evaluation of the bene�t

of these two transformations is being measured on a test suite which includes candidate codes from the

High Performance SPEC Benchmark Suite, two Grand Challenge codes, and six codes from the Perfect

Club Benchmark suite. Thanks to the near linear speedups achieved in MDG and signi�cant speedups

in other codes, there is reason to hope that the analysis of the remaining benchmarks will bear similar

results.
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