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Abstract

Current parallelizing compilers cannot identify a signi�cant fraction of fully parallel loops because they
have complex or statically insu�ciently de�ned access patterns. Since fully parallel loops arise frequently
in practice, we have developed methods to speculatively execute loops concurrently. These methods can be
applied to any loop, even if the iteration space of the loop is unknown, as in WHILE Loops or DO Loops
with conditional exits. To verify the validity of our speculation, we have devised a fully parallel run-time
technique for detecting the presence of cross-iteration data dependences in loops. This technique can also
be used to eliminate some memory-related dependences by dynamically privatizing scalars and arrays. We
outline a cost/performance analysis that can be performed to decide when the methods should be used. Our
conclusion is that they should almost always be applied { because, as we show, the expected speedup for fully
parallel loops is signi�cant, and the cost of a failed speculation (a not fully parallel loop), is minimal. We
present experimental results on loops from the PERFECT Benchmarks which substantiate our conclusion
that these techniques can yield signi�cant speedups.
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1 Introduction

During the last two decades, compiler techniques for the automatic detection of parallelism have been studied

extensively [29, 18, 7]. From this work it has become clear that, for a class of programs, compile-time analysis

must be complemented with run-time techniques if a signi�cant fraction of the implicit parallelism is to be

detected. The main reason for this is that the access pattern of some programs cannot be determined

statically, either because of limitations of the current analysis algorithms or because the access pattern is a

function of the input data. For example, most dependence analysis algorithms can only deal with subscript

expressions that are linear in the loop indices. In the presence of non-linear expressions, a dependence

is usually assumed. Compilers usually also conservatively assume data dependences in the presence of

subscripted subscripts. More powerful analysis techniques could remove this last limitation when the index

arrays are computed using only statically-known values. However, nothing can be done at compile-time

when the index arrays are a function of the input data [31, 21, 13]. Even when the access pattern can be

analyzed, if the the iteration space is statically unknown (WHILE loops), then compilers have so far not

been able to generate parallel code.

Run-time techniques have been used practically from the beginning of parallel computing. Also, during

the 1960s, relatively simple forms of run-time techniques, used to detect parallelism between scalar opera-

tions, were implemented in the hardware of the CDC 6600 and the IBM 360/91 [23, 25]. Some of today's

parallelizing compilers postpone part of the analysis to run-time by generating two-version loops. These

consist of an if statement that selects either the original serial loop or its parallel version. The boolean

expression in the if statement typically tests the value of a scalar variable. During the last few years,

new techniques have been developed for the run-time analysis and scheduling of loops with cross-iteration

dependences [30, 19, 13, 20, 21, 31, 17, 5].

The behavior of programs is usually unknown at compile time. For example, incomplete foreknowledge

of the outcome of branches and of the memory space access pattern prevent the compiler from adopting

transformations such as locality enhancement. The strategy of speculatively making assumptions about the

dynamic control ow or about data locality for prefetching instructions and/or data [9] has been used for

some time with success. Recently, branch speculation has been used e�ectively in superscalar compilers

[15, 22, 24].

In this paper we make assumptions about the parallelism of loops, i.e., we assume a loop is fully parallel,

speculatively execute it concurrently, and then apply a run-time test to check if there were any cross-iteration

dependences. If the run-time test fails, then we will pay a penalty in that we need to backtrack and re-execute

the loop serially. Our interest in fully parallel loops is motivated by the fact that they arise frequently in real

programs. As we show, the analysis needed to test whether a loop is fully parallel can be done very e�ciently

at run-time. The techniques presented are also capable of eliminating some memory-related dependences by

dynamically privatizing scalars and arrays. When the iteration space of the loop is unknown, as in WHILE

Loops or DO Loops with conditional exits, we show that the loops can be speculatively executed concurrently,
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and then later, the e�ects of any iterations that overshot the termination condition can be undone. This

technique can even be used to obtain signi�cant speedups for loops involving linked list traversals. User

directives or execution statistics can be used to identify the loops to which these methods should be applied

to decrease the probability of unsuccessful speculation.

In Section 3, we describe methods for speculatively executing DO Loops in parallel. We also describe how

these techniques can be used in an inspector/executor setup, i.e., code preceding the loop (the inspector)

performs the run-time test for full parallelism, and decides if the the loop should be executed sequentially

or in parallel. In Section 4, methods are given that can be used for the parallel execution of loops with

unknown iteration space. In Section 5, we discuss some important compile-time issues. Finally, in Section 6,

we present some experimental measurements of loops from the PERFECT Benchmarks executed on the

Alliant FX/80 and 2800. These measurements show that the techniques presented in this paper are e�ective

in producing speedups even though the run-time analysis is done without the help of any special hardware

devices. It is conceivable, and we believe desirable, that future machines would include special hardware

devices to accelerate the run-time analysis and in this way widen the range of applicability of the techniques

and increase potential speedups.

2 Preliminaries

A loop can be executed in fully parallel form, without synchronization, if and only if the desired outcome of

the loop does not depend in any way upon the execution ordering of the data accesses from di�erent iterations.

In order to determine whether or not the execution order of the data accesses a�ects the semantics of the loop,

the data dependence relations between the statements in the loop body must be analyzed [18, 11, 3, 29, 32].

There are three possible types of dependences between two statements that access the same memory location:

ow (read after write), anti (write after read), and output (write after write). Flow dependences express a

fundamental relationship about the data ow in the program. Anti and output dependences, also known as

memory-related dependences, are caused by the reuse of memory, e.g., program variables.

S1: DO i = 1, n

S2: A[i] = 2*A[i]

S3: ENDDO

(a)

S1: DO i = 1, n/2

S2: tmp = A[2*i]

S3: A[2*i] = A[2*i-1]

S4: A[2*i-1] = tmp

S5: ENDDO

(b)

S1: DO i = 2, n

S2: A[i] = A[i] + A[i-1]

S3: ENDDO

(c)

Figure 1:

If there are ow dependences between accesses in di�erent iterations of a loop, then the semantics of

the loop cannot be guaranteed if the loop is executed in fully parallel form. The iterations of such a loop

are not independent because values that are computed (produced) in some iteration of the loop are used

(consumed) during some later iteration of the loop. For example, the iterations of the loop in Fig. 1(c),
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which computes the pre�x sums for the array A, must be executed in order of iteration number because

iteration i + 1 needs the value that is produced in iteration i, for 2 � i � n. In principle, if there are no

ow dependences between the iterations of a loop, then the loop may be executed in fully parallel form. The

simplest situation occurs when there are no anti, output, or ow dependences. In this case, all the iterations

of the loop are independent and the loop, as is, can be executed in parallel. For example, there are no

cross-iteration dependences in the loop shown in Fig. 1(a), since iteration i only accesses the data in A[i], for

1 � i � n. If there are no ow dependences, but there are anti or output dependences, then the loop must

be modi�ed to remove all these dependences before it can be executed in parallel. Unfortunately, not all

such situations can be handled e�ciently. In order to remove certain types of memory-related dependences

a transformation called privatization can be applied to the loop. Privatization creates, for each processor

cooperating on the execution of the loop, private copies of the program variables that give rise to anti or

output dependences (see, e.g., [6, 14, 16, 26, 27]). The loop shown in Fig. 1(b), which, for even values of i,

swaps A[i] with A[i� 1], is an example of a loop that can be executed in parallel by using privatization; the

anti dependences between statement S4 of iteration i and statement S1 of iteration i + 1, for 1 � i < n=2,

can be removed by privatizing the temporary variable tmp.

In this paper, the following criterion is used to determine whether a variable may be privatized.

Privatization Criterion. Let A be a shared array that is referenced in a loop L. A can be privatized if

and only if every read access to an element of A is preceded by a write access to that same element of

A within the same iteration of L.

In general, dependences that are generated by accesses to variables that are only used as workspace (e.g.,

temporary variables) within an iteration can be eliminated by privatizing the workspace. However, according

to the above criterion, if a shared variable is initialized by reading a value that is computed outside the loop,

then that variable cannot be privatized. Such variables could be privatized if a copy-in mechanism for

the external value is provided. The last value assignment problem is the conceptual analog of the copy-in

problem. If a privatized variable is live after the termination of the loop, then the privatization technique

must ensure that the correct value is copied out to the original (non privatized) version of that variable. It

should be noted that the need for values to be copied into or out of private variables occurs infrequently in

practice.

3 Speculative Parallel Execution of DO Loops

Consider a DO loop for which the compiler cannot statically determine the access pattern of a shared

array A that is referenced in the loop. The dependences between the statements referencing the shared

array may be di�cult and/or impossible for the compiler to analyze for a number of reasons: very complex

subscript expressions which could only be computed statically through deeply nested forward substitutions

and constant propagations across procedure boundaries, nonlinear subscript expressions (a fairly rare case)
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and, most frequently, subscripted subscripts. Instead of executing the loop sequentially, the compiler could

decide to speculatively execute the loop as a DOALL, and generate code to determine at run-time whether

the loop was in fact fully parallel. In addition, if it is suspected that some memory-related dependences

could be removed by privatization, then the compiler may further elect to privatize those arrays that need it

in the speculatively executed DOALL loop. If the subsequent test �nds that the loop was not fully parallel,

then it will be re-executed sequentially.

In order to speculatively parallelize a DO loop as outlined above we need the following:

� A checkpointing/restoration mechanism: to save the original values of program variables for the possible

sequential re-execution of the loop.

� An error (hazard) detection method: to test the validity of the speculative parallel execution.

� An automatable strategy: to decide when to use speculative parallel execution.

There are several ways to maintain backups of the values of the program variables that may be altered

by the speculative parallel execution. If the resources (time and space) needed to create a backup copy are

not too big, then the best solution will likely be to checkpoint prior to the speculative execution. It might

be possible to reduce the cost of checkpointing by identifying and checkpointing a point of minimum state in

the program prior to the speculative parallel execution. If it is known that the access pattern of the shared

array is sparse, then it may be preferable to privatize the array, and copy-in any needed external values, and

copy-out any live values if the test passes. Note that privatized arrays need not be backed up because the

original version of the array will not be altered during the parallel execution.

There are essentially two types of errors (hazards) that could occur during the speculative parallel exe-

cution: (i) exceptions and (ii) the presence of cross-iteration dependences in the loop. A simple way to deal

with exceptions is to treat them like an invalid parallel execution, i.e., if an exception occurs, abandon the

parallel execution, restore the values of any altered program variables, and execute the loop sequentially.

Below, we present a technique that can be used to detect the presence of cross-iteration dependences in the

loop. Briey, the test traverses shadow arrays using the access pattern of the original shared arrays, and

performs some �nal analysis to determine whether there were cross-iteration dependences in the loop.

There are a number of factors that could inuence the compiler's decision to use speculative paralleliza-

tion. For example, the compiler might base its decision on a ratio of the estimated run-time cost of an

erroneous parallel execution to the estimated run-time cost of a sequential execution. If this ratio is small,

then signi�cant performance gains would result from a successful (valid) parallelization of the loop, at the

risk of increasing the sequential execution time by only a small amount. In order to propose a credible com-

piler strategy for determining when to use speculative parallel execution, we must �rst discuss the technique

for detecting cross-iteration dependences in the loop. Therefore, in the remainder of this section we focus

on this issue, and return to a discussion of possible compiler strategies in Section 5.
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3.1 The PRIVATIZING DOALL Test

In this section we describe an e�cient run-time technique that can be used to detect the presence of cross-

iteration dependences in a loop that has been speculatively executed in parallel. If there are any such

dependences, then this test will not identify them, it will only ag their existence. We note that the test

need only be applied to those arrays that cannot be analyzed at compile-time. In addition, if any shared

variables were privatized for the speculative parallel execution, then this test can determine whether those

variables were in fact validly privatized.

The most general version of the test, as applied to a shared array A, is given below, i.e., it tests for

all types of dependences, and assumes that the shared array A was privatized for the speculative parallel

execution. Later, we describe how the test can be simpli�ed for instances in which we are only testing for

certain types of dependences (e.g., output), or if the array A was not privatized. In general, if it cannot

be established that the shared array is not privatizable, then run-time privatization should probably be

attempted.

PRIVATIZING DOALL Test (PD Test)

1. Marking Phase. (Performed during the speculative parallel execution of the loop.) For each shared

array A[1 : s] whose dependences cannot be determined at compile time, we declare read and write

shadow arrays, Ar [1 : s] and Aw[1 : s], respectively. In addition, we declare a shadow array Anp[1 : s]

that will be used to ag array elements that can NOT be validly privatized. Initially, the test assumes

that all array elements are privatizable, and if it is found in any iteration that an element is read

before it is written, then it will be marked as non privatizable. The shadow arrays Ar; Aw, and Anp

are initialized to zero.

During each iteration of the loop, all accesses to the shared array A are processed:

(a) Writes: If this is the �rst write to this array element in this iteration, then set the corresponding

element in Aw.

(b) Reads: If this array element is never written in this iteration, then set the corresponding element

in Ar . If this array element has not been written in this iteration before this read access, then set

the corresponding element in Anp, i.e., mark it as NOT privatizable.

(c) Count the total number of write accesses to A that are marked in this iteration, and store the

result in twi(A), where i is the iteration number.

2. Analysis Phase. (Performed after the termination of the speculative parallel execution of the loop.)

For each shared array A under scrutiny:

(a) Compute (i) tw(A) =
P

twi(A), i.e., the total number of writes that were marked by all iterations

in the loop, and (ii) tm(A) = sum(Aw [1 : s]), i.e., the total number of marks in Aw[1 : s].
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(b) If any(Aw [:] ^ Ar[:]),
1 i.e., if the marked areas are common anywhere, then the loop IS NOT

a DOALL and the phase ends. (Since we read and write from the same location in di�erent

iterations, there is at least one ow or anti dependence.)

(c) Else if tw(A) = tm(A), then the loop IS a DOALL (without privatizing the array A). (Since we

never overwrite any memory location, there are no output dependences.)

(d) Else if any(Aw[:] ^ Anp[:]), then the array A IS NOT privatizable. Thus, the loop, as executed,

IS NOT a DOALL and the phase ends. (There is at least one iteration in which some element of

A was read before it was been written.)

(e) Otherwise, the loop was made into a DOALL by privatizing the shared array A. (We remove all

memory-related dependences by privatizing this array.)

In order to illustrate the PRIVATIZING DOALL (PD) Test we consider the loop shown in Fig. 2,

which contains memory-related dependences that can be removed by privatization. Assume the loop has 8

iterations, accesses a vector of dimension 12, and that the access pattern is given by the subscript arrays

R1; R2 and W . After marking and counting we obtain the results depicted in Table 1. Since Aw[:] ^ Ar[:]

and Aw[:] ^ Anp[:] are zero everywhere, the loop can be made into a DOALL, but only after privatization

since tw(A) 6= tm(A).

S1: DO i = 1, n

S2: ... = A[R1[i]]

S3: A[W[i]] = ...

S4: ... = A[R2[i]]

S5: ENDDO

R1[1:8] = [ 2 2 2 10 8 8 8 10]

W[1:8] = [ 1 3 5 4 7 3 6 12]

R2[1:8] = [ 1 3 2 10 7 3 8 12]

Figure 2:

Position in shadow arrays Written Counted
1 2 3 4 5 6 7 8 9 10 11 12 tw(A) tm(A)

Aw[1 : 12] 1 0 1 1 1 1 1 0 0 0 0 1 8 7
Ar[1 : 12] 0 1 0 0 0 0 0 1 0 1 0 0
Anp[1 : 12] 0 1 0 0 0 0 0 1 0 1 0 0
Aw[:]^Ar[:] 0 0 0 0 0 0 0 0 0 0 0 0
Aw[:]^Anp[:] 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: PRIVATIZING DOALL Test - PASSED

3.1.1 Simpli�ed Versions of the Test

Under certain circumstances, the PD Test can be simpli�ed. For example, if the shared array A under test

is not privatized for the speculative parallel execution, then all operations relating to the shadow array Anp

can be omitted. In this case, parts (d) and (e) of Step 2 would be omitted, and if the loop was not classi�ed

by Step 2 (b) or (c), then there must exist some output dependences between the iterations of the loop (i.e.,

1
any returns the \OR" of its vector operand's elements, i.e., any(v[1 : n]) = (v[1]_ v[2] _ : : : _ v[n]).
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tw(A) 6= tm(A)) and the loop is NOT a DOALL. Similarly, if it is known that the only possible dependences

between iterations of the loop are output dependences, then only the operations relating to Aw would be

required, and the determination of whether or not the loop was a DOALL would be made by Step 2(c).

3.1.2 Complexity of the PRIVATIZING DOALL Test

Let p be the number of processors, n the total iteration count of the loop, s the number of elements in the

shared array, and a the (maximum) number of accesses to the shared array in a single iteration of the loop.

As explained below, the time required by the PD Test is T (n; s; a; p) = O(na=p+ log p).

The marking phase (Step 1) takes time O(na=p+ logp), i.e., time proportional to max(na=p; logp). We

record the read and write accesses, and the privatization ags in private shadow arrays. In order to check

whether for a read of an element there is a write in the same iteration, we simply check that element in

the shadow array { a constant time operation. All accesses can be processed in O(na=p) time, since each

processor will be responsible for O(na=p) accesses. The private shadow arrays can be merged in the global

shadow arrays in O(na=p+logp) time; the log p contribution arises from the possible write conicts in global

storage that could be resolved using software or hardware combining. If s > na=p, then the time required

to merge the private shadow arrays into the global shadow arrays may dominate the time required for the

actual marking. This can be avoided by using private hash tables of size O(na=p) instead of the private

shadow arrays. Note that we minimize communication, since everything except the �nal merge step is done

in private storage.

The counting in Step 2(a) can be done in parallel by giving each processor s=p values to add within its

private memory, and then summing the p resulting values in global storage; this takes O(s=p+ log p) time

[12]. The comparisons in Step 2(b) and 2(d) of the shadow arrays will take at most O(s=p+ logp) time. If

s > na, then the complexity can be reduced to O(na=p+ log p) by using hash tables.

If a private variable is live after the loop terminates, then we will also need to perform a last value

assignment. In this case, we can keep time stamps (iteration numbers) with the private variables, and after

the termination of the loop, the private variable with the latest time stamp is copied to the original version

of the variable. The private variables with the latest time stamp can be selected in time O(na=p+ logp).

3.1.3 Schedule Reuse

Thus far, our analysis has assumed that the PRIVATIZING DOALL Test must be run each time a loop is

executed in order to determine if that loop is parallel. However, if the loop is executed again, with the same

data access pattern, the �rst test can be reused amortizing the cost of the test over all invocations. This

is a simple illustration of the schedule reuse technique, in which a correct execution schedule is determined

once, and subsequently reused if all of the de�ning conditions remain invariant (see, e.g., [21]). If it can

be determined at compile time that the data access pattern is invariant across di�erent executions of the

same loop, then no additional computation is required. Otherwise, this condition must be checked, e.g., for
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subscripted subscripts the old and the new subscript arrays can be compared.

3.1.4 Inspector/Executor Use of the PRIVATIZING DOALL Test

The PD Test presented above can also be used to detect the parallelism of a loop at run-time before executing

it. In this scenario, an inspector loop would be formed by collecting the accesses to the shared variables

under study into a sub-loop, and replacing them with accesses to the appropriate shadow variables. Then,

the outcome of the analysis phase would determine whether the original loop should be executed sequentially

or in parallel. The complexity analysis for the inspector/executor version of the test is the same as that

given above for the speculative version. As will be discussed in Section 5, there are certain cases when the

inspector/executor strategy may be preferable to speculatively executing the loop in parallel.

Note that if privatization is used for speculative parallel execution, then the entire shared array will be

privatized. A feature of the inspector/executor strategy is that the PD Test can be used to identify the

individual array elements that should be privatized, i.e., only the array elements that are written during the

loop. It is possible that selectively privatizing array elements could lead to super-linear speedups due to a

reduction in the size of the working set (relative to the current naive privatization techniques that duplicate

the entire array in all processors). A detailed discussion of how the PD Test can be used to selectively

privatize individual array elements can be found in [?].

4 Speculative Parallel Execution of WHILE Loops

WHILE Loops have often been treated by compilers as sequential constructs because their iteration space is

unknown [28]. A related case which is generally also handled sequentially by compilers is the DO Loop with

a conditional exit. In this section we propose techniques that can be used to execute such loops in parallel.

In order to focus on the problem of dealing with an unknown number of iterations, we �rst consider

WHILE Loops that are known to have no cross-iteration dependences except for those necessary to control

the loop. In this case, a WHILE Loop can be considered as a sequence of independent iterations ordered

by some underlying recursion, which will be called the dispatching recursion, or simply the dispatcher. If

the dispatcher has the simpler form of an an induction, then each point in the dispatcher's domain can be

independently and concurrently evaluated using the closed form solution of the induction. In this case, all

iterations of the WHILE Loop can be executed simultaneously since aside from the dispatching recursion we

assumed no other dependences. An example of a recursive dispatcher is a pointer used to traverse a linked

list; since the values of the dispatcher (the pointer) must be evaluated in sequential order, all the iterations of

the loop cannot be initiated simultaneously. An example of a dispatcher with a closed form solution is a DO

Loop; since all the values of the loop induction variable can be independently evaluated, all the iterations

can be initiated simultaneously.

Another di�culty with parallelizing a WHILE Loop is that the termination condition of the loop may be

8



overshot, i.e., iterations could be executed that would not be executed by the sequential version of the loop.

The termination condition is loop invariant if it is only dependent on the dispatcher and values that are

computed outside the loop, and otherwise it is loop variant, i.e., it depends on some value computed in the

loop. If the termination condition is loop variant, then iterations that larger the last valid iteration could be

performed, i.e., iteration i cannot decide if the termination condition is satis�ed in the loop body of some

iteration i0 < i. Overshooting may also occur if the dispatcher is an induction and the termination condition

is loop invariant. An exception in which overshooting would not occur is if the dispatcher is a monotonic

function, and the termination condition is a threshold, e.g., d(i) = i2, and tc(i) : (d(i) < V ), where V is a

constant, and d(j) and tc(j) denote the dispatcher and the termination condition, respectively, for the jth

iteration. Another case in which overshooting can be avoided is when the dispatcher is a recurrence, and

the termination condition is loop invariant. For example, the dispatcher tmp is a pointer used to traverse a

linked list, and the termination condition is (tmp = null).

We now discuss techniques that can be used to automatically transform WHILE Loops for speculative

parallel execution. We propose two general methods: a fully parallel method for loops in which the dispatcher

is an induction, and a method that is only partially parallel for loops in which the dispatcher is a more

complex recurrence. For the case in which the dispatcher is not an induction, our methods assume that the

dispatching recurrence is fully determined before loop entry (e.g., if the dispatcher is traversing a linked list,

no elements may be inserted or deleted during loop execution). We �rst describe both methods without

addressing the overshooting problem, and later discuss how they can be augmented to \undo" any iterations

that overshot the termination condition. Initially, we assume no cross-iteration dependences other than those

in the dispatcher, and then we remove this assumption and briey mention how the methods described in this

section can be combined with the run-time techniques for analyzing cross-iteration dependences discussed in

Section 3.

4.1 The Dispatcher is an Induction

In this section we consider a WHILE Loop in which it is known that there are no cross-iteration dependences,

and the dispatcher is an induction. To simplify our discussion, we assume that the dispatcher of the ith

iteration is i, i.e, d(i) = i. In addition, we assume that some upper bound u on the number of iterations

of the WHILE Loop is known, e.g., a DO Loop with a conditional exit. If this is not the case, then some

suitable number u0 can be selected and the following technique can be applied �rst to iterations 1 through

u0, then to iterations u0 + 1 through 2u0, etc., until the termination condition is reached.

In this method, referred to as Induction-1, the loop is run as a DOALL and a test of the termination

condition of the WHILE Loop is inserted into the loop body (see Fig. 3). During the parallel execution,

each processor will keep track of the lowest iteration it executed that met the termination condition. Then,

after the DOALL has terminated, the last iteration that would have been executed by the sequential version

of the WHILE Loop is found by taking the minimum of the processor-wise minima; this iteration must be
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*WHILE Loop: induction*
integer i = 1
WHILE (f(i))

work(i)
i = i + 1

ENDWHILE

*WHILE Loop: recurrence*
ptr tmp = head(list)
WHILE ( tmp .ne. null)

work(tmp)
tmp = next(tmp)

ENDWHILE

*Induction-1*
integer It[0:nproc-1] = u
DOALL i = 1,u

if (f(i)) then
It[vpn] = min(It[vpn],i)
QUIT

endif

work(i)
ENDDO

LastIter = min(It[1:nproc])

*Recurrence-1*
ptr tmp = head(list)
DOALL i = 1,u

ptr pt
lock(list)
pt = tmp
tmp = next(tmp)
unlock(list)
if (pt .eq. null) QUIT
work(pt)

ENDDOALL

*Recurrence-2*
DOALL i = 1, nproc

integer j
ptr pt = head(list)
do j = 1,vpn
pt = next(pt)
if (pt .eq. null) goto 2

enddo

1 work(tmp)
do j = 1,nproc
pt = next(pt)
if (pt .eq. null) goto 2

enddo

goto 1
2 continue
ENDDOALL

Figure 3: Parallelizing WHILE Loops. In the DOALLs, nproc is the number of processors, u is an upper
bound on the number of iterations of the WHILE Loop, and vpn is the virtual processor number of the
processor executing the iteration.

found so that the iterations that need to be undone can be identi�ed. In order to terminate the parallel loop

cleanly before all iterations have been executed, a QUIT operation similar to the one on Alliant computers

[1] could be used. Once a QUIT command is issued by an iteration, all iterations with loop counters less

than the that of the issuing iteration will be completed, but no iterations with larger loop counters will

be begun. If multiple QUIT operations are issued, then the iteration with the smallest loop counter will

control the exit of the loop. On Alliant computers iterations are issued in order. Therefore, the statement

It[vpn] = min(It[vpn]; i) can be replaced with It[vpn] = i. The complexity of this method is O(Tseq=p),

where Tseq is the sequential execution time of the WHILE Loop, and p is the number of processors.

4.2 The Dispatcher is a Recurrence

We now consider a WHILE Loop in which it is known that there are no cross-iteration dependences, and the

dispatcher is a recurrence. We propose two techniques that can be used to execute this type of WHILE Loop

in parallel. Although these techniques are not fully parallel, they can yield very good speedups { especially

if a signi�cant amount of work is performed in the loop body. For simplicity, we describe the methods as

applied to a WHILE Loop that traverses a linked list.

One obvious method, referred to as Recurrence-1, is to serialize the accesses to the next() operation.

Another method, Recurrence-2, which avoids explicit serialization, is to compute the whole recurrence in

each processor and assign to processor i the values of the recurrence which are congruent to i mod nproc,

where nproc is the total number of processors. See Fig. 3 for examples of both methods. The complexity
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of both these methods is O(l + Tseq=l + Tseq=p), where l is the number of iterations in the WHILE Loop,

Tseq is its sequential execution time, and p is the number of processors. Note that in both Recurrence-1

and Recurrence-2, the entire recurrence is traversed (sequentially). In addition to the fact that Recurrence-1

explicitly serializes accesses to next(), and no such serialization is used in Recurrence-2, there are some other

di�erences between the two methods. First, in Recurrence-1 the recurrence is traversed just once by all

processors cooperatively, but in Recurrence-2 each processor will traverse the entire recurrence. Second, in

Recurrence-1 the values of the recurrence are dynamically allocated to the processors, but in Recurrence-2,

processor i, 0 � i < nproc, is statically assigned values congruent to i mod nproc.

In the example of Fig. 3, no overshooting occurs because the termination condition is loop invariant.

However, if the termination condition had been loop variant, then overshooting might have occurred and in

order to determine which iterations needed to be undone, we would have also needed to �nd the last valid

iteration.

4.3 Undoing Iterations that Overshot the Termination Condition

Perhaps the easiest method for \undoing" iterations that overshot the termination condition is to checkpoint

prior to executing the DOALL, and to maintain a record of when (i.e., iteration number) a memory location

is written during the loop. Note that since all iterations of the WHILE Loop are independent, each memory

location will be written during at most one iteration of the loop. Then, after the DOALL has terminated

and the last valid iteration is known, the work of iterations that have overshot can be undone by restoring

the values that were overwritten during these iterations. This solution may require as much as three times

the actual memory needed by the original WHILE Loop: one copy for checkpointing, one for the actual loop

data, and one for the time-stamps. This increase in memory requirements could degrade the performance of

the parallel execution of the WHILE Loop.

Checkpointing could be avoided by privatizing all variables in the loop, copying in any needed values,

and copying out only those values that are live after the loop and have time-stamps less than or equal to the

last valid iteration.

One simple way to reduce the memory requirements is to strip mine the loop. This method would intro-

duce global synchronization points and potentially reduce signi�cantly the amount of obtainable parallelism.

A way in which the memory requirements could be reduced without introducing rigid synchronization points

is to maintain a sliding window of some predetermined size w: at any given time, the di�erence between the

minimum iteration l that has not been completely executed and the maximum iteration h that has been,

or is currently being, executed is at most w. Also, the window size could be dynamically determined: the

window size is increased if more memory can be used without degrading performance, and is decreased if

less memory should be used to improve performance.
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4.4 WHILE Loops with Unknown Cross-Iteration Dependences

We now consider WHILE Loops in which the cross-iteration dependences cannot be analyzed at compile-

time. The general strategy for such loops will be to combine the techniques described in Section 3 for

detecting the presence of cross-iteration dependences with the techniques described above for WHILE Loops

which do not contain any cross-iteration dependences.

If it is known that the parallel execution of the WHILE Loop will not overshoot, then the dependence

tests can be inserted directly into the DOALL Loops as discussed in Section 3. When overshooting may

occur, a simple solution is to assume that there are no cross-iteration dependences, and execute the loop

twice. First, the loop is run in parallel to determine the number of iterations (using one of the methods

discussed above), and once the number of iterations is known the resulting DO Loop can be speculatively

parallelized as described in Section 3.

In order to avoid executing the parallel version of the WHILE Loop twice, the PD Test can be incorporated

directly into the WHILE Loop methods. Suppose that some shared array in the WHILE Loop will be

privatized and tested using the PD Test, and assume that it is known that the shared array is not live after

the loop. In this case, all writes to the shadow arrays used for the PD Test will be time-stamped (just like

all other variables), and for each shadow element we will maintain the minimum iteration that marked it.

Everything proceeds as before, except that in the analysis phase of the PD Test, those marks in the shadow

arrays with minimum time-stamps greater than the last valid iteration will be ignored.

If the shared array under test is live after the loop, then the backup method for the privatized array must

be more sophisticated. The reason for this is that it is possible for a private variable to be written in more

than one iteration of a valid parallel loop. In order to handle this problem, we can keep a time-stamped

trail of all write accesses to the privatized array. If the test passes, the live values need to be copied out;

the appropriate value would be the value with the latest time-stamp that was not larger than the last valid

iteration number, and could be found in the time-stamped trail of write accesses. In order to reduce the

memory requirements, strip mining or the sliding window method discussed in Section 4.3 could be used.

If the termination condition of the WHILE Loop is dependent (data or control) upon a variable with

unknown dependences, then special care must be taken. In this situation, the best solution is probably to

strip mine the loop, and to run the PD Test on each strip.

5 Automatic Application of Speculative Parallel Execution

In the previous sections we have discussed run-time techniques that can be used for the speculative paral-

lelization of loops. These techniques are automatable and a good compiler could easily insert them in the

original code. In this section, we consider some issues involving the compile-time strategy for applying these

techniques.
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5.1 Strategy

The following is a brief outline of how a compiler might proceed when presented with a DO Loop whose

access pattern cannot be statically determined; a WHILE Loop would be handled similarly.

1. At Compile Time.

(a) A cost/performance analysis determines whether the loop should be:

(i) speculatively executed in parallel,

(ii) �rst tested for full parallelism, and then executed appropriately (using the inspector/executor
version of the PD Test), or

(iii) executed sequentially.

(b) Generate the code needed for the speculative parallel execution. In addition to the augmented
parallel version of the original loop (see Fig. 4 for an example), this includes code for: the
analysis phase of the PD Test, the potential sequential re-execution of the loop, and any necessary
checkpointing/restoration of program variables. The analysis can be done by calls to a run-time
library.

2. At Run-Time.

(a) Checkpoint if necessary, i.e., save the state of program variables.

(b) Execute the parallel version of the loop, which includes the marking phase of the test.

(c) Execute the analysis phase of the test, which gives the pass/fail result of the test.

(d) If the test passed, then copy-out the values of any live private variables. If the test failed, then
restore the values of any altered program variables and execute the sequential version of the loop.

(e) Collect statistics for use in future runs, and/or for schedule reuse in this run.

5.2 Determining When to Attempt Speculative Parallel Execution

Although it is not strictly necessary for the compiler to perform any cost/performance analysis, the overall

usefulness of techniques for parallelizing loops at run-time will be enhanced if the overhead of these techniques

is avoided when it is likely that the loop is not fully parallel. The main factors that the compiler should

consider when deciding whether to attempt to parallelize a loop at run-time are: the probability that the

loop is a DOALL, the speedup obtained if the loop is a DOALL, and the slowdown incurred if the loop

is not a DOALL. When selecting the best method for the given situation, the compiler should perform a

cost/bene�t analysis of the three possible options: speculative parallel execution, the inspector/executor

method (see Section 3.1.4), or sequential execution. In order to perform this analysis and to predict the

parallelism of the loop, the compiler should use both static analysis and run-time statistics (collected on

previous executions of the loop); in addition, directives about the parallelism of the loop might prove useful.

Given a loop L, the ideal speedup, Spid, of L is the ratio between its sequential execution time Tseq and

its ideal parallel execution time, Tdoall (under the hypothesis that it is a fully independent loop) However, if

our run-time techniques are applied, the attainable speedup will be reduced by the overhead of the methods

to Spspec and Spi=e for the speculative and inspector/executor strategies, respectively.

Spid =
Tseq
Tdoall

Spspec =
Tseq

Tmark + Tanalysis + Tsave + Tdoall
Spi=e =

Tseq
Timark + Tanalysis + Tdoall
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**Original Version**
DO 540 I=1,NP

DO 530 J=1,I

IJ=IA(I)+J

....

DO 520 K=1,I

MAXL=K

IF(K.EQ.I) MAXL=J

DO 510 L=1,MAXL

KL=IA(K)+L

.....

C **DOALL Test checks the writes to X**

X(IJ,KL)=....

510 CONTINUE

520 CONTINUE

530 CONTINUE

540 CONTINUE

**Augmented Loop for Marking Phase**
DOALL I = 1,NP

C **private variables -- do once per processor**

integer X_w(:,:), tw_i, IJ, MAXL, J, K, L, KL

LOOP ** do once per iteration (I) **

tw_i = 0

DO J=1,I

IJ=IA(I)+J

DO K=1,I

MAXL=K

IF(K.EQ.I) MAXL=J

DO L=1,MAXL

KL=IA(K)+L

X(IJ,KL)=....

C **mark shadow array X_w (if not already marked)**

IF (X_w(IJ ,KL) .NE. I) THEN

X_w(IJ,KL) = I

tw_i = tw_i + 1

ENDIF

ENDDO

ENDDO

ENDDO

tw(X) = tw_i + tw(X)

ENDDOALL

Figure 4: An example of how the original data accesses are processed using shadow variables during the marking

phase of the PD Test. This loop is extracted from loop 540 in subroutine INTGRL of TRFD from the PERFECT

Benchmarks. The PD Test is applied to the shared array X, and checks for output dependences. In the transformed

loop (right), writes are marked in the shadow array X w by iteration number I, so that the shadow array can be

reused. The number of writes marked is recorded in the private variable tw i.

In the relations above, Tmark and Tanalysis denote the time for the marking and analysis phases of the PD

Test, and Tsave is the time to save state. Timark represents the marking phase of the inspector/executor

method. In the worst possible case (e.g., a kernel), all components contributing to the overhead of the

methods may be comparable to Tdoall , so that Spspec �
1

4
Spid and Spi=e �

1

3
Spid. Note that for massively

parallel processors (MPPs), 25% of the ideal speedup would still be an excellent performance, especially

when compared to the alternative of sequential execution.

When selecting between speculative parallel execution and the inspector/executor method, the compiler

should to compare the estimated costs of �spec = Tsave + Tmark and �i=e = Timark. If �spec � �i=e, then

speculative parallel execution should be attempted, and otherwise the inspector/executor method should

be used. Note that it is possible that Timark � Tmark since the marking phase of the inspector/executor

must traverse the access pattern of the shared variable under study prior to the parallel execution of the

loop. In other words, Tmark includes only the operations needed to mark the shadow arrays, but Timark

must also include any computation needed to determine the access pattern itself. Another factor that

should be considered is that the working set for speculative parallel execution may be larger than for the

inspector/executor method because of the potential need to save/restore state.

It is also instructive to examine the slowdown incurred by a failed speculative parallel execution and a

failed test for the inspector/executor method, i.e., when the loop must be executed sequentially. In these

cases, the sequential execution time will be increased by the execution time of the failed parallelization at-

tempt, and a restore operation in the case of the speculative method. Note that since all of these components
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are fully parallel, in the worst case they are all proportional to 1

pTseq, yielding a slowdown for both methods

that is also proportional to 1

p
Tseq:

TseqTmark+Tanalysis+Ts=r+Tdoall � Tseq+
5

p
Tseq Tseq+Timark+Tanalysis+Tdoall � Tseq+

3

p
Tseq

Therefore, unless it is known a priori with a high degree of con�dence that the loop is not parallel, a

run-time method of parallelizing the loop should probably be applied, i.e., the potential payo� is worth the

risk of slightly increasing the sequential execution time.

For WHILE Loops we must also consider the cost of executing and \undoing" any iterations that overshot

the termination condition, so that the attainable speedup would be slightly reduced. However, in the case

of a failed PD Test, the slowdown might be reduced by using the number of iterations (found by the test),

to transform the WHILE Loop into a DO Loop (which is easier to optimize).

5.3 The One Processor/(n� 1) Processor Solution

As a �nal remark, we note a method that can be used to minimize the risks of speculative execution: one

processor executes the loop sequentially, and the rest of the processors, speculatively, execute the loop in

parallel. Of course, the sequential and the parallel executions would need separate copies of the output data

for the loop. As long as the cost of creating these copies is not too great, this technique should maximize the

potential gains attainable from parallel execution, while, at the same time, minimizing the costs incurred by

failed speculations, i.e., speculations on loops that are, in fact, not parallel.

6 Experimental Results

In this section we present experimental results obtained on two modestly parallel machines with 8 (Alliant

FX/80 [1]) and 14 processors (Alliant FX/2800 [2]) using a Fortran implementation of our methods. It

should be pointed out that our results scale with the number of processors and the data size and that they

should be extrapolated for MPPs, the actual target of our run-time methods.

We considered six DO Loops and two WHILE Loops that could not be parallelized by any compiler

available to us; seven loops are from the PERFECT Benchmarks [4], and one of the WHILE Loops is

extracted from MCSPARSE, a parallel version of a sparse matrix solver [8]. Our results are summarized

in Table 2. For each method applied to a loop, we give the speedup that was obtained, and the potential

slowdown that would have been incurred if, after applying the method, the loop had to be re-executed

sequentially. In the graphs, we also show the ideal speedup, which was calculated using an optimally

parallelized (by hand) version of the loop. If the inspector/executor version of the PD Test was applied,

the computation performed by the inspector is shown in the table: the notation privatization indicates the

inspector veri�ed that the shared array was privatizable and then dynamically privatized the array for the

parallel execution, branch predicate and subscript array mean that the inspector computed these values, and
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DO Loops

Benchmark2 Experimental Results
Subroutine potential Description of Loop Inspector
Loop Technique Speedup Slowdown (computation)

MDG 14 processors privatization
INTERF speculative 11.55 1.09 accesses to a privatizable vector guarded data accesses
Loop 1000 insp/exec 8.77 1.03 by loop computed predicates branch predicate
BDNA 14 processors privatization
ACTFOR speculative 10.65 1.09 accesses privatizable array indexed by a data accesses
Loop 240 insp/exec 7.72 1.04 subscript array computed inside loop subscript array

TRFD 8 processors data accesses
INTGRL speculative .85 2.17 small triangular loop accesses a vector data accesses
Loop 540 sched reuse 1.93 2.17 indexed by a subscript array computed replicates loop

insp/exec 1.05 1.74 outside loop
sched reuse 2.10 1.74

TRACK 8 processors accesses array indexed by subscript array
NLFILT computed outside loop, access pattern not applicable
Loop 300 speculative 4.21 1.01 guarded by loop computed predicates
ADM 14 processors accesses privatizable array thru aliases,
RUN array repeatedly redimensioned, access not applicable
Loop 20 speculative 9.01 1.02 pattern guarded by loop computed predicates
OCEAN 8 processors kernel-like loop accesses a vector with data accesses
FTRVMT speculative 2.23 1.45 run-time determined strides replicates loop
Loop 109 insp/exec 2.14 1.30 26K invocations account for 40% Tseq

WHILE Loops

SPICE 8 processors traverses linked list terminated by a
LOAD Recurrence-1 4.20 N/A NULL pointer, loop counter: recurrence, not applicable

(locks) termination condition: loop invariant
Loop 40 Recurrence-2 4.91 N/A

(no locks)
MCSPARSE 8 processors processes an array,
DFACT loop counter: induction, not applicable
Loop 500 Induction-1 5.60 N/A termination condition: loop variant

Table 2: Summary of Experimental Results.

replicates loop means that the inspector was work-equivalent to the original loop.

Whenever necessary in the speculative executions, we performed a simple preventive backup of the

variables potentially written in the loop as follows: In some cases, the cost of saving/restoring might be

signi�cantly reduced by using another strategy. In order for our methods to scale with the number of

processors, the shadow arrays must be distributed over the processor space, rather than replicated on each

processor (Section 3.1.2). For this purpose, we tried using hash tables. Since we had at most 14 processors,

the extra cost of the hash accesses dominated the bene�t of reducing the size of the shadow arrays. This

was particularly true for the loops from the OCEAN and TRFD Benchmarks. However, on a larger machine

we would expect the use of hash tables to pay o�. Due to this problem, the results reported do not reect

the use of hash tables, and for this reason in some cases the speedups shown in Figures 5 through 12 do not

appear to scale.

2All benchmarks are from the PERFECT Benchmark Suite, with the exception of MCSPARSE.
3The �nal paper will include experimental results for all loops on both machines.
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For all of the loops studied we have obtained a very good �t of our experimental data to the speedups

predicted by the modeling described in Section 5. Our estimates were made using a simple instruction

counting model: for loops (vectors), we used the product of the number of instructions and the number of

iterations (elements). In addition to the summary of results given in Table 2, we show in Figures 5 through

12 the speedup and the potential slowdown measured for each loop as a function of the number of processors

used. The potential slowdown reported is the percentage of the execution time that would be paid as a

penalty if the test had failed, and the loop was then executed sequentially. In cases where extraction of a

reduced inspector loop was impractical because of complex control ow and/or interprocedural problems,

we only applied the speculative methods.

These graphs show that in most cases the speedups scale with the number of processors and are a very

signi�cant percentage of the ideal speedup. When they do not scale, as mentioned above, we believe that the

use of hash tables (for MPPs) will preserve the scalability of our methods. We note that with the exception

of the TRFD loop (Fig. 7), the speculative strategy gives superior speedups versus the inspector/executor

method. For both methods the potential slowdown is small, and decreases as the number of processors

increases. As expected, the potential slowdown is smaller for the inspector/executor method.

Our results also show that signi�cant speedups can be obtained by parallelizing WHILE Loops using

our methods. In particular, even though the loop body from SPICE does little work, we obtained a very

good speedup (Fig. 11). Note that although each processor traversed the entire linked list, the Recurrence-2

method outperformed the Recurrence-1 method, in which the processors cooperatively traversed the list (by

placing the next() operation in a critical section).

We now make a few remarks about individual loops for which Table 2 does not give complete information.

The loop fromTRACK is parallel for only 90% of its invocations. In the cases when the test failed, we restored

state, and re-executed the loop sequentially. The speedup reported includes both the parallel and sequential

instantiations Fig. 8. The speedups obtained for the loops from both OCEAN and TRFD are modest, just

as predicted by our model, because they are kernels. In the case of the loop from TRFD we were able to

reuse the schedule and improve our results signi�cantly. Because of the large data set accessed, the loop

from TRFD is the only case in which speculative execution proved to be inferior to the inspector/executor

method (saving state was a signi�cant portion of the execution time).

7 Conclusion

In this paper we have approached the problem of parallelizing loops at run-time from a new perspective {

instead of determining a valid parallel execution schedule for the loop, we speculate that the loop is actually

fully parallel, a frequent occurrence in real programs. We have developed e�cient run-time techniques for

verifying a speculative parallel execution, i.e., to check that there were in fact no cross-iteration dependences

in the loop. These techniques can also determine whether privatization of scalars and arrays eliminated all
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memory-related dependences. We have also shown that loops with unknown iteration space can be executed

in parallel, even for such cases as a loop involving a linked list traversal.

Our experimental results prove that the concept of run-time data dependence checking is a useful solution

for loops that cannot be su�ciently analyzed by a compiler. Moreover, lack of knowledge about the iteration

space of a loop does not in itself preclude parallelization, or the application of our run-time methods. We

would like to re-emphasize that our methods are applicable to all loops, without any restrictions on their data

or control ow. Both speculative and inspector/executor strategies have been shown to be viable alternatives

for even modestly parallel machines like the Alliant FX/80 and 2800.

However, we believe that the true signi�cance of these methods will be the increase in real speedup

obtainable on massively parallel processors (MPPs). As we have shown, the cost associated with these run-

time tests is generally proportional to 1

pTseq, where p is the number of processors available, and Tseq is the

sequential execution time. If the target architecture is an MPP with hundreds or, in the future thousands,

of processors, then this cost will become a very small fraction of sequential execution time. When applying

our run-time data dependence tests to a loop, our performance gain/loss will range from at least 1=4 of the

ideal speedup (which can reach into the hundreds for MPP's) when the test passes, to an additional few

percentage points of the sequential execution time if the test fails. In other words, speculating that the loop

is fully parallel has the potential to o�er large gains in performance (speedup), while at the same time risking

only small losses. To bias the results even more in our favor, the decision on when to apply the methods

should make use of run-time collected information about the fully parallel/not parallel nature of the loop.

In addition, specialized hardware features could greatly reduce the overhead introduced by the methods.
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