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1 Introduction

The Gated Single-Assignment (GSA) program representation is an extension of the Static Sin-
gle Assignment (SSA) representation[CFR+91]. GSA was introduced by Ballance, Maccabe and
Ottenstein as a part of Program Dependence Web (PDW)[BMO90]. It is a convenient representa-
tion for several program analysis and optimization techniques, including constant propagation with
conditional branches[WZ91]; equality of symbolic expressions[AWZ88, Hav93]; induction variable
substitution[Wol92]; symbolic dependence analysis [BE94] and demand-driven symbolic analysis for
array privatization[TP94, TP93]. In the SSA representation, ��functions of a single type are placed
at the conuence nodes of a program ow graph to represent di�erent de�nitions of a variable reach-
ing from di�erent incoming edges. The condition under which a de�nition reachs a conuence node
is not represented in the ��function. By contrast, in the GSA representation, several types of gating
functions are de�ned to represent the di�erent condition classes at di�erent conuence nodes. Some
extra parameters are introduced in the gating functions to represent the conditions. In this paper,
we present an almost linear time algorithm to construct the GSA. The new algorithm is more e�-
cient and simpler than the existing algorithms for GSA construction [BMO90, Hav93]. Since SSA is
a special case of GSA, it can also be used as an e�cient alternative algorithm for SSA construction.

The existing algorithms for building the GSA follow two steps. The �rst step is the same
��function placement procedure as in the SSA construction[CFR+91]. In the second step, the GSA
conversion algorithms collect the control dependences of the de�nitions reaching a ��function and
transforms the ��function into a gating function. The original GSA conversion algorithm[BMO90]
assumed a Program Dependence Graph (PDG)[FOW87] as its initial representation. Havlak devel-
oped another algorithm[Hav93] to construct a variant of the GSA, known as Thinned GSA. Because
it starts with the program ow graph, it is, therefore, somewhat simpler. For each ��function, both
algorithms traverse the control ow graph to �nd the gating conditions for each reaching de�nition.
To convert a ��function to a gating function, O(E) edges may be visited (where E is the number
of edges in the ow graph). Since the number of ��functions in the program is O(N ) (where N is
the number of nodes in the program), and the same edge may be visited for every ��function, the
time complexity of these algorithms is O(E �N ).

The algorithm in this paper constructs and places the gating functions from a program control
ow graph in a single step. In our algorithm, SSA and GSA constructions are uni�ed under a single
process of gating path construction. It uses the path compression technique[Tar79] to reduce the total
number of visits to the edges in the ow graph. Tarjan describes two ways to implement the path
compression. A simple method has an O(E log(N )) time bound; a sophisticated o�-line algorithm
maintaining balanced subtrees has an O(E�(E;N )) time bound. Yet another on-line O(E�(E;N ))
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method, called strati�ed path compression by Farrow [Far77, Tar79], can also be used. This GSA
algorithm is also almost as e�cient as the best known algorithms for ��function placement in SSA
conversion.

The rest of the paper is divided into the following sections. In Section 2, we introduce some
background and notations. In Section 3, we de�ne the notation of gating path and discuss its
relation to the dominance frontiers in the context of ��placement. Our gating path based GSA
construction algorithm is presented in Section 4. In section 5, we work through an example. Section
6 shows some timing results using the simple path compression implementation. Some conclusions
are presented in Section 7.

2 Background and Notations

Representing data ow and control ow properties of programs is an important issue in optimizing
compilers for accurate and e�cient transformations. SSA form has been shown to be useful in
capturing the data ow information required by some important program optimizations[AWZ88,
RWZ88]. In the SSA form, each de�nition of a variable is given a unique new name, and each use of
a variable is renamed to refer to a single reaching de�nition. When several de�nitions of a variable,
a1; a2; :::; am, reach a conuence node in program control ow graph, a ��function assignment
statement, an = �(a1; a2; :::; am), is created to merge them into a single new de�nition an. Hence, in
the SSA representation every use of a variable except those in a ��function has only one reaching
de�nition that is identi�ed by a unique variable name. SSA captures the data ow information
(def-use chains) of a program in a compact form.

An e�cient algorithm for constructing SSA with a minimal number of ��functions was originally
designed by Cytron, Ferrante, Rosen, Wegman and Zadeck[CFR+91]. The algorithm for placing the
��functions is O(N2) in the worst case, but often appears to be linear when applied to real programs.
Johnson and Pingali[JP93, JPP94] proposed another algorithm to place ��functions in O(E) time.
Later, Cytron and Ferrante proposed an almost linear time O(E�(E)) using path compression.
Recently, Sreedhar and Gao[SG94] have developed another O(E) time algorithm. We should point
out that although our algorithm also uses the path compression technique, our problem is more
complicated and our approach is completely di�erent from Cytron and Ferrante's.

Whereas a ��function represents the merge of multiple reaching de�nitions, it does not contain
the condition that speci�es which reaching de�nition will be the value of the function. Gating
functions were introduced by Ballance, Maccabe and Ottenstein[BMO90] to capture the control
conditions that guard the paths to a ��function. There are three types of gating function:

� The  function, which is an if�then�else construct, captures the condition for each de�nition
to reach a conuence node. For instance, X3 = (B;X1; X2) represents X3 = X1 if B and X2

if :B.

� The � function, which only appears at loop headers, selects the initial and loop-carried values.
For instance, X2 = �(X0; X3) represents that X2's initial value is X0 and its subsequent value
is X3.

� The � function determines the value of a variable at the exit of the end of the loop.

In [BMO90], the conversion to GSA is done after ��placement. The algorithm works by ex-
panding each � node into a GSA gating tree that contains the control information for the di�erent
reaching de�nitions. The translation for each � node may potentially scan all the edges in the ow
graph. Therefore, O(E) is its worst case time complexity. The translation for all the � nodes is
O(E � N ) because there can be O(N ) conuence nodes in a program. Paul Havlak introduced a
variant of GSA, called Thinned GSA, and an algorithm for � translation that is similar to the origi-
nal GSA algorithm with the same complexity. Both algorithms start from the � nodes after the SSA
��placement. Using the control dependence graph, they extract the related control information by
walking through the ow graph along the paths that connect the de�nitions and the ��function.
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A program control ow graph CFG = (N;E) is a directed graph whose nodes N are the basic
blocks in a program. Each edge u! v 2 E in the graph represents a possible ow of control from u

to v. Two additional nodes, Entry and Exit, are added to the ow graph such that every entrance
block of the program has an edge from the Entry node and every exit block of the program has an
edge to the Exit node.

A node v dominates another node w, denoted as v�w, if every path from Entry to w contains
v. A node u postdominates another node w if every path from w to Exit contains u. Node v

strictly dominates w, denoted as v � w, if v dominates w and v 6= w. Node v is the immediate

dominator of w, denoted as v = idom(w), if v dominates w and every other dominator of w
dominates v. Every node in a ow graph except Entry has a unique immediate dominator. The
edges fidom(w) ! wjw 2 N � fEntrygg form a dominator tree such that v dominates w if and
only if v is a proper ancestor of w in the dominator tree (where the word proper means v 6= w).
The postdominator tree is de�ned similarly using the post-dominating relation. In the rest of the
paper, the words predecessor, successor, and path refer to the ow graph, and the words parent,
child, ancestor, and descendant refer to the dominator tree.

The dominance frontier[CFR+91] DF (X) of a CFG node X is the set of nodes Y 2 CFG such
that X dominates a predecessor P of Y but does not strictly dominate Y :

DF (X) = fY j(9P ! Y )(X�P and X 6� Y )g:

Given a set ' of the CFG nodes, the set DF (') is the union of the dominance frontiers de�ned by
each node in ':

DF (') = [X2'DF (X):

The iterated dominance frontier DF+(X) is the transitive closure of DF (X):

DF 1(X) = DF (X);

DF i(X) = DF (X [DF i�1(X)):

The iterated dominance frontier DF+(') for a set of nodes ' is de�ned as a union of individual
iterated dominance frontiers.

A fundamental result proven in [CFR+91] states that if ' is the set of assignment nodes for a
variable V , then DF+(') is the minimum set of nodes that need ��function assignment nodes for
V .

3 Gating Paths and �-Function Nodes

In this section, we present another way to determine the set of nodes that need ��function as-
signment nodes. We prove that the phi�nodes computed are the same as those using the iterated
dominance frontier algorithm in [CFR+91]. This provides a way to look at the problem from a
di�erent perspective.

De�nition 1. Given a control ow graph CFG, a gating path for a node v is a path in the
CFG from idom(v) to v containing only the proper descendants of idom(v) in the dominator tree
as intermediate nodes.

In other words, a gating path is a path from idom(v) to v in the CFG such that every node in
the path is dominated by idom(v).

In the rest of this section, we prove a theorem that relates the gating paths to the placement of
�-functions.

The Lemma 1 and its Corollary establish the existence of gating paths in CFG.

Lemma 1. For any path d
+
! v in CFG, if d � v and d only occurs once in the path, d must

dominate every node in the path.

Proof. If there is a node u in the path such that u is not dominated by d, i.e., d
+
! u

�
! v, d 6� u,

then the path Entry
�
! u

�
! v avoids the d. This is a contradiction of d� v.
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Corollary 1. For every node v, there is a gating path from idom(v) to v.

Proof. Since idom(v) � v, there is a path P from idom(v) to v. Removing all the idom(v)
�
!

idom(v) cycles, we obtain a new path from idom(v) to v where idom(v) only occurs once. By Lemma
1, the idom(v) dominates every node in the new path. Hence the new path is a gating path.

it is a gating path.
Lemma 2 and Lemma 3 establish the fact that dominance frontier relations only exist among

the nodes in the sibling subtrees under a common parent in the dominator tree of CFG. That is, if
v 2 DF+(X), then idom(v) � X and, therefore, idom(v) is a proper ancestor ofX in the dominator
tree. Because X 6� v, X and v must belong to di�erent subtrees under idom(v).

Lemma 2. If v 2 DF (X), then idom(v) � X.
Proof. From the de�nition of DF (X), X 6= idom(v). If idom(v) 6� X, then there is a path

from Entry to X that avoids the idom(v). Because v 2 DF (X), there is a w 2 Pred(v), such that

X�w, but X 6� v. Let X
�
! w ! v be a path from X to v. Removing the X

�
! X cycles in the

path, we obtain a path such that X appears only once. The idom(v) must not be in the subpath

X
�
! w; otherwise, by Lemma 1, X � idom(v) and, therefore, X � v. Concatenating this path

with the idom(v) avoiding path from Entry to X, we obtain a path from Entry to v which avoids
idom(v). This is a contradiction. Therefore, we have proven idom(v) � X.

Lemma 3. If v 2 DF+(X), then idom(v) � X.
Proof. By applying Lemma 2, if v 2 DF 1(X), then idom(v) � X. Assume it is true for v 2

DF i�1. By induction, for v 2 DF i(X), let v 2 DF (u); u 2 DF i�1(X). We have idom(u) � X by
induction premises and idom(v) � u by Lemma 1. Because idom(v) � u implies idom(v)�idom(u),
we obtain idom(v) � X.

The Lemma 4-6 relates the gating paths to iterated dominance frontiers.
Lemma 4. If v 2 DF (X), then there is a gating path from idom(v) to v passing through X.

Proof. From the de�nition of DF (X) and Corollary 1, there is a gating path X
�
! w where

w 2 Pred(v). From Lemma 1 and Lemma 2, we have idom(v)� X and, hence, a gating path from

idom(v) to X. Because the path X
�
! w contains only the proper descendants of X and, hence, of

idom(v), concatenating the paths results in a gating path idom(v)
+
! X

�
! w! v from idom(v) to

v passing through X.
Lemma 5. If v 2 DF+(X), then there is a gating path from idom(v) to v passing through X.
Proof. Immediate by induction from Lemma 3 and Lemma 4.
Lemma 6. If there is a gating path from idom(v) through X to v where idom(v) 6= X, then

v 2 DF+(X).

Proof. We prove this by induction on the number of conuence nodes on the subpath X
�
! w!v.

Since there is a gating path from idom(v) through X to v and idom(v) 6= X, v must be a conuence
node. Otherwise, w 6= idom(v) would be v's immediate dominator. Let the number of conuence

nodes on the subpath X
+
! v be n.

1. If n = 1, v is the only conuence node. In the path from X to v, X
�
! w ! v, every

intermediate node can have only one predecessor in the ow graph. Hence X�w. Because
idom(v) 6= X and idom(v) � X, X 6� v. Hence v 2 DF (X).

2. Assume the Lemma is true for n < i. For n = i, let u be the second to last conuence node

in X
�
! w ! v, and the path Pu = idom(u)

+
! u be the subpath from idom(u) to u. If X is

in Pu and X 6= idom(u), then Pu is a gating path for u passing through X with n = k < i.
Therefore, u 2 DF k<i(X). Moreover, since there is only one non-conuence node from u to
v, v 2 DF (u) = DF k+1(X). If X = idom(u) or X is not on Pu, then X�idom(u) � u�w

where w is the second to last node on X
�
! idom(u)

�
! u

�
! w! v. Hence v 2 DF (X). This

proves the Lemma.

Using the results from Lemma 5 and Lemma 6, we obtain the following Theorem for determining if
a node v is in DF+(').
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Theorem 1. Given an initial set ' of CFG nodes, for any node v in CFG, v 2 DF+(') if and
only if there is a gating path from idom(v) to v containing a node that belongs to ' (i.e., there is a

gating path idom(v)
+
! X

+
! v where X 2 ').

Proof. Immediate from Lemma 5, Lemma 6, and the fact that DF+(') = [X2'DF
+(X).

Applying theorem 1, if we can compute a gating path expression for each node v in a CFG and
determine if v has a gating path that contains nodes in ', we can determine if v needs a ��function
assignment. In the next section, we present an algorithm which builds a gating path expression of
v in such a way that it is exactly the gating function for ��conversion if v 2 DF+(').

4 Algorithm for GSA Construction

Given a CFG(N;E), we can treat any path in the CFG as a string of edges in E, but not all
such strings over E are paths in CFG. A path expression [Tar81b] P of type (u; v) is a simple
regular expression over E such that every string in �(P ) is a path from node u to node v (where
�(P ) represents the string generated by the regular expression P ). Every subexpression of a path
expression is also a path expression whose type can be determined as follows.

Let P be a path expression of type (u; v).

� If P = P1 [P2, then P1 and P2 are path expressions of type (u; v).

� If P = P1 � P2, then there exists a unique node w such that P1 is a path expression of type
(u;w) and P2 is a path expression of type (w; v).

� If P = P �1 , then u = v and P1 is a path expression of type (u; v) = (u; u).

For instance, in the following statements

if (B) then
Block1

else
Block2

endif

there are two paths from the if node to the endif node represented by path expressions: pt =

(if (B)
t
! Block1 ! endif) and pf = (if (B)

f
! Block2 ! endif). The notation (a ! b ! c)

represents a path of two edges from a to b and from b to c. To simplify the discussion, we assume
the endif is the entry of a basic block. The union of the two path expressions, (pt [ pf ), is of type
(if (B); endif) and represents all paths from the if (B) to the endif.

4.1 Path Expressions Represented as Gating Functions

Di�erent paths reaching a ��function node are represented by path expressions. Our strategy is
to de�ne the symbols used to represent the edges such that a path expression takes the same form
as a gating function. Only the outgoing edges from conditional statements (or conditional edges)
are necessary to unambiguously represent a path. We will represent paths using a form of gating
functions containing only the conditional edges. However, in the process of building such gating
functions, we also need to use the unconditional edges. We use a white space symbol � to represent
an unconditional edge. For example, each of P (Block1; endif) = � and P (Block2; endif) = �
represents an unconditional edge.

We now de�ne the gating symbols for the edges of branch statements. A branch statement like
if(B) has two outgoing edges. Let's call them Bt and Bf . To build the gating function for a
path, we use the gating function notation to represent the edges. The Bt edge is represented by
the expression (B;�;�), and the Bf edge is represented by the expression (B;�;�). Here we
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use another white space symbol � to represent a branch that is not taken. It is easy to extend the
notation to statement types with more than two outgoing branches. In summary, a path expression
is represented as a gating function using the following symbols:

� A white space symbol � represents an unconditional edge.

� A white space symbol �represents an edge not taken at a branch node.

� A  expression (P; e1; e2; :::; en) where only one ei is � and all the other e's are �represents
the i's edge from an n-way branch statement with condition P .

Given a gating expression R, the following equations de�ne the properties of the symbols that
can be applied to simplify R.

R = R1 [R2 : case R1 == �
return R2

case R2 == �
return R1

case R1 == (B;R1t ; R1f ) and R2 == (B;R2t ; R2f )
return (B; (R1t [R2t); (R1f [R2f ))

R = R1 �R2 : case (R1 == �) or (R2 == �)
return �

case R1 == �
return R2

case R2 == �
return R1

case R1 == (B;R1t ; R1f )
return (B; (R1t �R2); (R1f �R2))

Note that in the case where R = R1 [R2 and R1 = (B;R1t ; R1f ), R1 and R2 must have the same
type. That is, R2 must have the same starting node as R1. Therefore, R2 must be in the form of
(B;R2t ; R2f ).

Back to the above example, we can obtain

pt(if; endif) = (B;�;�) � � = (B;�;�);

pf (if; endif) = (B;�;�) � � = (B;�;�);

P (if; endif) = pt(if; endif) [ pf (if; endif) = (B;�;�) [ (B;�;�) = (B;�;�):

Applying Cytron et al.'s renaming procedure[CFR+91] to insert variable names into a gating
function R(u; v) = (B;Rt; Rf ), we need to know from which predecessors of v that each of Rt and
Rf reach v. This is done by labeling each path with the predecessor number of v. If R = R1 [R2,
and the path R1 enters v from the ith predecessor of v, then R1 is labeled with i. This is done by
labeling all the � in R1 with a superscript i. Hence,

P (if; endif) = p1t (if; endif) [ p
2
f (if; endif) = (B;�1;�) [ (B;�;�2) = (B;�1;�2):

The superscript label can be used in the renaming procedure to determine which parameter in a
gating function should be substituted by the name on the top of the stack for a variable. For further
details of this procedure, interested readers should refer to [CFR+91]. Consider, for example, that
Block1 contains an assignment to a variable A, which after renaming becomes AB1 and that Block2
has no assignment to A. Let the de�nition of A reaching the if statement be AOrig . Then the
gating function for A takes on the form:

ANew = (B;�1;�2):
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In the renaming process, the reaching de�nition to v from predecessor 1 is AB1, and from predecessor
2 is AOrig . Hence, �

1 in the gating function is replaced by AB1 and �2 is replaced by AOrig . The
gating function

ANew = (B;AB1; AOrig)

correctly reects the reaching de�nitions from di�erent paths.

4.2 Algorithm for Building Gating Functions

In the previous section, we de�ned a representation and operations on gating paths that lead to
gating functions. In this section, we present an algorithm to construct the gating path expression
and, therefore, the gating function for each node. Our algorithm assumes that a CFG and its
dominator tree DT are given. We also assume that each node in the CFG is assigned a depth-

�rst number dfn. The dominator tree can be computed in O(E�(E;N )) time using the dominator
algorithm of Lengauer and Tarjan[LT79], or in O(E) time using a more complicated algorithm of
Harel[Har85]. The dfn can be computed in linear time[ASU86]. The dfn number has the property
of dfn(idom(v)) < dfn(v) for each node v 6= Entry.

Each loop step of the algorithm processes a set of sibling nodes with a common parent u. The
outer loop processes nodes in reverse dfn sequence. Since dfn(idom(v)) < dfn(v) all the siblings of
v and their descendants must have already been visited by the outer loop before idom(v) is visited.
In the derive phase, the algorithm processes the set of siblings children(u). Depending on the class
to which an edge e = (w; v) 2 E belongs, one of the following step is taken

1. If e comes directly from v's immediate dominator (i.e. w = u = idom(v)), then the edge itself
is a gating path from idom(v) to v. The algorithm updates the gating path of GP (v) with the
union of e and the old GP (v).

2. If e comes from a node that is a descendant of a sibling of v (i.e. w 6= u and v 6� w), the
algorithm calls EV AL(e) to compute a path expression p(subroot(w); v). The subroot(w) is
the root of the subtree to which w belongs (i.e. the sibling of v dominating w). The path
expression p(subroot(w); v) represents all paths from p(subroot(w)) to v which end with edge e
and contain only the proper descendants of subroot(w) as intermediate nodes. EV AL(e) also
returns true if one of the nodes along the path belongs to ', indicating by Theorem 1 that v
is a phi�function node. The gating expression returned from EV AL(e) is added to ListP (v),
which is a list containing all the paths starting from the siblings of v to v.

3. If e comes from a node which is a descendant of v (i.e. w 6= u and v�w), then it forms a
loop with header v. The algorithm works exactly as in step 2 above. The the path expression
computed by EV AL(e) is later used to update G�(v) to represent the path from the loop back
edge e. G�(v) is used to build a � function for the loop.

Using Tarjan's technique for operations on a forest[Tar79], we de�ne the following operations on the
forest of subtrees in a dominator tree:

� EV AL(e): Let e = (w; v). If r = subroot(w) ! w1 ! w2 ! : : :! wk = w is the tree path
from the root of tree containing w to w, then EV AL returns a path expression representing
(R(r) �R(w1) �R(w2) � : : : �R(w) � e) with each � superscripted by the predecessor number of
e to v. It also returns the value of (�(r) _'(r) _�(w1)_'(w1) : : :_�(w)_'(w)) indicating
whether there is a node in the path that belongs to '. In this expression, _ represents the
logic or operation. �(x) is true if node x needs a phi�function, and '(x) is true if x 2 '. In
the process, EV AL(e) performs path compression which updates the R's for the intermediate
nodes and relinks them directly to r.

� LINK(u; v): If u and v are roots, combine the trees with roots u and v by making u the
parent of v. LINK may also adjust the tree and the R's to construct a balanced tree for the
almost linear time algorithm.
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Algorithm: Building gating path expression
input: The assignment nodes '
initialize: foreach v 2 N do

�(v)  false
GP (v) �
G�(v) �
ListP (v)  �
if v 2 '

'(v)  true
�

od
loop: foreach u 2 N in reverse dfn do
derive: foreach v 2 children(u) do

foreach e = (w; v) 2 E do
idom node: if w == u then

GP (v) GP (v) [ (e)
sibling node: else

(�; p(subroot(w); v)) EV AL(e)
�(v)  �(v) or �
ListP (v)  ListP (v) with p(subroot(w); v)
(* The with operator insert an element to a list *)

�
od

od
sequence: Topsort(children(u))
merge: foreach v 2 children(u) in Toporder do

foreach p(subroot(w); v) 2 ListP (v) do
mu entry: if subroot(w) == v then

G�(v) G�(v) [ p(subroot(w); v)
gamma: else

GP (v) GP (v) [ (GP (subroot(w)) � p(subroot(w); v))
�(v)  �(v) or �(subroot(w))

�
update: UPDATE(v;GP (v))

LINK(u; v)
od

od
od
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� UPDATE(v; P ): If v is a root, assign R(v) to P if v is not the immediate post-dominator of
idom(u); otherwise, assign R(v) to �.

If the CFG is reducible, then the paths between the sibling trees is cycle free. We can then obtain a
topsort order among the siblings in children(u). Irreducible graphs can also be handled by computing
a path sequence for each dominator strong components. Due to limited space, we cannot detail how
to compute the path sequence. Interested readers should refer to [Tar81a]. The two existing GSA
algorithms only handle reducible graph, but the algorithmhere can be extended to handle irreducible
graph. In the merge phase, the algorithm follows the topsort order and computes for each child of
u a path expression GP (v) representing all the gating paths of v. In the processes, if there is a
p(v; v) in PList(v), indicating that v is a loop header, step mu entry is executed. G�(v) is used to
construct a � function for the loop header v.

The algorithm completes the processing of the sibling set by executing UPDATE(v;GP (v))
and LINK(u; v) for each child v of u. The LINK(u; v) operation is straightforward. Two path
expressions are stored at each node v. GP (v) represents the gating path from idom(v) to v. It
is the gating function placed at v if �(v) is true. R(v) represents the path expression from the
parent of v to v in the tree where v currently belongs. R(v) is used by EV AL to compute the
path expression from v to the root of tree where v currently belongs. R(v) may be changed by path
compression. The UPDATE(v;GP (v)) is slightly di�erent from the Tarjan's algorithm. Here, it
contains an optimization step to simplify subsequent path expressions. UPDATE(v;GP (v)) sets
the value of the label R(v) to GP (v). If a v is the immediate post-dominator of idom(v), then
any path from idom(v) unconditionally passes through v. Therefore, we can set R(v) to � in the
UPDATE operation to represent the unconditional reach and, in this way, to simplify the path
expressions for subsequent calls to EV AL.

This algorithm is a variant of Tarjan's fast algorithm for solving path problems using dominator

strong components decomposition [Tar81a]. Its correctness can be derived from the followingLemma,
which we quote without proof here. We will work through an example to illustrate the algorithm.

Lemma 7.[Tar81a]

� For edges e = (w; v) in CFG such that w 6= u, the corresponding path expression in the
ListP (v) computed by the derive phase is an unambiguous path expression representing ex-
actly the paths from subroot(w) to v that end with e and contain only proper descendants of
subroot(w) as intermediate nodes.

� For each node v in CFG, GP (v) as computed by the algorithm is an unambiguous path expres-
sion representing exactly the paths from idom(v) to v that contain only proper descendants of
idom(v) as intermediate nodes.

Lemma 7 in conjunction with Theorem 1 prove that the algorithm correctly builds and inserts
the gating function for a CFG.

Theorem 2. The gating path expression algorithm builds and inserts the gating functions
correctly.

The algorithm requires N time on the step initialize; N � 1 calls on UPDATE; N � 1 calls on
LINK; E calls on EV AL. The top sort at each major loop iteration sorts on disjoined subsets.
For the whole algorithm, the topsort time is the summation of individual subset sizes, which is
O(N ). The merge step takes O(N ). Hence, the time complexity is O(E�(E;N )) if the strati�ed
path compression is used to implement the forest operations, and O(E logN ) if path compression is
used. Because the sequence of EV AL and LINK can be easily determined beforehand, the o�-line
algorithm in [Tar79] can also be used to achieve O(E�(E;N )) time complexity.

Theorem 3. The time complexity of the algorithm is O(E�(E;N )).
For each node v, the algorithm computes the �(v), GP (v) and G�(v). If �(v) is true, then a

gating function is placed at v. Let X be the variable requiring the gating functions. The gating
functions are built from GP (v) and G�(v) as follows:

� If G�(v) = �, then v is not a loop header. The  function X = GP (v) is placed at v.
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� If G�(v) 6= �, then v is a loop header. A � function X = �(GP (v); G�(v)) is placed at v and
an � function X = �(:G�; X) is placed immediately after v.

The placement of  function is straightforward. For a loop header node v, we construct a � function
to select the �rst parameter for the �rst iteration of the loop and the second parameter for the
rest. Hence, �'s �rst parameter should be GP (v) and its second parameter should be G�(v). The �
function determines the exiting value of a variable from v. The exiting paths of a loop are the paths
that avoid all the back edges(i.e., avoid G�(v)). The :G�(v) is constructed by reversing all the �'s
in G�(v) to � and the rest to �'s.

5 Working through an Example

We use the following program to illustrate how the algorithm works.

1: read(A)
2: if (P ) then goto 5
3: if (Q) then
4: A := 5
5: while (R) do
6: A := A+ 1
7: enddo
8: else
9: if (T ) then
10: A := A � 3
11: else
12: A := A+ 6
13: endif
14: endif
15: write(A)

Shown in Figure 1 is the dominator tree of the program. Each node is also labeled with its depth-�rst
number dfn. Solid edges are the dominator tree edges; dashed edges are nontree edges in the CFG.
Note that tree edges do not necessarily exist in the CFG. Edges from branch nodes are labeled by
the branch conditions.

Let us �rst examine the situation when the algorithm processes node 11(i.e. u = if (T )). The
children of node 11 are nodes 12,13,14. Node 12 has u as its only predecessor. Since u is its
immediate dominator, the idom node branch of the algorithm is executed and obtains GP (12) = Tt.
Node 13 also has u as its only predecessor. Similarly, the algorithm computes GP (13) = Tf . In
both cases, there is no assignment statement along the path after u. Hence, �(11);�(12) remains
false, indicating that node 12 and 13 do not need ��functions. Node 14 has two predecessors: node
12 and 13. In both cases, the sibling node branch of the algorithm is executed. Both nodes are
roots of trees containing no other nodes. Because node 12 contains an assignment to A and the
edge is an unconditional branch and 12 is the �rst predecessor of node 14, EV AL returns (true;�1).
Similarly, EV AL returns �2 and true on the edge from node 13. Hence �(14) becomes true and
ListP (14) contains two paths starting from its siblings: node 12 and 13. Following the toporder
to process the sibling set ensures that when merging paths in ListP (14), GP (12); GP (13) already
count all the paths from the immediate dominator u. The result after the merge phase for node 14
is hence (GP (12) ��1)[ (GP (13) ��2) = (T;�1;�2). It can then be used by renaming pass to make
A14 = (T;A12; A13). LINK is called to link the subtree rooted at each child to u and form a larger
subtree of the dominator tree. UPDATE is called on each child to store the gating path expression
for future EV AL calls. Since node 14 immediately post-dominates u, its gating path expression is
set to � for future EV AL calls.
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read A

while R

A:=A+1 A:=5

A:=A+6A:=A*3endif

write A

enddo

else

endif
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Figure 1. Dominator tree of the example program.

A more complicated situation happens when branch node 2 is processed (i.e., u = if (P )). Node
2 has three children in the dominator tree: node 3, 6 and 8. In the case of node 3, it has three
predecessors: node 2, 5, and 9. Node 2 is idom(3), hence GP (13) = Pt. The path from 5 leads to
node 3 itself indicating a loop with node 3 as the loop header. Therefore, GP �(3) = Rt. The path
from 9 evaluates to its sibling node 8 and the path is Qt. Hence, Qt is inserted into ListP (3). In
the case of node 6, it has two predecessors: node 3 and 14. The path from node 3 evaluates to its
sibling node 3, which is Rf . The path from node 14 evaluates to its sibling node 8, which is Qf

(note that EVAL evaluates to � for the subpath from node 14 to node 11 because R(14) is � (as
explained in UPDATE(14; GP (14))). Hence, ListP (6) contains Rf and Qf . Node 8 has only node 2
as predecessor. Since idom(8) = 2, GP (8) equals Pf . The toporder is 8, 3, 6 since node 3 has a path
from 8 and node 6 has paths from both 8 and 3. Merge the paths for each node. GP (8) remains Pf .
GP (3) becomes Pt[(Pf �Qt) = (P;�1; (Q;�2;�)). Since GP �(3) = Rt, a � function is also needed
at node 3. The form of the � function is �(GP (3); GP �(3)) = �((P;�1; (Q;�2;�)); (R;�3;�)).
For node 6, GP (6) becomes (Pt �Rf )[ (Pf �Qf ) = (P; (R;�;�1); (Q;�;�2)). It is easy to verify
that �(3) and �(6) are set to be true by the algorithm indicating they need ��functions. The �nal
result after renaming will be: for node 3, A3 = �((P;A0; (Q;A9;�)); (R;A4;�)); and for node
6, (P; (R;�; A3); (Q;�; A14)).

6 Implementation and Measurement

We implemented the algorithmusing path compression in the POLARIS restructuring compiler[BEF+94].
The simple algorithm uses only path compression and has a complexity of O(E logN ). The following
is the timing result for all the programs in the Perfect Benchmark[CKPK90]. The time given is the
execution time on a SUN-10 workstation. Also plotted as a reference is the shape of the curve for
0:5 + 0:0015� (E log(E)) with the same E's as in the codes.
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Figure 2. Timings of the algorithm with path compression.

7 Conclusions

In this paper, we present an almost linear algorithm to place and build gating functions in a
single step for GSA construction. The algorithm is based on the well-known path compression
technique[Tar79]. It is easy to implement and e�cient for the programs in the Perfect Benchmark.
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