
On the Automatic Parallelization of the Perfect Benchmarks R�

Rudolf Eigenmanny Jay Hoeinger

David Padua

Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign

Abstract

We present a set of advanced program parallelization techniques that are able to sig-
ni�cantly improve the performance of application programs. We present evidence for this
improvement in terms of the overall program speedup that we have achieved on the Perfect
Benchmarks R programs, and in terms of the performance gains that can be attributed to
individual techniques. These numbers were measured on the Cedar multiprocessor at the
University of Illinois.

This paper extends the �ndings previously reported in [EHLP91]. The techniques cred-
ited most for the performance gains include array privatization, parallelization of reduction
operations, and the substitution of generalized induction variables. We have applied these
transformations by hand to the given programs, in a mechanical manner, similar to that of
parallelizing compiler. Because of our success with these transformations, we believe that it
will be possible to implement many of these techniques in a new generation of parallelizing
compilers. All these techniques can be considered extensions of transformations that are
available in current restructuring compilers. The implementation of these techniques, how-
ever, will require the development of more powerful analysis techniques. We have already
started a major new project to do this, the early results of which we present here.

1 Introduction

Background and Motivation This paper presents the results of an extensive experiment,
that formed the basis of our current work on the Polaris parallelizing compilation system. The
primary objective of this experiment was to study application programs in order to identify
parallelization techniques for optimizing compilers. We took a set a representative application
programs, turned them into parallel codes and demonstrated that they can exploit parallel
machines e�ciently. Although we started from a compiler viewpoint, we broadened our project
to consider additional questions, such as whether there is enough parallelism in real programs,
whether there are engineering methods other than high-level algorithm replacements that can

�This work was supported by Army contract #DABT63-92-C-0033 and the U.S. Department of Energy under
grant #DOE DE-FG02-85ER25001. This work is not necessarily representative of the positions or policies of the
Army or the Government.

yCurrent a�liation: School of Electrical and Computer Engineering, Purdue University, Indiana.

1

transform these programs into e�cient parallel codes, and whether there are tools and method-
ologies that can guide a programmer in this process. We have commented on these questions
in several reports [EHLP91, Eig93, EM93].

According to our main interest, we will emphasize the implications of this project on the
design of future compilers. We will discuss program transformations and their automatability
in an optimizing compiler. Our discussions will be at the level of the application programmer
who has found transformations successful at turning programs into parallel form. Some of these
transformations are automatable in a straightforward manner. Others will require considerable
work to implement the associated program analysis techniques. Some of the described transfor-
mations may never be implemented in a parallelizing compiler because they may be too complex
or rarely useful, or the compiler may not be able to determine their applicability. Furthermore,
we cannot make claims about the e�ciency of the new techniques.

The results of our experiment and the early successes of our follow-on compiler implemen-
tation project1 made it clear to us that application experiments such as these are extremely
worthwhile complementary e�orts of compiler projects. These studies not only show us what
may be implemented in compilers of the future, but they also provide quantitative evidence
for urgent questions such as what programs can be implemented e�ciently on parallel ma-
chines, what tools and methods programmers use to accomplish this, and what the resulting
performance is on the given machines.

Overall Results In our experiments we have measured the speed improvements of the Perfect
Benchmarks R programs that resulted from our program transformations. We have measured
these numbers on two machines: the Alliant FX/8 and the Cedar architectures. The Alliant
FX/8 is a shared-memory architecture with eight vector processors. The Cedar architecture
consists of four Alliant FX/8 machines connected through an additional global shared memory.
If we de�ne \speedup" as the ratio of the best performance versus the serial program (i.e.,
neither vector nor concurrent parallelism, but scalar-optimized), an excellent speedup would be
about 16 for the FX/8 and about 50 for the Cedar machine. More details on these architectures
can be found in [KDL+93].

Table 1 summarizes our measurements. The column \Automatically compiled" shows the
performance gain achieved by an available parallelizing compiler. The column \Manually im-
proved" shows the results of our hand optimizations, which we will discuss in this paper.

Automatic parallelization had limited e�ectiveness with the technology used by commer-
cial restructurers such as KAP and VAST2, as can be seen in Table 1 (under \Automatically
compiled"). \Automatically compiled / Cedar" displays the results we had obtained after retar-
geting KAP at the Cedar multiprocessor[EHJ+93]. Without applying further transformations
the performance is often less than the one of the eight-processor FX/8 machine. This is be-
cause this early compiler technology typically can �nd only very small parallelizable loops and
the overhead of starting such small loops on Cedar is larger. The columns labeled \Manually
improved" give the speedups resulting from the transformations applied in our experiments.

1The name of this project is Polaris. Because of the substantial time that passed between the �rst version
of this report and its publication, early results of the new compiler have been presented already in several
conferences.

2VAST is the standard optimizing preprocessor available on the FX/8 machine. It does not perform opti-
mizations for Cedar.

2

program serial Performance improvement factor
execution Automatically Manually
time compiled improved

(seconds) FX/8 Cedar FX/8 Cedar

ARC2D 2943 8.7 13.5 10.6 20.8

FLO52 906 9.0 5.5 14.6 15.3

BDNA 969 1.9 1.8 5.6 8.5

DYFESM 663 3.9 2.2 10.3 11.4

ADM 796 1.2 0.6 7.1 10.1

MDG 4134 1.0 1.0 7.3 20.6

MG3D 12164 1.5 0.9 13.3 48.8 a

OCEAN 2947 1.4 0.7 8.9 16.7

TRACK 136 1.0 0.4 4.0 5.2

TRFD 864 2.2 0.8 16.0 43.2

QCD 416 1.1 0.5 7.4 20.8 b

SPEC77 2375 2.4 2.4 10.2 15.7

aThe manually improved version of MG3D includes the non-automatable elimination of �le I/O.
bThe manually improved version of QCD includes the di�cult-to-automate parallelization of a hand-coded

random number generator. Leaving the random number generator serial reduces the speedup to 2.0.

Table 1: Speedups versus serial for Perfect Benchmarks programs on Alliant FX/8 and Cedar

Table 2 lists the major techniques that we have applied to obtain these results and the
gains that can be attributed to individual transformations. The gains are given in terms of
the execution time ratio of the program variant where the technique was not applied versus
the best variant. More precisely, we computed these ratios as Twithout=Tbest, where Tbest is the
fully optimized program execution time and Twithout is the program execution time when the
technique is not applied. The individual loop-by-loop timings are given in Tables 3 through 9.
In the Twithout program variants, techniques that are used in commonly available restructurers
are applied. Hence the numbers reect potential performance improvements relative to the
state of the art of compiler technology at the time of our experiments.

Related Work The primary contribution of this paper is the quantitative analysis of real
program patterns and the discussion of their implications for compiler design. There exist very
few similar publications. One related program analysis project was presented in [SH91], where
the authors reach qualitatively similar conclusions that there is a need for advanced compiler
techniques including symbolic analysis and the privatization of data structures. Other related
projects have studied the e�ectiveness of existing parallelizing compilers or their techniques. A
summary of these studies is given in [BENP93].

A second contribution of this paper is the discussion of new parallelizing compiler techniques.
There exists a large body of publications on this subject. A survey can be found in [BENP93].
Several papers are directly related to the techniques discussed here. Early results of the pre-
sented work [EHLP91] have led to new e�orts elsewhere, such as the work on techniques for
handling general forms of induction variables [Wol92, HP93] and for analyzing privatizable ar-

3

rays [Li92, MAL92]. There also has been signi�cant new work in data dependence analysis for
parallelizing compilers, including techniques for more exact subscript analysis [Pug92], more
e�cient analysis in practical situations [MHL91, GKT91], and enhancing tests with symbolic
analysis capabilities [HP91].

In our work, we have focused on machines that provide a hardware-supported global address
space to the programmer and the compiler. They represent an important and widely-available
class of parallel machines. Discussions on complementing techniques for code generation on
message passing machines can be found in [For93, GMS+95].

The basics about Cedar Fortran The parallel Fortran language that we used for expressing
our explicitly parallel program variants is called Cedar Fortran. In our descriptions, we will
use the three di�erent types of parallel loops of Cedar Fortran: the xdoall loop uses a
self-scheduling scheme to assign its loop iterations to all 32 processors of the Cedar machine. In
contrast, the sdoall assigns one iteration at a time to each of the four clusters. Usually, inside
an sdoall there is a nested cdoall loop, which executes its iterations using the cluster's eight
processors. Cedar Fortran expresses array vector operations using triplet notation similar to
Fortran90. By default, Cedar Fortran data is placed in cluster memory. Data can be given
a global attribute placing it in the global shared memory. Also very important is Cedar
Fortran's loop-private data declarations feature whereby scalars and arrays declared inside
a parallel loop are given the scope of the loop iteration's execution context (cluster-private for
sdoalland processor-private for xdoall and cdoall).

Outline of the paper In Section 2, we will describe the new transformations and quantify
their e�ectiveness on time-critical loops in our program suite. In Section 3, we will give an
overview of the transformations applied to each program and note additional changes made to
individual programs. We also will describe some of the di�culties that can be expected when
implementing these techniques in a compiler. Finally, in Section 4, we will present early results
of a new parallelizing compiler built upon the proposed techniques.

2 New transformation techniques: performance and relevant

code patterns

This section describes, for each of the important transformations applied in our manual experi-
ments with the Perfect Benchmark codes, the resulting performance di�erence and the program
patterns for which these techniques were applied. We also will briey discuss analysis techniques
that may need to be developed to implement the techniques in a parallelizing compiler. The
development of these analysis techniques is beyond the scope of this paper, however. We hope
that our results will serve as a solid basis for similar future development projects.

2.1 Array privatization

Data that are used temporarily within loop iterations can be privatized to the loop so that each
processor participating in the loop execution has separate storage for the data. This resolves
many data dependences that would arise if all loop iterations used the same temporary storage

4

Technique A
D
M

A
R
C
2D

B
D
N
A

D
Y
F
E
S
M

F
L
O
5
2

M
D
G

M
G
3D

O
C
E
A
N

Q
C
D

S
P
E
C
77

T
R
A
C
K

T
R
F
D

privatize arrays 9.6 1.2 1.4 2.2 1 21 18 3.8 8.2 6.8 6 13.3
parallelize complex
reductions

a 3.3 2.1 1.1 21 15.2 3.4 b

substitute generalized in-
duction variables

8.3 12.7

parallelize
loops with non-a�ne ar-
ray subscripts

3 11.5 13

Table 2: Importance of program transformations: Increase in execution time when individual
techniques were disabled.

aADM contains reductions in signi�cant loops. Most of them can be parallelized using existing synchronization
techniques without excessive overhead.

bTRFD contains accumulation operations that would become important for parallelization if advanced induc-
tion variable substitution and array privatization were not available.

DO i=1,n

DO j=1,m

work(j) = ...

ENDDO

...

DO j=1,m

... = work(j)

ENDDO

ENDDO

!

CDOALL i=1,n

REAL work(1:m)

DO j=1,m

work(j) = ...

ENDDO

...

DO j=1,m

... = work(j)

ENDDO

ENDDO

Figure 1: The array privatization transformation

for their operations. For example, the loop in Figure 1 uses a temporary array work. In the
parallel execution of the loop, the array is declared private to the loop. This allocates for each
iteration a separate instance of work, hence eliminating the conicts between di�erent iterations
trying to access the same temporary storage concurrently.

We have found this temporary usage pattern to be very common in the Perfect codes. This
is not too surprising, for it is natural to use temporary data structures in all programs. The
more our optimization e�orts sought to parallelize outermost loops in a program, the more
likely it was that this temporary usage pattern occurred within a single loop iteration.

Array privatization, in combination with the other techniques described in this paper, enabled
many of the most time-consuming loops in the Perfect codes to be run concurrently. Table 3
shows the performance degradation that we measured on the Cedar multiprocessor when not
applying the technique. Also listed in Table 3 are all loops in our program suite where array
privatization made a signi�cant di�erence. The loop execution time with all parallelization

5

techniques applied (Tbest) and without array privatization applied (Twithout) are shown. Column
4 shows the performance di�erence that resulted from applying array privatization in this loop,
measured as Twithout=Tbest. The last column shows the overall program performance di�erence
made by applying array privatization to this loop. These factors are very high where inner
loops cannot be parallelized, and, thus, disabling array privatization serializes the loop. Even
where inner loops could be parallelized, the parallelization of outer loops can prove very e�ective
because the overall startup cost is lower for outer loops. Privatized data are allocated in local
memory. Hence, the transformation also has the important e�ect of exploiting local memories.
In fact, this was one of the most important methods to exploit the Cedar memory hierarchy.

Array privatization is a natural extension of the scalar privatization technique. Current
compilers are able to recognize temporarily used scalar variables and either expand them into
arrays indexed by the loop iteration number or privatize them by declaring them local to a
loop. In fact, in previous evaluation experiments, we have found this technique to be the
most important one applied by current parallelizing compilers. However, although the array
privatization techniques have been known for a long time and some parallelizing compilers are
able to apply the transformation, we have not seen any available compiler solve the important
program patterns we have encountered.

Analysis and Program Patterns This section describes the information necessary to deter-
mine whether an array is privatizable. It also describes the code patterns where the techniques
made a signi�cant di�erence. Furthermore, it will explain the program analysis that was nec-
essary in our experiments to determine whether array privatization could be applied.

Data items can be privatized to a loop if they are de�ned in each loop iteration before
they are used. To �nd this information, one needs to analyze de�nitions and uses of arrays
or array sections in each candidate loop. Furthermore, one must make sure that the values of
the privatizable data items are not used after the loop, or, if they are used, provisions must
be made to transfer the values of the privatized data items to the original item outside the
loop. However, in our experiments, we rarely needed such last-value assignments. In many
cases it was easy to prove that the private arrays were not live at the end of the loop. It was
more di�cult to prove when the arrays being used as temporaries in a loop were subroutine
parameters or were in common blocks. Such situations often arise when the programmer is
explicitly managing storage by using large arrays declared in the main program. Examples of
this are in Arc2D (subroutines �lerx and �lery) and TRFD (loops olda/100 and olda/300).

The identi�cation of privatizable arrays is quite simple for arrays that are declared locally
in a subroutine that is called within the loop being analyzed. By the FORTRAN language
de�nition, such variables are unde�ned after the subroutine exits, thus guaranteeing that they
will not carry values across loop iterations. (There are two exceptions to this: variable values
made available to subsequent calls of the same subroutine through SAVE statements or through
the static allocation option o�ered by many compilers). DYFESM is an example of a program
that contains subroutine-local arrays that can be privatized.

In general, the identi�cation of privatizable arrays is complex. Often, the privatizable data
structure is an array range, which is de�ned and used by a loop body in simple statements
(such as assignments), compound statements (such as inner loops), or both. The ranges are
determined by the value of scalar variables whose analysis involves the interprocedural search

6

PROGRAM-subroutine/loop total loop execution Twithout=Tbest Twithout=Tbest
time in seconds for for

Tbest Twithout loop program
ARC2D-�lerx/15 7.3 22.0 3.0 1.1

ARC2D-�lery/39 3.4 12.0 3.5 1.06
ADM-dudtz/40 3.8 92.5 24 2.1
ADM-dvdtz/40 3.5 76.5 21 1.9
ADM-dtdtz/40 3.8 78.8 21 1.9

ADM-dcdtz/40 2.6 51.7 20 1.6
ADM-dkzmh/30 2.5 37.6 15 1.4
ADM-dkzmh/60 3.8 86.8 23 2.0

ADM-run/20 4.4 72.2 16.5 1.8
ADM-run/30 4.4 72.0 16.4 1.8
ADM-run/40 4.2 72.1 17 1.8

ADM-run/50 3.4 50.8 15 1.6
ADM-run/60 4.4 72.0 16.4 1.8
ADM-run/100 3.2 50.0 15.6 1.5

ADM-wcont/40 2.7 36.2 13.4 1.4
ADM-smooth/10 1.4 18.5 13.2 1.2
BDNA-actfor/240 19.0 62.0 3.3 1.4

DYFESM-mxmult/10 19.0 60.0 3.2 1.7
DYFESM-solvh/20 11.5 26.5 2.3 1.3
MDG-interf/1000 163.0 3792.0 23.2 19

MDG-poteng/2000 13.4 352.0 26.3 2.7
MDG-intraf/1000 1.9 11.4 6.0 1.05
MG3D-migrat/200 264.0 5226.4 19.8 19.7

OCEAN-acac/30 3.3 92.5 28 1.5
OCEAN-ocean/60 0.3 0.05 5.6 0.9
OCEAN-ocean/270 1.3 16.2 12.5 1.0

OCEAN-ocean/340 2.9 30.7 10.6 1.1
OCEAN-ocean/360 2.7 25.6 9.5 1.1
OCEAN-ocean/400 2.3 20.9 9.1 1.1

OCEAN-ocean/420 2.3 25.6 11.1 1.1
OCEAN-ocean/440 2.6 24.5 9.5 1.1
OCEAN-ocean/460 7.7 103.7 13.5 1.5

OCEAN-ocean/480 4.1 91.4 22.3 1.4
OCEAN-ocean/500 2.2 48.0 21.8 1.2
OCEAN-scsc/40 2.5 48.0 19.2 1.2
QCD-measur/3 1.8 2.9 1.6 1.0

QCD-qqqmea/1 3.7 108.6 29.4 6.2
QCD-rotmea/2 3.7 48.4 13.1 3.2
SPEC77-gloop/1000 58.7 743.7 12.7 5.5

SPEC77-gwater/1000 13.5 248.0 18.4 2.6
TRACK-extend/400 4.0 48.9 12.2 2.7
TRACK-fptrack/300 3.0 15.5 5.2 1.4

TRACK-nl�lt/300 3.5 76.7 22 3.8
TRFD-olda/100 8.0 (174) 21.8 9.3
TRFD-olda/300 5.4 (85) 15.7 5

Table 3: Performance impact of the array privatization technique in the time-critical loops.
Best loop variants are compared with those where the transformation is not applied. (The
numbers in parentheses give the timings without reduction parallelization.)

7

for their values, relations between variables, and conditions under which such relations hold.
The area being written and read within an array is often accessed over a series of sub-ranges.
These sub-ranges must be pieced together in the analysis, and it must be shown that the range
being read is fully within the range that was written. The loop ocean/420 in OCEAN is an
example of this.

In some cases, elements that are adjacent to privatizable array sections are read-only and
can be shared by parallel loop iterations. The situation may allow the enlargement of privatized
arrays by initialized read-only boundary elements in order to avoid conditional operations in the
loop body. Code examples of this were found in ADM (subroutines dtptz, dudtz, and dvdtz).

To analyze array de�nitions and uses, we had to search interprocedurally and propagate
constants, symbolic values, relations between variables, and sometimes information about the
values of subscript array elements. In ARC2D-�lerx/15, the range of an array (work) is de�ned
under a condition (variable PERIDC) whose relation to other variables can be symbolically
analyzed in the program initialization routine. Also important is a subscript array whose ith

element is initialized to (i+1) mod n, which can be recognized as a permutation vector of
length n.

Another interesting pattern is found in MDG, loop interf/1000. An array (RL) is de�ned and
then used in two separate IF-statements controlled by di�erent conditions. It can be seen from
the program text that the de�ne-condition is always true when the use-condition is true. This
relation can be proven symbolically. The candidate parallel loop calls a subroutine (cshift)
that de�nes this relation. A similar situation exists in QCD (measur/3).

To privatize the arrays in loop actfor/240 in BDNA, one has to recognize subscripted sub-
script patterns, which is very di�cult in general. However, in the given situation, all necessary
information can be derived from the program text [TP93, BE94b].

2.2 Parallel Reductions

Statements of the type sum = sum + a(i) (where i is the loop index) form a recurrence pattern
that usually must be executed serially. However, because the sum operation is mathematically
commutative and associative, a parallel execution is possible by accumulating partial sums
on each processor, and then summing the partial results, as shown in Figure 2. The partial
results may be summed after the loop or added inside the loop in a critical section. Note that
this transformation may change the result because reordering the sum operations may lead to
round-o� errors that are di�erent from those in the original program. The programs in the
Perfect Benchmarks suite have not been found to be sensitive to such reorderings.

Reordering certain arithmetic operations in order to increase parallelism is a technique
known as tree height reduction [KBC+74]. Simple reduction operations are recognized by paral-
lelizing compilers and transformed into the appropriate vector or vector-concurrent constructs.
We have measured this capability and found it to be one of the most e�ective ones. Current
commercial compilers apply the technique most often where a sum operation is performed on
a scalar variable that is not referenced elsewhere in the loop.

However, in our experiments, we have found important loops that contain multiple sum
statements adding to the same variable. We have also found loops where this variable is an
array whose index may vary and be unknown at compile time. The compilers we evaluated could
not parallelize such loops, which was one of the important reasons for their limited performance

8

REAL a(m)

DO i=1,n

...

expr = ...

a(t(i)) = a(t(i)) + expr

ENDDO

!

REAL a(m),a1(m, number_of_processors)

CDOALL i=1,m

a1(i,1:number_of_processors) = 0

ENDDO

CDOALL i=1,n

...

expr = ...

a1(table(i),my_proc) = a1(table(i),my_proc) + expr

ENDDO

CDOALL i=1,m

a(i)=a(i)+SUM(a1(i,1:number_of_processors))

ENDDO

Figure 2: Expanded Parallel Reduction Transformation

on the Perfect Benchmarks.3

Reduction operations are a subclass of recurrence computations for which there are e�cient
parallel implementations. General recurrence patterns are of the form x(i) = a0(i) � x(i) +
a1(i) � x(i� 1) + : : :+ an(i) � x(i� n) (where i is the loop index). Parallel solvers for general
recurrences are well known, and today's parallelizing compilers are capable of replacing these
patterns with calls to the appropriate solver routines. However, in our experiments, we have
not found any performance gains from such transformations. One reason for this is that the
available recurrence solver libraries were not tailored to the speci�c recurrence patterns that
occurred in our test suite, so that sometimes the input arrays had to be rearranged before
calling the solver. Even more importantly, the iteration counts for the recurrence loops found
in our program suite were too small to amortize the overhead introduced by a parallel recurrence
algorithm. Because we have usually found recurrences to be inside parallel loops, this was not
a serious problem, and we have not invested much e�ort to improve these situations. Parallel
recurrence solvers may become more e�ective in other programs by tailoring them to the speci�c
program patterns.

Analysis and Program Patterns Parallelizing compilers usually recognize reduction op-
erations by searching for a pattern de�ned by the statements and their data dependences.
Traditionally, candidate reduction operations must: be con�ned to a single statement; have a
self-, ow-, output-, and anti- dependence; and accumulate into a scalar variable using a com-
mutative/associative operation. Also, the statement in which they occur must be distributable
from the adjacent loop body.

To handle the more complex patterns that we have found in our program suite, it is necessary
to deal with multiple accumulation statements and accumulations into array elements within
inner loops. Most of the information necessary to do this transformation can be gathered locally
in the candidate loop, although in some programs the information needed must be searched
for interprocedurally, as in DYFESM-assemr/40. Additional information, such as the length of
the accumulated array and the size of the section that may need to be synchronized, is needed

3The VAST parallelizer was able to parallelize loops with multiple statements of the form TOT(i) = TOT(i)

+ ... by placing await and advance synchronization around them and pulling as much computation out of the
critical section as possible. This works well where the body of the parallel loop is su�ciently large.

9

to determine the best method for implementing parallel reductions. We have observed that
the number of iterations of the enclosing loop determines whether transforming reductions to
parallel form increases or decreases the speed of the program. Thus, the number of iterations is
crucial information. Also, the techniques for mapping parallel loops to the machine (Section 2.4)
are important in �nding the proper transformation in each case.

PROGRAM-subroutine/loop total loop execution Twithout=Tbest Twithout=Tbest
time in seconds for for

Tbest Twithout loop program
MDG-interf/1000 163 3792.0 23.2 19
MDG-poteng/2000 13.4 352.0 26.3 2.6
DYFESM-mxmult/10 19.0 60.0 3.2 1.7
DYFESM-formr0/20 7.0 20.0 2.8 1.2
BDNA-actfor/240 19.0 62.04 3.3 1.4
BDNA-actfor/500 21.0 253.04 12.0 3
FLO52-euler/70 0.5 5.7 11.4 1.1
MG3D-migrat/200 264.0 5226 19.8 19.7
SPEC77-gloop/1000 58.7 743.7 12.7 5.5
SPEC77-gwater/1000 13.5 248.0 18.4 2.6

Table 4: Performance impact of the parallel reduction technique. Comparing best loop variants
with those where the transformation is not applied.

Parallel reductions can be implemented in several di�erent ways.

1. Synchronization in place. Each sum operation can be made indivisible by protecting
it with a lock/unlock pair. If e�cient, hardware-supported synchronization functions
are available or if few synchronizations necessary, then this is a feasible solution. This
variant requires the fewest code changes, and in contrast to methods 2 and 3, it does
not require the allocation of a temporary array nor its initialization and �nal sum. (This
transformation may require complex interprocedural analysis and code modi�cations.)

2. Privatized parallel reductions. This method builds partial sums in loop-private variables.
These variables are then used to update the original variable in a critical region within
the loop or in the postamble5. Using private partial sum variables improves locality, but
still requires a synchronized section.

3. Expanded parallel reductions. Using this method, the partial sum variables are expanded
by a dimension, which has as many elements as the number of processors, and given a
global scope. Each processor accumulates into a slice of this array using its processor
number as the slice index. The partial sums can be added to the original variable after
the parallel loop. This variant may incur more overhead due to the accumulation into
global memory elements, but it yields a completely parallel loop. If the accumulators are
array elements, the sum operation to be performed after the end of the loop can be done

4These are the serial times for these loops, even though we found that VAST restructurer was able to parallelize
these loops.

5The postamble is a section of code at the loop end that is executed once by each participating processor.

10

in a vector-concurrent loop, i.e. a concurrent loop over all array elements with a vector
sum operation inside. This translation is illustrated in Figure 2.

With architectures using a page (or cache line) migrating mechanism, care must be taken
avoid accessing the same page with multiple processors at the same time, as in method three
above. Method two above limits the access of the global array to a single processor at one time,
making better use of the memory migration mechanism.

Table 4 presents the e�ect of this transformation in the same terms as for privatization in
Table 3. We used in-place synchronization in DYFESM (mxmult/10) and SPEC77 (gwater/1000
and gloop/1000). Both loops in SPEC77 call speci�c routines in order to accumulate values.
Subroutine DYFESM/assemr, which is called inside the parallel loop, contains accumulation
statements that update part of the array MX.

Privatized parallel reductions were applied in BDNA and MG3D. The pattern in loop mi-
grat/200 of program MG3D is a single statement accumulation. Both loops BDNA-actfor/240
and 350 (the inner loop of nest 500) have simple accumulation patterns, while loop 500 has
more complex patterns (using arrays FAX,FAY,FAZ).

We have applied expanded parallel reductions in ADM, which has a number of loops
(dudtz/40,dvdtz/40,dtdtz/40,dcdtz/40,wcont/40, and hyd/30) with simple accumulation pat-
terns. Alternatively, the accumulations can be synchronized (using current compiler capabili-
ties), which we expect to perform close to the level we achieved with our transformations.

Of further interest are the reduction patterns in MDG and TRFD. In loop MDG-interf/1000,
a scalar variable (VIR) and three arrays (FX,FY,FZ) are used for accumulating values. The
sum statements are in an inner loop and operate on di�erent elements of the array for each
iteration of the parallel outer loop. In our experiments, a combination of the expanded and
privatized parallel reduction scheme was applied. The parallel loop was stripmined6 into a
sdoall/cdoall pair and we then applied a combination of privatized and expanded parallel
reductions. A similar pattern occurs in subroutine poteng where scalar accumulations are
parallelized using privatized parallel reductions. In TRFD-olda/100, elements of two arrays
(XRSIQ and XIJ) are being used to accumulate sums. Since this accumulation pattern takes
place inside a parallel loop, it did not need to be parallelized. TRFD-olda/300 showed the same
pattern for arrays XIJKS and XKL. In an earlier version of TRFD, where the outer loop was not
yet parallelized, parallel reduction transformations proved e�ective.

2.3 Generalized induction variables (GIV)

In Fortran DO loops, array subscripts often use the values of induction variables [ASU86], which
are updated in each iteration in the form of V = V op K, where the value K is loop-invariant.
Such a recursive assignment causes cross-iteration data dependences. If a compiler can solve
such a recurrence and express the value of the induction variable in terms of the loop indices
as, for example, V = f(I; J), where I and J are loop indices, then the appearance of V in array
subscripts can be replaced by the expression f(I; J). The dependences can be eliminated as
a result. There are well-known compiler techniques for recognizing and replacing an induction

6Stripmining splits a loop into two nested loops.

11

variable whose values form an arithmetic progression. These techniques typically deal with
induction variables assigned in the form of V = V + K.

In our experiment with the Perfect Benchmarks, we found induction variables whose values
do not constitute arithmetic progressions. Here, we call them generalized induction variables,
or GIVs. We found two types of GIVs. The �rst type is updated using multiplication instead
of addition, thus forming a geometric progression. The second type is updated using addition,
but does not form an arithmetic progression in all points of the loop because the loops are
triangular (i.e., the inner loop limit depends on the value of an outer loop index).

We have described GIVs in a preliminary report([EHLP91]), which has led to the develop-
ment of several recognition techniques, as mentioned in Section 1. All these techniques intro-
duce non-linear subscript expressions, which cannot be understood by previous data-dependence
analysis techniques. In [BE94a], we have described a new analysis technique that can handle
such nonlinear subscripts.

The e�ect of the Generalized Induction Variable transformation is shown in Table 5. The
table shows the same type of information as Tables 3 and 4. Without correct handling of the
GIVs, all listed loops can be parallelized only on the inner-most loops. We have measured
this inner parallelization to perform worse that the serial execution. Because of this, Column
Twithout shows the serial timings. As shown, not applying the parallel reduction techniques
results in a 15 to 20-fold slowdown of the loops. Because the loops are time-consuming parts of
their respective programs, the corresponding program slowdown would be between the factors
of 5 and 10.

PROGRAM-subroutine/loop total loop execution Twithout=Tbest Twithout=Tbest
time in seconds for for

Tbest Twithout loop program
OCEAN-ftrvmt/109 89 1377 15.5 8.3
TRFD-olda/100 8.0 174.2 21.8 9.3
TRFD-olda/300 5.4 85.3 15.8 5.0

Table 5: Performance impact of the Generalized Induction technique. Best loop variants are
compared with those where the transformation is not applied.

Analysis and Program Patterns In order to substitute induction variables, one must �rst
determine the value of the induction variable prior to the loop, �nd all the induction sites, and
determine the loop bounds of the loops enclosing the induction sites. From this information,
we can then compute the value of the induction variable at each reference in the loop body.

The �rst step is the same for all types of loops. The second step is more di�cult in triangular
loops, although it can be considered an extension of the rectangular loop case. For example,
assume a doubly-nested loop with indices I and J, loop bounds M and N, and an induction
variable that increments in steps of 1. In each iteration of the outer loop, the induction variable
increases by the iteration count of the inner loop. In the rectangular case, this is a constant
N. In a triangular case, where the inner loop goes from 1 to I, it is a variable number I. At
the end of the i-th iteration of the outer loop, this amounts to i*N in the rectangular case and
P

i

i0=1 i
0 = i � (i+ 1)=2 for a triangular nest. In iteration j of the inner loop, the expression is

(i-1)*N+j for the rectangular case and (i-1)*i/2+j for the triangular case.

12

This is, of course, a simpli�ed computation that assumes an induction variable starting at 0
and incrementing by 1. However, relaxing these constraints is straightforward. Also, note that
the expression for the triangular induction variable is not linear.

In TRFD, the loops olda/100 and olda/300 contain additive GIVs, which are incremented
inside triangular loops. An additional complication is found in olda/300, where the GIV pattern
in the �rst iteration of the outermost loop di�ers from all the other iterations. We transformed
this case by peeling the �rst iteration.

In the program OCEAN, loop ftrvmt/109, we found a multiplicative GIV. Further compli-
cating the analysis of this GIV was the use of a complex control ow within the loop. The loop
has the following form:

DO 109 jl=1,i2k

IF (jl .EQ. 1) THEN

S1: exj=(1.,0.)

...

ELSE IF (jl .EQ. jli) THEN

S2: exj=CMPLX(0.,sgn1)

...

ELSE

S3: exj=exj*exk

...

ENDIF

109 CONTINUE

Notice that the two arithmetic IF statements use the value of the loop index in their decision
of where to branch. This is crucial because it allows the compiler to determine the order in
which the various branches occur. Analysis of the ow can ascertain that statement S1 executes
�rst; followed by statement S3 which executes jli �1 times; followed by statement S2; followed
by statement S3 which executes another i2k � jli times. For this analysis to work we must
verify that 1� jli� i2k.

With this analysis, it is possible to determine closed forms for EXJ for all values of JL:

DO 109 jl=1,i2k

IF (jl .EQ. 1) THEN

exj=(1.,0.)

...

ELSE IF (jl .LT. jli) THEN

exj = (exk**(jl-1))

...

ELSE

exj = CMPLX(0.,sgn1)*(exk**(jl-jli))

...

ENDIF

109 CONTINUE

2.4 Techniques that map parallel loops to the actual machine

The restructuring compiler that we used as a starting point for our hand-optimized codes
(KAP/Cedar [EHJ+93]) often was able to discover parallelism, but then mapped it to the
machine poorly. In this section, we will show various methods to improve this. Speci�cally, we
will discuss issues of stripmining, loop coalescing, outer loop parallelization, loop fusion, and
data localization.

13

2.4.1 Balanced Stripmining

The stripmining transformation splits a single loop into two nested loops. In Cedar programs,
this is usually applied for exploiting multiple levels of parallelism. The naive stripmining method
we implemented in KAP/Cedar turns each parallel loop into an sdoall/cdoall/vector nest in
the following way: an innermost loop executes 32-element vector instructions, an intermediate
cdoall loop executes 8 iterations, and an outermost sdoall loop iterates over these groups
of 8�32. This method produces poor speedup when the number of iterations is small.

The VAST parallelizer, for the Alliant FX/8 machine, splits the iteration space onto pro-
cessors in a cyclic way. The iterations are divided across processors �rst. The portions assigned
to each processor are then executed by the vector instructions. In this stripmining method,
parallel processors tend to access adjacent data elements, which increases spatial locality in the
shared cache. This is e�ective for doing computation within a single cluster.

Our multi-version, balanced stripmining method is similar to the stripmining applied by
KAP. However, it �rst determines what resources are needed. If it can be determined at compile
time that the number of iterations is extremely small, a single processor may be allocated to the
loop, doing either vector or scalar instructions. A medium number of iterations may warrant
the use of a whole Cedar cluster, and loops with large iteration counts may be mapped to the
whole Cedar machine.

If the number of iterations cannot be determined from the program, or if it is known that
the number of iterations will vary widely over the course of the execution, a multi-version loop
can be constructed. The program selects between a single-processor, a single-cluster, and a
four-cluster version, depending on the number of iterations. The four-cluster version stripmines
the iteration space onto the processors in contiguous blocks to produce vector instructions with
a stride of one. Stride-one vector references are bene�cial in the Cedar architecture because of
the way the prefetch unit operates [GJT+91].

When the original loops are doubly-nested they are coalesced into a single loop �rst, so
that the combined iteration space is available to divide among the processors. The stripmin-
ing transformation itself divides the iterations among the clusters �rst, and then among the
processors of a cluster. Finally, it assigns the remaining elements to the vector instructions.
This ensures the minimum number of next-iteration operations across clusters and between
processors on a single cluster.

Analysis and Program Patterns In order to decide what translation to use for a given
loop nest, we need to analyze the size of the loop body and the number of iterations. The size
of the loop body will help us determine whether the parallel loop overhead can be amortized
by the performance gains of the parallel loop. The number of iterations determines how many
next-iteration operations will be done during the loop. We have found that, where it is crucial,
this information often can be derived from the program text. However, in many cases, this
information must be gathered from subroutines other than the one being transformed. We will
discuss this further in Section 2.5.

Many interesting program patterns can be found in FLO52. Loop eux/30 was originally
a perfectly-nested two-level loop in the serial version of the program. We did the Balanced
Stripmining transformation to each loop separately. The outer loop became an sdoall/serial
nest, and the inner loop became a cdoall/vector nest. In addition, we moved the serial loop

14

inside the cdoall loop in order to push out the parallel loops as far as possible. The result was
a sdoall/cdoall/serial/vector nest. These transformations improved the runtime of the loop
from 5.7 to 3.9 seconds. Table 6 shows this improvement together with that of other loops of
the same program. Loops eux/20, eux/30, and dux/30 were originally singly nested (1D).
Loops eux/10 and dux 38 were doubly-nested and we have coalesced them before stripmining
(2D). In bcwall/30, we applied the multiple-variant transformation described above (MV).

PROGRAM-subroutine/loop total loop execution Twithout=Tbest Twithout=Tbest
time in seconds for for

Tbest Twithout loop program
FLO52-eux/10 3.9 5.9 1.5 (2D) 1.03
FLO52-eux/20 1.1 3.0 2.7 (1D) 1.03
FLO52-eux/30 3.9 5.7 1.5 (1D) 1.04
FLO52-dux/30 3.2 5.5 1.7 (1D) 1.03
FLO52-dux/38 0.4 0.5 1.25 (2D) 1.00
FLO52-bcwall/30 1.7 2.8 1.6 (MV) 1.02

Table 6: Performance impact of the Balanced Stripmining technique.

2.4.2 Loop Coalescing

When there are multiply-nested parallel loops whose iteration count is either unknown at com-
pile time or not constant, it may be bene�cial to coalesce the loops into one single loop. A
simple example of this is the nest mnlbyx/50 in DYFESM, where the bounds of two out of
three loops are unknown.

We have found a more complex loop pattern that warrants coalescing in ftrvmt/109 of
OCEAN. In every invocation of the doubly nested loop, the loop body executes 64 times.
However, the number of iterations in the two loops vary, as shown in Table 7. When parallelizing
a single loop of this nest, the parallel performance gain is limited due to the small iteration
count in half of all loop executions. In this situation, it is advantageous to coalesce the two
levels and make a single parallel loop out of them. For Cedar, this loop may become an xdoall.
This transformation has been described in [Hoe92a].

Once these loops were coalesced, the number of iterations became large enough that every
invocation of the loop could exploit the Cedar resources. As a result, the speed of the loop
doubled. The loop nest accounts for approximately 50% of the serial program execution time.

Numbers of iterations

Inner loop 64 32 16 8 4 2 1

Outer loop 1 2 4 8 16 32 64

Table 7: Number of iterations in OCEAN-ftrvmt/109 loop nest.

2.4.3 Outer loop parallelization and loop fusion

Within a Cedar cluster, fast communication hardware is available to start, terminate, and
synchronize parallel activities. However, global memory is the only media for inter-cluster

15

1

.5

Alliant FX80 Cedar

2

1.5

A B C A B C

A

B

C

inner loops parallel

outer loops parallel

outer loops fusedspeed

Figure 3: Combining multiple parallel loops into a single one.

communication. Because of this, it is important to select loops with either a high number of
iterations or a large loop body for parallel execution across the Cedar clusters.

Large loop iteration counts often can be obtained with large input data sets. The Cedar
architecture can work e�ciently given large data sets, as we have shown in our previous work
[EHJ+93]: linear algebra routines working on matrices of size 1000 by 1000 can exploit the 32
Cedar processors well. Although it seems commonly accepted for highly parallel systems to refer
to large data sets, ordinary programs may not exhibit this feature and thus, the programmer
or the compiler may have to �nd transformations to increase the granularity of their parallel
algorithms.

An example of such a transformation is illustrated in Figure 3. The major subroutine of the
program Flo52 consists of two loops, each having a sequence of small inner loops. The original
version of our compiler parallelized the inner loops only, which is represented by variant a.
Variant b shows a program where the two outer loops were parallelized. In variant c, these two
loops were fused; thus, the whole subroutine became one parallel loop. The inner loops were
also vectorized or stripmined for vector-concurrent execution, when necessary.

The resulting performance gain was 50% on the Alliant FX/8 architecture, as compared to
100% on Cedar. This is due to the di�erence in startup overhead between the cdoall and
sdoall loops, and the increased parallelism encompassed by outer loops. The major gain is due
to the �rst step of parallelizing the outer loop instead of the inner one. A small additional gain
is due to fusing the two outer parallel loops into a single loop. On the FX/8 machine, where
startup overheads are small, this additional gain is not noticeable. The example in Figure 3
shows that compiling a structure of multiple small sdoall loops into a single sdoall can result
in a signi�cant code improvement on Cedar.

The compiler used in our studies (KAP/Cedar [EHJ+93]) often was able to �nd large con-
current loops or to interchange loops to an outer position. It failed in other cases when too
many potential data dependences were detected or when the outer loop was in a calling sub-
routine. Our manual analysis has shown that outer loops, in fact, can be parallelized in most
programs. Although this is not a transformation per se (it is no di�erent from �nding paral-
lelism using all the techniques described so far), it is mentioned here for its importance as a

16

program transformation goal.

2.4.4 Data localization

Data localization techniques are important for reducing latencies and contention of data accesses
to the global, shared memory. One of the most important transformations for data localization
is the array privatization technique. Data declared loop-private are placed in cluster memory
and, thus, contribute to the exploitation of local memories.

In addition to the array privatization technique, data can be localized by keeping copies
of global data in private (cluster) memory. This can be useful within single loops if there are
many accesses to these data. If data are produced by one loop and consumed by another, then
it may be possible to partition and distribute them to cluster memories across the sequence of
parallel loops. We refer to these two techniques as intra-loop localization and inter-loop data
partitioning and distribution, respectively.

Intra-loop localization. If global data are read-only, they can be localized easily by copying
them in at the beginning of the loop. This is particularly important if the data are accessed
in scalar mode, repeatedly within a loop iteration (or a sequence of iterations assigned to the
same cluster), or in vector operations with a large stride. Those accesses su�er most from the
long latencies to global memory. The only Cedar mechanism for reducing such latencies is the
vector prefetch, whose applicability is limited to long vector operations with a small stride.

Data that are read and written can also be localized to a loop if there are a number of
references to each data element. Multiple references can amortize the cost of copying the data
to and from the global memory at the beginning and end of the loop.

We have applied such transformations in a number of loops, as shown in Table 8. All but
the �rst line show the e�ect of read-only data localization7. The �rst line measures the e�ect
of the localization of a read-write array with data copy instructions at the beginning as well as
the end of the loop.

PROGRAM-subroutine/loop total loop execution Twithout=Tbest Twithout=Tbest
time in seconds for for

Tbest Twithout loop program
FLO52-psmoo/40&80 9.9 19.8 2.0 1.17

FLO52-step/20 1.7 2.4 1.4 1.01
ARC2D-xpenta/11 5.8 6.7 1.15 1.01
MDG-interf/1000 163 187 1.15 1.12
TRFD-olda/100 & 300 13.4 15.91 1.18 1.13

Table 8: Performance impact of the localization of read-only data. Comparing best loop variants
with those where the transformation is not applied.

Inter-loop data partitioning and distribution. Data can be privatized to a loop when
its life is con�ned to a loop iteration. When the lifetime spans several loops, one can attempt
to place data partitions onto each cluster memory and to assign corresponding subsets of the

7The timing numbers are extrapolated from an experiment run on one cluster only.

17

loop iteration spaces to the cluster processors. This works without further communication for
data that are read-only or that are read by the same cluster on which they were written.

In our experiments we searched for data partitioning and distribution techniques in par-
ticular, since they would have allowed us to take advantage of the Cedar's distributed cluster
memory architecture, one of the distinguishing features of this machine. However, we have not
been able to identify such transformations as important performance enablers in our program
suite. Nevertheless, we believe that data partitioning and distribution techniques will become
important for overcoming the increased memory access latencies that are intrinsic to future
highly-parallel systems. This is true in particular where ratios of access latencies between local
and global address space may be substantially smaller than in the Cedar architecture.

2.5 Analysis Techniques

In the above discussions of program transformations, we have briey described program analysis
techniques that may become necessary. Further analysis techniques may become important on
a more global scope since they bene�t many transformations or are basic enablers for detecting
parallel loops. Such techniques include interprocedural analysis, data dependence analysis, and
the analysis of programs at runtime.

2.5.1 Interprocedural symbolic analysis

One of the most important analysis techniques needed when implementing the described trans-
formations is the investigation of variable values and the propagation of this knowledge to the
loops to be restructured. In our manual experiments, we often have used the knowledge that
variables stay within certain bounds, that subscript arrays are initialized with values that allow
arrays to be privatized and loops to be run in parallel, or that the program takes control paths
that guarantee the safe and e�cient application of the transformation. We have pointed out
the need for such analysis techniques in previous sections. An important observation was that
there were only a few cases in which we were unable to derive the needed variable values from
the program text, since the crucial values were read from input �les. Often, variables were
given values in an initialization routine.

This is evidence that, in many cases, su�cient information exists in the program text to do a
thorough job of compile-time analysis. We believe that, although the techniques may be complex
in some cases, it is possible to develop the necessary symbolic analysis technology. These
patterns and possible symbolic analysis techniques are described in more detail in [BE94b].

In most of the Perfect Benchmarks programs, we have found this analysis to be necessary
across subroutine calls. We need interprocedural analysis for two reasons. First, a compiler
without interprocedural analysis capabilities has to make conservative assumptions about con-
trol ow and data dependences in calling and called subroutines, which often prevents it from
recognizing parallel loops. Second, there may be variables whose values determine the existence
of dependences, and these values may be passed as arguments from other subroutines where
they are de�ned. Again, this prevents parallelization. The compiler we used in our experiments
relies on inlining [Hus82], which replaces call statements with the text of the called subrou-
tines. This has worked well in a few programs, but we have found that other programs would
need more advanced interprocedural analysis capabilities than we had available. For example,

18

the analysis would have to work across subroutine boundaries that pass arrays with di�erent
shapes.

All of the transformations and analyses that we performed in our experiments were done \in
the presence of" interprocedural analysis. That is, if we needed to know the value of a constant
not de�ned locally, we inspected other subroutines. If we needed to know how data were used
and de�ned in a call tree initiated from a particular loop, we analyzed the called subroutine.

2.5.2 Data-dependence analysis

We have found that many array reference patterns in the important loop nests are relatively
simple combinations of the loop variables of the enclosing loops. Nevertheless, these patterns
often cannot be investigated by current data-dependence tests, mainly because the coe�cients
of the index variables are symbolic expressions. Advanced symbolic analysis techniques are
needed to propagate relations between variables from the de�nitions of these variables to the
loops that are considered for parallelization. Furthermore, data-dependence tests need to be
extended to allow symbolic terms in their mathematical expressions instead of just numeric
constants.

One challenge for data dependence tests was encountered in TRFD. The terms generated by
the induction variable of the triangular loops described in Section 2.3 are quadratic and, thus,
cannot be understood by tests for linear subscripts. For the reader of the original program,
it is obvious that the arrays indexed by the induction variable are dependence-free because
the induction variable assumes a steadily increasing sequence of values. This knowledge is lost
when substituting the induction variable. An approach could be to ag this situation in the
induction variable substitution pass and enhance the dependence test to understand this ag.
Alternatively, a non-linear test could be devised [BE94a]. Of further di�culty is the fact that
the subscript contains symbolic values whose relation to other terms determines whether the
loop is independent. Symbolic analysis techniques are important in this situation. Failing to
parallelize this loop in TRFD would result in a program slowdown of a factor of 13.

Program DYFESM is another example that could take advantage of new data dependence
tests. Subscripted-subscript patterns inhibit the detection of independent loops. However,
symbolic analysis can determine that the access patterns formed by the subscript arrays are
non-overlapping regions, each having a di�erent length. The program initialization routine
needs to be investigated to determine the values given to the subscript arrays, which are read-
only from then on. A starting point for achieving such compiler capabilities could be the
symbolic range propagation techniques described in [BE95]. Without recognizing that these
loops are independent, only inner loops could be parallelized, resulting in a program slowdown
of a factor of 3.

2.5.3 Runtime analysis techniques

The described analysis may be complex or even undecidable at compile time. In these situations
it may be useful to insert run-time tests that choose between a fully parallel and a serialized
loop nest, depending on whether the values of the variables produce a dependence in the loop.

For example, in many loops within OCEAN (covering 65% of the serial execution of the
program), the subscripting expressions and loop bounds contain variables and a linear com-
bination of loop indices, which makes compile-time dependence analysis di�cult. All of the

19

arrays used in these loops are singly-dimensioned, but the subscript expressions used involve
the loop indices of all the loops in the nest. The subscript expressions are such that they can be
considered a linearization of a three-dimensional array into a single dimension. One di�culty
in analyzing this situation is that, in di�erent executions of the same loop nest, the innermost
loop sometimes corresponds to the right-most dimension of the three-dimensional array and
sometimes to the left-most dimension.

In one experiment, we implemented a test, which we call the linearization test, that checked
whether the array was being used in this linearization manner. This involved checking whether
each successive inner dimension indexed entirely within the next outer dimension. If this is
the case, then there are no dependences on the references to those arrays. The result of this
experiment is the loop shown in Table 9. A more detailed description of the test can be found
in [Hoe92b].

PROGRAM-subroutine/loop total loop execution Twithout=Tbest Twithout=Tbest
time in seconds for for

Tbest Twithout loop program
OCEAN-ftrvmt/109 89.3 1376.9 15.4 7.3
OCEAN-csr/20 10.5 172.0 16.4 1.9
OCEAN-ftrvmt/116 10.8 99.5 9.2 1.5
OCEAN-acac/30 3.3 92.5 28.0 1.5
OCEAN-acac/40 4.0 79.0 19.8 1.4
OCEAN-scsc/30 2.3 59.3 25.8 1.3
OCEAN-rcs/20 3.4 57.7 17.0 1.3

Table 9: Performance impact of a runtime data-dependence test in the OCEAN program.

We have found that interprocedural symbolic analysis techniques also would enable the
compiler to prove that the loops in Table 9 are dependence-free. Since the runtime test described
above does not introduce signi�cant overhead, the resulting performance would look similar to
the one shown in Table 9. Thus, the linearization test could be applied either interprocedurally
at compile time, or intraprocedurally with run-time tests. The trade-o� between these two
methods is doing a more complex compile time analysis versus introducing a small execution
overhead for the runtime test and generating code that is more di�cult to read.

3 Optimization summaries of the Perfect Benchmarks codes

In the previous section, we described transformation techniques that were applicable to several
codes in our program suite. This section will summarize these transformations for each code
and note additional individual changes that were made to the programs. For each code we will
briey discuss the expected di�culties for automating the transformations. Our experiments
did not include the program SPICE. SPICE has been discussed in a related project, which
found runtime parallelization techniques to be applicable to the irregular structure of this code
[RP95].

The short descriptions of the problems being solved in the Perfect Benchmarks are taken
from [Poi90]. Detailed optimization reports can be found in individual technical reports avail-

20

able from CSRD8. A more thorough discussion of the automatic parallelization done by both
KAP/Cedar and VAST is in [BE92]. Both restructurers were similar in terms of the resulting
code and performance.

ADM \is a three-dimensional uid ow code that simulates pollutant concentration and
deposition patterns in lakeshore environments by solving the complete system of hydrodynamic
equations. The advection-di�usion equation for the transport, di�usion, and deposition of
pollutants is also included in the model [Poi90]." The program code is 6104 lines long and
consists of 97 subroutines. The execution time is spread evenly throughout the program; 90%
of the execution time is spent in 23 subroutines. Almost all of these subroutines contain three
or fewer loop nests, all of which are important. Because of this, 90% of the program's execution
time is spread across 31 loop nests. Thus, a large number of loops need to be parallelized to
get any meaningful speedups from the program. However, 11 of these 31 important loop nests
have calls in them. Almost all of these calls are made to subroutines containing important loop
nests.

KAP was unable to improve adm signi�cantly because of many subroutine call statements
and small iteration counts of the parallel loops. For the six most important loop nests, iteration
counts ranged from 1 to 16 and four of them were singly nested. For other parallelizable loop
nests, the iteration counts were 13{15 or 64. Most of these loops were singly-nested. KAP/Cedar
stripmined all singly-nested parallel loops without checking the pro�tability, which introduced
more overhead than performance gain. The best speedup that KAP was able to get was
1.65. Even by manually parallelizing the loops without call statements, we were unable to get
speedups much greater than two.

The full manual optimization of ADM led to a speedup of 10.1 on Cedar. All of the impor-
tant loop nests9 in this code were transformed into concurrent loops. The main transformations
applied to gain outer concurrent loops were array privatization and reduction parallelization.
To automate these transformations, a compiler would have to recognize de�nition/use patterns
interprocedurally. Parts of arrays that are read-only would have to be separated from privatiz-
able read-write parts. Another issue is the recognition of low iteration counts of certain loops in
order to disable their high-overhead parallel execution. Several such iteration counts depend on
input data in ADM, which necessitates the application of techniques such as run-time analysis
or the coalescing of several nested parallel loops.

ARC2D \was developed at NASA/Ames and run on a Cray X-MP. It is a robust, general-
purpose, implicit �nite-di�erence code for analyzing uid ow problems. It solves the Euler
equations. Arc2D can be used for steady and unsteady ows, but only for inviscid ows [Poi90]."
The code contains 4,000 lines of Fortran77 in 74 subroutines.

Arc2D shows the best speedup from automatic parallelization on both FX/8 (8.7) and
Cedar (13.5). There are about 30 loop nests that need to be parallelized well for good overall
performance. KAP parallelizes all loop nests.

8Technical Reports, Center for Supercomputing Research and Development, 1308 W. Main St., Urbana, IL
61801.

9We consider a loop nest important if it is among the nests that accumulate 95% to 99% of the serial execution
time.

21

The additional improvements that were applied manually include balanced stripmining
methods, �nding outer parallel loops, and localizing scalar data accesses to global memory.
This resulted in substantially improved speedups of 10.6 for the FX/8 and 20.8 for the Cedar
machine.

The major issue in automating these transformations is expected to be array privatization,
which is needed to �nd the outer parallel loops. The necessary de�nition/use analysis requires
advanced techniques for interprocedural propagation of symbolic values, relations, and con-
ditions under which relations hold. Similar symbolic analysis steps will be necessary to �nd
whether the privatized arrays are not accessed outside the loop.10

BDNA The BNDA code \makes use of the BIOMOL package for performing molecular dy-
namics simulations of biomolecules in water. This package aims at an understanding of the
hydration, structure, and dynamics of nucleic acids and, more broadly, the role of water in
the operation of biological systems [Poi90]." The code contains 4,000 lines of Fortran77 in 76
subroutines.

BDNA gains insigni�cant speedup from automatic parallelization by KAP (1.9). VAST
does somewhat better on this code on the Alliant FX/8 machine because it can parallelize
simple reduction operations better than KAP. There are two loop nests that dominate the
computation. KAP could vectorize only the innermost loops of these nests, whereas VAST
generated vector-concurrent versions.

Both loop nests could be manually parallelized at the outermost level with a resulting
speedup of 5.6 and 8.5 for the FX/8 and Cedar machines, respectively. The �rst loop (act-
for/240) was parallel after privatizing many scalar and array variables. The other loop nest
(actfor/500) was parallel after dealing with several reduction operations. It is interesting to
notice that, on the FX/8 architecture, the best performance of the actfor/500 nest resulted
from vector-concurrent execution of the stripmined inner loop (loop 350) as opposed to full
vectorization of this loop and running the outer loop concurrently. This is due to the large
amount of loop-private data, which overow the cache. This is the only signi�cant code pat-
tern seen in the Perfect Benchmarks suite where stripmining (or \blocking") for cache locality
is of bene�t on the FX/8 architecture. In the Cedar variant of BDNA, this is no longer an
issue because the inner loop is stripmined for cluster parallelism, while the outer loop is spread
across Cedar. The computational part of BDNA speeds up by a factor of 13 as a result of
the manual transformations. However, the overall speedup is 8.5 because of an input/output
loop (Restar/15), which becomes a signi�cant serial bottleneck and takes 30% of the parallel
execution time.

The most di�cult step in automating these transformations is expected to be the de�nition-
use analysis for privatizable arrays. In one case, the content of an index array needs to be
analyzed in order to privatize.

DYFESM \is a two-dimensional �nite element code for the analysis of symmetric anisotropic
structures. An explicit leap-frog temporal method with substructuring is used to solve for the
displacements and stresses, along with the velocities and accelerations at each time step [Poi90]."
The code contains 7,600 lines of Fortran77 in 113 subroutines.

10This is not necessarily a requirement for parallelization, but can simplify the generated code.

22

Automatic parallelization by KAP yielded a speedup of 4 on the Alliant FX/8 over the
unoptimized code. This is the third-best performance in the automatic column. However, this
is only 1.2 times the performance of the vector-only code. On the Alliant, the performance
achieved by VAST is only about 2.5 because of the overhead introduced by the more aggressive
parallelization of reduction operations. DYFESM has very small data sets, which is one of
the impediments to good performance. It is also the reason for the automatically parallelized
version on Cedar yielding a speedup of only 2.2. The compiler we used does not have capabilities
to recognize small loops that cannot bene�t from a parallel execution. On the FX/8 machine,
this is a less signi�cant problem because the startup of a parallel loop is very fast. On Cedar,
the loop startup latency is more signi�cant, leading to greater performance degradation.

Manual improvements include the replacement of a matrix multiplication11 by a library
routine, and the transformation of many of the outer loops into concurrent form; for one loop
(mxmult/10), a critical section was created to coordinate parallel reduction operations (cf.
Section2.2). Furthermore, arrays were privatized to some of the outer, now concurrent loops.
The resulting improved speedups are 10.3 and 11.4 for FX/8 and Cedar, respectively.

A major di�culty in automating the transformations is the analysis of subscripted sub-
scripts. DYFESM accesses arrays through table arrays in all its computation. The content of
some of these subscript arrays can be derived from the program text. In other cases, such as
the major loops mxmult/10 and formr0/20, the patterns probably can not be investigated at
compile time.

FLO52 \This two-dimensional code provides an analysis of the transonic inviscid ow past
an airfoil by solving the unsteady Euler equations[Poi90]." The code contains 2,000 lines of
Fortran77 in 64 subroutines.

KAP produced the best speedup numbers of any Perfect Benchmarks program for FLO52
running on the FX/8 (9.0). The speedup of FLO52 on Cedar produced by KAP was second
best (5.5, behind the speedup of ARC2D). The reason for these numbers is that most of the
loops in FLO52 are simple, with relatively straightforward indexing patterns and no subroutine
calls. The most basic dependence analysis can determine that most of these loops are parallel.
Three of the most important loops contained a number of inner loops, for which KAP tried
to �nd the optimal con�guration in terms of distributing and interchanging them. Using the
appropriate compiler options that extend the length of the search, KAP was able to �nd the
best con�guration.

The manual e�orts to optimize FLO52 centered on parallelizing outer loops in three cases
(psmoo/40, psmoo/80, and step/20); fusing two of the loops (psmoo/40 and psmoo/80); priva-
tization; turning o� recurrence recognition; and improving scheduling for several parallel loops,
as explained in Sectionc 2.2 and 2.4. KAP had not parallelized these outer loops because of
an internal error in the interface between two compiler passes. The speedups after the manual
e�ort for FX/8 and Cedar are 14.6 and 15.3, respectively.

The recurrence recognition in KAP had to be turned o� to reduce overhead. Reasons
for this are described in Section 2.2. The loop fusion used in psmoo/40 and psmoo/80 was
straightforward, except that some data written between the two loops had to be privatized and
redundantly computed to enable the fusion.

11This was not done automatically by our compilers. This technology is well known and is not covered in this
paper.

23

The privatization done within FLO52 was for both arrays and scalars. There were many
instances in which a global scalar was read-only in a loop. The Cedar architecture has the
capability to prefetch vector loads from global memory. However, the prefetch unit is not used
for scalars; therefore, it can be advantageous to copy a global scalar to a location in each
cluster, and use it from there within a cross-cluster parallel loop. It was necessary to collect
all references to an array within a loop nest and then piece together the ranges in which it was
referenced, in order to ensure that the condition for privatization was met. There was also a
case (in psmoo) in which an array could be fully distributed to the clusters for the duration of
a single loop. One quarter of the array was copied to each cluster COMMON area in each iteration
of an sdoall loop. The region was then copied back to the proper global location at the end
of the iteration.

Finally, some scheduling improvement was due to the balanced stripmining technique, de-
scribed in Section 2.4.1. We expect that the transformations we applied to FLO52 will be
straightforward to implement in an automatic translator.

MDG \is a molecular dynamics model for 343 water molecules in the liquid state at room
temperature and pressure. The code uses the Matsuoka-Clementi-Yoshimine con�guration in-
teraction potential for rigid water-water interactions and extends it to include the e�ects of
intra-molecular vibration. MDG can be used to predict a wide variety of static and dynamic
properties of liquid water[Poi90]." The code contains 1200 lines of Fortran77 in 51 subroutines.

MDG has no speedup from automatic parallelization. None of the major loops in this code
can be parallelized because KAP reports data dependences.

The two most time-consuming loops (interf/1000 and poteng/2000) were transformed man-
ually into parallel loops mainly by privatizing some arrays and recognizing reductions that
can be done in parallel. Other transformations done were localizing read-only scalar ac-
cesses(interf/1000), eliminating induction variables (interf/1000,poteng/2000), loop coalescing
and removing storage-related dependences (predic/1000), and parallelizing a loop that wasn't
detected as independent by KAP (correc/1000). These changes resulted in drastic improve-
ments of 7.3 for the FX/8, and 20.6 for the Cedar machine.

The primary challenge in parallelizing MDG automatically is to detect all privatizable vari-
ables. In Section 2.1, we have described these patterns, that require advanced symbolic analysis
techniques.

MG3D \is a seismic migration code used to investigate the geological structure of the
Earth[Poi90]." The code contains 2800 lines of Fortran77 in 64 subroutines.

KAP parallelized most loop nests not containing subroutine calls or input/output state-
ments, except for those loops within certain routines (cpass, cpassm, rpass, and rpassm) that
contain potential dependences. KAP left those loops serial since their parallelization depends
on the runtime values of certain variables. There was an insigni�cant speedup of 1.5 for the
FX/8 machine, and even a slowdown to 0.9 for Cedar.

The manual e�ort required extensive interprocedural analysis, array privatization, and par-
allel accumulation to parallelize the major loop (migrat/200); recognition that a temporary �le
can be placed in memory; dead code elimination; and symbolic subscript analysis to vectorize
loops in the FFT routines (cpass, cpassm, rpass, and rpassm). The resulting performance num-
bers were among the best ones for the entire suite: 13.3 for the FX/8, and 48.8 for the Cedar

24

machine.
MG3D, as a benchmark code, has some properties that may become important for an

advanced compiler, but which are likely to be di�erent in a real code. First, MG3D uses two
temporary �les whose I/O operations can be eliminated by replacing them through memory
operations. Unfortunately, the original code does not delete the �les at the end, thus, this
transformation cannot be performed without changing the e�ect of the program (because there
is the possibility that the �le will be used later on). However, this optimization was applied
in our experiments, enabling the outermost loops to be parallel. Second, part of the data set
for MG3D is generated in the code and is rather arti�cial, so that an advanced compiler could
recognize the values (e.g., through constant propagation) and perform further optimizations.
This was not exploited in our experiments. Third, the validation pass of the code looks at a
very small sample of the total data generated. An advanced compiler could recognize that most
of the computation in MG3D is dead code in that sense. We have not exploited this situation
in our manual optimizations.

OCEAN \solves the dynamical equations of a two-dimensional Boussinesq uid layer.
The code is needed in order to study the chaotic behavior of free-slip Rayleigh-Benard
convection[Poi90]." The code contains 3400 lines of Fortran77 in 70 subroutines.

KAP was able to parallelize only inner loops and trivial perfectly-nested loops. The most
important loops in the code (covering 65 % of the serial execution) were not parallelized by
KAP due to the form of the subscript expressions and the use of scalar variables as expression
coe�cients and loop bounds. On the FX/8 machine, this resulted in a slight speedup of 1.4,
whereas it resulted in a slowdown to 0.7 on Cedar.

VAST was able to parallelize an extra level in the same nests where KAP could parallelize
only the innermost level. VAST accomplished this by setting a logical variable holding a
condition that is true when the loop is dependence-free. The loop was made parallel and
the logical variable then controlled the issue of await and advance around the loop body. In
some nests, several dependence conditions were evaluated and tests were made for all of them
inside the parallel loop to determine whether to issue the awaits and advances.

Our manual optimization e�ort improved the OCEAN speedups to 8.9 on FX/8, and 16.7
on Cedar. As with many other applications, the key was to parallelize many of the outer loops.
To do this, we worked on three types of loops. The �rst type was a group of loops using
variables as coe�cients in the subscript and loop bound expressions. This group required a
runtime dependence test inserted prior to the loop, which chose between a serial and a parallel
version of the loop, and, in one case, the coalescing of a triangular loop nest into a singly-
nested xdoall. The second type was a group of loops which required interprocedural analysis
to parallelize the loops. The third type was two small, simple, and often-used loops, whose
number of iterations varied widely. We generated multiple optimization versions of these loops,
such that cluster and cross-cluster parallelism was exploited only when the number of iterations
was large enough.

One issue with implementing these techniques is to determine when it is of bene�t to apply
multi-version loops and when the overhead o�sets the bene�t. It seems clear that advanced
symbolic analysis techniques that work interprocedurally can signi�cantly reduce the work
necessary to detect parallelism at runtime. However, further work is necessary to determine
the extent to which this is possible.

25

QCD \This quantum chromodynamics (QCD) code uses a Monte-Carlo technique to update
the complex 3x3 matrices that represent the action of the gluons. Since the code ignores
the e�ect of dynamical fermions, it may be considered a pure-gauge model in the quenched
approximation[Poi90]." The code contains 2,300 lines of Fortran77 in 69 subroutines.

KAP was able to parallelize only minor, inner-most loops in QCD, stripmining them to be
sdoall/cdoall/vector. For most of these loops, the low iteration count prevented more than
one CE from being used since 32 iterations are applied to the vector instruction �rst. KAP
failed to parallelize most loops due to the large number of subroutine calls throughout the loops
in the program. The resulting speedup was insigni�cant.

VAST performed well in loop obser/v2 by recognizing multiple summation statements (a
series of statements like TOT(1) = TOT(1) + ...), putting them in a synchronized region, and
pulling out all extraneous calculations from the parallel loop. VAST also was able to stripmine
a dotproduct reduction in loops projec/2 and projec/4.

We had to analyze QCD interprocedurally in order to parallelize its outer loops. A simple
tool allowed us to make a summary of interface variables that are read and written within each
called routine, including all inner routines. Data dependence analysis based on this summary,
in conjunction with induction variable analysis, allowed us to parallelize most of the outer loops
in the program. Once again we duplicated subroutines to choose a good transformation for each
di�erent calling context.

Subroutine pranf contains a random number generator producing a dependence cycle that
could not be eliminated. This dependence serialized approximately half the execution of the
program. In our best-performing program variant, we ignored this dependence, thus e�ectively
replacing the random number generator with a parallel variant. This changed some of the
program output, and in fact, the built-in veri�cation test reported \invalid". Only knowledge
of the application allows us to determine that the program is behaving correctly. These im-
provements resulted in a speedup of 20.8 on the Cedar machine. A variant without replacing
the random number generator yielded a speedup of only 1.8.

SPEC77 \is a global spectral model for simulating atmospheric ow. The code was originally
developed at the National Meteorological Center (NMC). Only the forecast module of the NMC
code is used in the benchmarking[Poi90]." The code contains 3,900 lines of Fortran77 in 99
subroutines.

KAP was unable to transform most major loops due to the large number of subroutine calls
in this program. Typically, KAP could parallelize nothing beyond innermost loops, yielding a
speedup of 2.4 on both machines.

Our manual experiments improved these numbers for the FX/8 and Cedar machines to 10.2
and 15.7, respectively. Some more complex manual transformations were done to the code,
including converting COMPLEX arrays to double-sized REAL arrays, eliminating subroutine
parameters, replacing algorithms, and replacing multiple calls to a subroutine with a single call.
However, the transformations that produced the greatest reduction in execution times were the
simplest ones, all of which are important for other codes as well. They include the concurrenti-
zation of loops with subroutine calls, array privatization, and parallelized accumulation. Other
transformations were of importance in individual loops, such as advanced loop interchanging,
and the fusion of loops with di�erent loop bounds.

The most critical transformation to automate is the parallelization of a search routine.

26

This routine uses the last found position as a starting point for the next search, which causes
a data dependence that is di�cult to break. However, it seems possible to develop advanced
compiler techniques to recognize whether in the given situation, this dependence can be ignored.
Serializing this dependence would slow down the best version of the code by a factor of about
2.5.

Analysis techniques necessary for these transformations are those described for other codes
as well. In addition, the initialization of SAVEd variables had to be recognized and moved out
of parallel loops or synchronized. Interprocedural analysis techniques include the propagation
of maximum variable values.

We applied sequential optimizations to Spec77 prior to its parallelization. The major change
was to replace a textual input �le with a binary one. Again, this is a questionably automatable
technique for which the compiler may make suggestions to the user, at best. However, one
may argue that, in practical applications of Spec77, the input �le most likely will be generated
by another computer program, in which case binary information is appropriate. Replacing the
binary IO by textual IO would slow down the best performance of the code by a factor of two.

TRACK \This missile tracking code is used to determine the course of a set of an unknown
number of targets, such as rocket boosters, from observations of the targets taken by sensors at
regular time intervals. The targets may be launched from a number of di�erent sites[Poi90]."
The code contains 4300 lines of Fortran77 in 66 subroutines.

KAP was unable to speed up this code. From an application viewpoint, the problem consists
of a number of independent tasks that track missiles, which would seem highly-parallelizable.
The serious data dependences that e�ectively serialize this code stem from storage manage-
ment functions that are called from all tracking tasks. Correspondingly, the most important
transformation was to allow these functions to be called in parallel. To adhere to the sequential
semantics of the code, sort functions had to be inserted to rearrange the order of storage alloca-
tion. This transformation is di�cult to automate, though not impossible. Another important
transformation dealt with return statements within parallel loops. As an alternative to this
transformation, an advanced compiler could recognize that execution of the return statements
only results in aborting the TRACK program. This would enable the compiler to move return
statements out of the parallel loops without undoing side-e�ects. TRACK also contains IO,
which becomes a serial bottleneck once the computational loops have been parallelized. An-
other performance-limiting factor is the lack of vectorizable statements. Concurrent execution
is the only resource that can be exploited. Our e�orts yielded a speedup of 4.0 and 5.2 for
FX/8 and Cedar, respectively.

TRFD \is a kernel simulating the computational aspects of a two-electron integral transfor-
mation and part of the HONDO quantum mechanical package. The evaluation of these types
of integral transformations is a necessary �rst step in computing correlated wave functions and
is used in determinations of molecular electronic structure[Poi90]." The code contains 500 lines
of Fortran77 in 42 subroutines.

KAP, again, could parallelize only inner or perfectly-nested loops within TRFD. It was able
to parallelize the inner loop of intgrl/140 by placing await/advance synchronization around
the assignment of a value into an array which was indexed by a subscripted array. This resulted
in a modest speedup of 2.2 on the FX/8, but a performance degradation to 0.5 on Cedar.

27

VAST, again, was able to parallelize one level beyond KAP in the innermost loops by
calculating the condition for the presence of a dependence and then synchronizing around that
dependence, if it occurs at run-time. VAST expanded a scalar within intgrl/140 in the same
situation where KAP privatized the scalar to produce a slightly simpler code. This did not
a�ect the performance signi�cantly, however.

The manual optimization of this program resulted in a drastic speedup improvement: 16.0
for the FX/8, and 43.2 for the Cedar machine. The manual transformations for TRFD include
generalized induction variable analysis (GIV) for computing the value of an induction variable
within a triangular loop nest, and array privatization. The loop intgrl/140 was parallelized at
the outermost level after we determined that the form of initialization of the subscripting array
made subscripted-subscript access parallelizable.

We described this situation in an earlier paper [EHLP91].

4 Early results of a new generation parallelizing compiler

The objective of this paper was to show new transformations that can improve future paral-
lelizing compilers. We have already started the design of a new compiler, called Polaris, that
incorporates these techniques. In this section, we present early results that demonstrate Po-
laris' success and areas for potential improvement in next generation compilers. The speci�c
transformations and their implementations are not discussed in this paper. We refer interested
readers to [TP93], [BEH+94], [BE94b], and [PE95], which describe the details of the algorithms
used. The sole purpose of this section is to give some evidence that the automation of the hand
transformations outlined in this paper is a feasible goal, and to point out problems that may
be hard to solve.

Table 10 lists the Perfect Benchmarks and indicates, for each program, whether Polaris is
able to recognize all the signi�cant parallel loops in Tables 3 through 9. As shown in Table 10,
Polaris can recognize all signi�cant parallel loops in about half of the programs. For the
remaining programs, we indicate which issues need to be resolved in order to succeed in the
parallelization. For details on these issues, the reader is referred to the description of the
individual codes in Section 3.

Table 10 shows that signi�cant progress in automatic parallelization is possible with the
techniques described in this paper. Only two of the Perfect Benchmarks could be parallelized
successfully when we began our project. Now there is success with almost 50% of the codes. In
some cases, we have already succeeded in solving \hard" problems, such as the analysis of sub-
scripted subscripts in BDNA and the symbolic comparison of guarded array sections in MDG.
Other di�cult issues are left open for future research. Some of these issues appear tractable
as compiler technology evolves and as increasing computer speeds enable time-consuming com-
pilation algorithms. An example of this is the analysis of subscripted subscripts in DYFESM.
Other issues may seem resolvable only after the programmer becomes more involved in an in-
teractive compilation scenario. An example of this is the random number generator in QCD,
which can be replaced by a parallel algorithm (this changes the sequential semantics of the
program, however, and can be authorized only by the user).

An important remaining question is whether the techniques derived from the experiments
with the Perfect Benchmarks on the Cedar machine will carry over to new machines and pro-

28

Figure 4: Speedup Comparison Between the SGI PFA Compiler and Polaris.

29

grams. In order to investigate this, we added to Polaris the capability of generating code for the
SGI Challenge machines and tested many additional programs taken from other suites, such as
the SPEC95 benchmarks and two \Grand Challenge Applications".

Figure 4 compares the resulting speedups obtained by Polaris with those of SGI's PFA
compiler. It shows sixteen benchmark programs, from three di�erent sources. From the Perfect
Benchmark suite we used ARC2D, BDNA, FLO52, MDG, OCEAN, and TRFD. From the
SPEC95 benchmarks we chose applu, appsp, hydro2d, su2cor, swim, t�t2, tomcatv, and wave5.
From applications in use by computational scientists at NCSA12, we chose cmhog and cloud3d.

The programs were executed on an eight processor SGI Challenge with 150 MHz R4400
processors, located at NCSA. Figure 4 shows that Polaris delivers, in many cases, substantially
better speedups than PFA. For a few of the programs there is little speedup, and in one case
there is a slowdown. We have studied and discussed the reasons for this in [BDE+96]. We found
that Polaris is signi�cantly more successful in identifying parallel loops. However, in the pro-
grams where PFA identi�es the important parallel loops equally well, its additional techniques
for improving the parallel code make a di�erence. These transformations include loop inter-
changing, unrolling, and fusion. When applied to the right loops, they can improve performance
by decreasing overhead, enhancing locality, and facilitating the detection of instruction-level
parallelism. However, sometimes these optimizations are applied over-aggressively and cause a
negative e�ect. This is the case on applu and tomcatv.

5 Conclusions

We have described the transformations that we applied to the Perfect Benchmarks programs
in order to gain signi�cant parallel performance. We have noted the expected challenges in
automating these techniques in a parallelizing compiler. Among the most important tech-
niques we have found are array privatization, parallel reductions, generalized induction variable
recognition, and symbolic or runtime data-dependence tests. All techniques need powerful
interprocedural analysis capabilities.

Real programs are parallelizable. In the suite of programs we have examined, we found
that, without exception, signi�cant performance improvements can be gained by transforming
the programs into parallel form. Most transformations are simple and do not require algorithm
change. This is an important basis for all further �ndings, since it refutes claims that ordinary
application programs are not amenable to parallel computing.

The study of real programs is of crucial importance for compiler research. We
have taken an approach to compiler design that is in stark contrast to other methods. Rather
than implementing new compiler capabilities and then assessing their merit, we have optimized
real programs by hand and described the transformations that make a di�erence. Our results
show that this approach can be very successful. We have identi�ed several new transformation
techniques that improve the performance of our programs signi�cantly. The resulting compiler
proves to be powerful not only on the originally studied programs suite, but also on new
programs and new machines.

12National Center for Supercomputing Applications

30

Parallelizing compilers can be improved signi�cantly. Perhaps the most important
conclusion for the �eld of our direct interest is that this work has given strong indication
that substantially more powerful parallelizing compilers can be built. We believe this is very
signi�cant because there appears to be a growing belief that this is not possible. This belief
actually seemed to �nd support in our previous measurements that showed that, despite many
years of compiler research and development, commercial parallelizers are very limited in their
e�ectiveness on real programs. However, our study now indicates that there is much remaining
potential to be exploited.

Finding parallelism is applicable to other machines. The techniques we found are
important for all types of parallel architectures. We have mainly considered transformations
that can identify and generate parallel loops. The transformation of such loops is necessary
for successful parallel implementation of any program on any parallel machine. Although our
work has been done in the context of the Cedar shared-memory machine, its applicability goes
much beyond Cedar to both future massively parallel supercomputers and multiprocessors.
Early results of a new compiler that incorporates the proposed techniques show substantial
performance gains over state-of-the art compilers on an SGI Challenge machine. Similar results
were reported on a Cray T3D machine [PP96] and a Sun multiprocessor [EPV96].

Privatization may make data distribution less important. Much recent work on pro-
gramming techniques for distributed-memory machines has focused on data-distribution tech-
niques. In our study we have not found such techniques to be of signi�cant importance. Instead,
privatization techniques, which provide a natural way of placing data with the referencing pro-
cessors, may deserve more consideration. If large amounts of data are privatized, less need to
be shared, and therefore distributed.

These techniques apply to other programs. The more our work with the Perfect Bench-
marks applies to other programs, the more important it turns out to be. We intended to test
its applicability by doing the Polaris experiments with additional programs, not in the Perfect
suite. We have found that the new techniques do apply to these additional programs. In fact, in
many cases we have not been able to improve the Polaris-optimized code manually. Neverthe-
less, our future work will include studies with even more realistic applications, such as programs
found among the \Grand Challenge" applications and the SPEChpc96 benchmarks [EH96].

Acknowledgment

Some of the experiments described in this paper were done by Greg Jaxon and Zhiyuan Li while
they were members of our research group at CSRD. Their contributions were essential for the
success of this project.

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, Mass., 1986.

31

[BDE+96] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeinger, Thomas Lawrence,
Jaejin Lee, David Padua, Yunheung Paek, William Pottenger, Lawrence Rauchwerger, and Peng Tu.
Advanced Program Restructuring for High-Performance Computers with Polaris. Technical Report
1473, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev., January 1996.

[BE92] William Blume and Rudolf Eigenmann. Performance Analysis of Parallelizing Compilers on the
Perfect Benchmarks Programs. IEEE Transactions of Parallel and Distributed Systems, 3(6):643{
656, November 1992.

[BE94a] William Blume and Rudolf Eigenmann. The Range Test: A Dependence Test for Symbolic, Non-
linear Expressions. Proceedings of Supercomputing '94, Washington D.C., pages 528{537, November
1994.

[BE94b] William Blume and Rudolf Eigenmann. An Overview of Symbolic Analysis Techniques Needed for the
E�ective Parallelization of the Perfect Benchmarks. Proceedings of the 1994 International Conference
on Parallel Processing, pages II233 { II238, August, 1994.

[BE95] William Blume and Rudolf Eigenmann. Symbolic Range Propagation. Proceedings of the 9th Inter-

national Parallel Processing Symposium, pages 357{363, April 1995.

[BEH+94] William Blume, Rudolf Eigenmann, Jay Hoeinger, David Padua, Paul Petersen, Lawrence Rauchw-
erger, and Peng Tu. Automatic Detection of Parallelism: A Grand Challenge for High-Performance
Computing. IEEE Parallel and Distributed Technology, 2(3):37{47, Fall 1994.

[BENP93] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David Padua. Automatic Program
Parallelization. Proceedings of the IEEE, 81(2):211{243, February 1993.

[EH96] Rudolf Eigenmann and Siamak Hassanzadeh. Benchmarking with real industrial applications: The
SPEC High-Performance Group. IEEE Computational Science & Engineering, 3(1):18{23, Spring
1996.

[EHJ+93] Rudolf Eigenmann, Jay Hoeinger, Greg Jaxon, Zhiyuan Li, and David Padua. Restructuring Fortran
Programs for Cedar. Concurrency: Practice and Experience, 5(7):553{573, October 1993.

[EHLP91] Rudolf Eigenmann, Jay Hoeinger, Zhiyuan Li, and David Padua. Experience in the Automatic
Parallelization of Four Perfect-Benchmark Programs. Lecture Notes in Computer Science, 589, pages
65{83, August 1991.

[Eig93] Rudolf Eigenmann. Toward a Methodology of Optimizing Programs for High-Performance Comput-
ers. Conference Proceedings, ICS'93, Tokyo, Japan, pages 27{36, July 20-22, 1993.

[EM93] Rudolf Eigenmann and Patrick McClaughry. Practical Tools for Optimizing Parallel Programs. Pre-
sented at the 1993 SCS Multiconference, Arlington, VA, March 27 - April 1, 1993.

[EPV96] Rudolf Eigenmann, Insung Park, and Michael J. Voss. Are parallel workstations the right target for
parallelizing compilers? In Processdings of the Ninth Workshop on Languages and Compilers for

Parallel Computers, August 96.

[For93] High Performance Fortran Forum. High Performance Fortran language speci�cation, version 1.0.
Technical report, Rice University, Houston Texas, May 1993.

[GJT+91] K. Gallivan, W. Jalby, S. Turner, A. Veidenbaum, and H. Wijsho�. Preliminary Basic Performance
Analysis of the Cedar Multiprocessor Memory Systems. Proceedings of ICPP'91, St. Charles, IL,
I:71{75, August 12-16, 1991.

[GKT91] Gina Go�, Ken Kennedy, and Chau-Wen Tseng. Practical Dependence Testing. In Proceedings of

the ACM SIGPLAN 91 Conference on Programming Language Design and Implementation, pages
15{29, June 1991.

[GMS+95] M. Gupta, S. Midki�, E. Schoenberg, B. Seshadri, D. Shields, K.Y. Wang, M.M. Ching, and Ton
Ngo. An HPF compiler for the IBM SP-2. In Proc. Supercomputing 95. ACM Press, New York., San
Diego, California, 1995.

[Hoe92a] Jay Hoeinger. Coalescing Triangular Loops. Technical Report 1364, Univ of Illinois at Urbana-
Champaign, Cntr for Supercomputing Res & Dev, January 1992.

[Hoe92b] Jay Hoeinger. Run-Time Dependence Testing by Integer Sequence Analysis. Technical Report 1194,
Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev., January 1992.

32

[HP91] Mohammad Haghighat and Constantine Polychronopoulos. Symbolic Dependence Analysis for High-
Performance Parallelizing Compilers. Parallel and Distributed Computing: Advances in Languages

and Compilers for Parallel Processing, MIT Press, Cambridge, MA, pages 310{330, 1991.

[HP93] Mohammad Haghighat and Constantine Polychronopoulos. Symbolic Analysis: A Basis for Paral-
leliziation, Optimization, and Scheduling of Programs. Proceedings of the Sixth Annual Languages

and Compilers for Parallelism Workshop, Portland, Oregon, August 1993.

[Hus82] Christopher Alan Huson. An In-Line Subroutine Expander for Parafrase. Master's thesis, Univ. of
Illinois at Urbana-Champaign, Dept. of Computer Sci., Dec., 1982.

[KBC+74] D. Kuck, P. Budnik, S-C. Chen, Jr. E. Davis, J. Han, P. Kraska, D. Lawrie, Y. Muraoka, R. Strebendt,
and R. Towle. Measurements of Parallelism in Ordinary FORTRAN Programs. Computer, 7(1):37{46,
Jan., 1974.

[KDL+93] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C.-Q Zhu, A. Veidenbaum, J. Konicek, P. Yew, K. Gal-
livan, W. Jalby, H. Wijsho�, R. Bramley, U.M. Yang, P. Emrath, D. Padua, R. Eigenmann, J. Hoe-
inger, G. Jaxon, Z. Li, T. Murphy, J. Andrews, and S. Turner. The Cedar System and an Initial
Performance Study. Proceedings of the 20th Int'l. Symposium on Computer Architecture, San Diego,

CA, pages 213{224, May 16-19, 1993.

[Li92] Zhiyuan Li. Array privatization for parallel execution of loops. In Proc. of ICS'92, pages 313{322,
1992.

[MAL92] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Data dependence and data-ow analysis of arrays.
In Proc. 5rd Workshop on Programming Languages and Compilers for Parallel Computing, August
1992.

[MHL91] D. Maydan, J. Hennessy, and M. Lam. E�cient and exact data dependence analysis. In SIGPLAN

NOTICES: Proceedings of the ACM SIGPLAN 91 Conference on Programming Language Design and

Implementation, Toronto, Ontario, Canada, June 26-28, pages 1{14. ACM Press, 1991.

[PE95] Bill Pottenger and Rudolf Eigenmann. Idiom Recognition in the Polaris Parallelizing Compiler.
Proceedings of the 9th ACM International Conference on Supercomputing, pages 444{448, 95.

[Poi90] Lynn Pointer. Perfect: Performance Evaluation for Cost-E�ective Transformations Report 2. Techni-
cal Report 964, Univ. of Illinois at Urbana-Champaign, Cntr for Supercomputing Res & Dev, March
1990.

[PP96] Yunheung Paek and David Padua. Automatic parallelization for noncoherent cache multiprocessors.
In Processdings of the Ninth Workshop on Languages and Compilers for Parallel Computers, August
96.

[Pug92] William Pugh. A Practical Algorithm for Exact Array Dependence Analysis. Communications of the
ACM, 35(8):102{114, August 1992.

[RAP95] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. Run-Time Methods for Parallelizing
Partially Parallel Loops. Proceedings of the 9th ACM International Conference on Supercomputing,

Barcelona, Spain, 1995.

[RP95] Lawrence Rauchwerger and David A. Padua. Parallelizing WHILE Loops for Multiprocessor Systems.
Proceedings for the 9th International Parallel Processing Symposium, April 1995.

[SH91] J.P. Singh and J.L. Hennessy. An empirical investigation of the e�ectiveness and limitations of
automatic parallelization. In Proceedings of the International Symposium on Shared Memory Multi-

processing, Tokyo, Japan, April 1991.

[TP93] Peng Tu and David Padua. Automatic Array Privatization. In Utpal BanerjeeDavid Gelern-
terAlex NicolauDavid Padua, editor, Proc. Sixth Workshop on Languages and Compilers for Parallel

Computing, Portland, OR. Lecture Notes in Computer Science., volume 768, pages 500{521, August
12-14, 1993.

[Wol92] Michael Wolfe. Beyond induction variables. In Proc. ACM SIGPLAN'92 Conference on Programming

Language Design and Implementation, pages 162{174, 1992.

33

