
Gated SSA Based Demand-Driven Symbolic Analysis �

Peng Tu and David Padua

Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana, Illinois 61801-2307

tu,padua@csrd.uiuc.edu

1 Introduction

It has become increasingly evident that symbolic manipulation of expressions is necessary
to support a number of analysis and transformation techniques used by parallelizing com-
pilers. For example, symbolic analysis increases the accuracy of dependence analysis and
array privatization [BEF+94][TP93], which are perhaps the two most important techniques
for automatic parallelization. This paper presents a technique to determine the equality
and inequality relations between symbolic expressions. The problem of determining the
relationship between symbolic expressions is undecidable in general. In practice, symbolic
expressions often contain the program input variables whose run-time values may be needed
in the analysis. Therefore, the goal of the techniques presented below is to handle with rea-
sonable e�ciency some of the situations that arise frequently in practice.

In symbolic analysis the values of variables are represented by symbolic expressions.
Some of the techniques designed in the past proceed by computing path values, the set of
symbolic values of a variable on all possible paths reaching a program point. Corresponding
to each path there is a path condition, a boolean expression that is true if the path is
executed [CR85][CHT79]. These techniques have exponential time and space requirements
which limit their applicability in practical situations. Other techniques discussed in the
literature use abstract interpretation [CH78][HP92]. Instead of computing and keeping all
the values and conditions reaching a point in the program, a join function is used to compute
the intersection of these values and conditions. In this approach (and depending on the join
function), some information might be lost at the conuence points in the control ow graph
of the program. Both approaches use symbolic global forward substitution or propagation
to compute values and conditions at all the points in the program. The ultimate objective
is to represent program expressions exclusively in terms of input values and constants.

Symbolic forward substitution is not very e�cient for three reasons. First, the size of
the expressions may grow exponentially with the number of paths reaching them. The use
of join functions solves this problem, but at the expense of accuracy. Second, much of
the information generated and propagated by forward substitution is never used. Finally,

�The research described was supported by contract DABT63-92-C-0033 from the Advanced Research

Project Agency. This work is not necessarily representative of the positions or policies of the U. S. Army or

the government.

1

in many cases, representing everything in terms of program inputs is not necessary, as
illustrated below. Consider the following code segment:

R: JMAX = Expr

S: if (P) then J := JMAX� 1

else J := JMAX

T: assert(J � JMAX)

To determine whether the assertion (J � JMAX) is true at T, we need to know the symbolic
value of J. Forward substitution starts at statement R. After it completes, J and JMAX at
statement T are replaced by (if P then Expr� 1 else Expr) and Expr respectively. Thus,
the boolean expression (J � JMAX) evaluates to true. It is easy to see that the substitution
of JMAX by Expr is unnecessary. In a real program, forward substitution could produce
long and complex expressions. Therefore, determining whether an assertion is true could
be very time consuming. Approximate summary information could be used to improve the
e�ciency of this process. However, in general this decreases the accuracy of the analysis.

The objective of the techniques discussed in this paper is to improve the e�ciency
and accuracy of symbolic analysis by using a demand-driven approach, that is, by seeking
information only when it is needed. Instead of propagating all symbolic values forward,
a demand-driven strategy is goal directed and moves backward. Backward substitution

stops when enough information to satisfy a speci�c objective has been obtained. In a
forward substitution strategy, the requirements are not known and therefore it is di�cult or
impossible to determine which subset of the available information to propagate and where
to start the propagation. In the previous example, a demand-driven analysis of values of J
and JMAX would start from the assertion at T and would stop at statement S where enough
information to prove (J � JMAX) has been obtained. The redundant substitution of JMAX
by Expr does not have to be performed.

To implement backward substitution, we use a Static Single Assignment (SSA) [AWZ88]
[RWZ88] program representation. The SSA form is obtained by renaming the scalar vari-
ables in the program so that the left-hand sides of all scalar assignments are di�erent. A
special function, �, is used at the conuence points of the control ow graph when it is
necessary to select one of several renamed versions of a scalar variable. SSA has been used
for determining equivalence of symbolic variables [AWZ88] and parallelization of imperative
programs [CF87]. An e�cient algorithm for constructing a minimal SSA representation of
an imperative program can be found in [CFR+91].

For example, the code segment listed above has the following SSA form:

R: JMAX1 := Expr

S: if (P) then J1 := JMAX1 � 1

else J2 := JMAX1
S': J3 := �(J1; J2)
T: assert(J3 � JMAX1)

A demand-driven analysis starts at T and performs backward substitution following the SSA
links of the variables in the expression. The intermediate statements, which do not a�ect
the variables used in T, are skipped. The result of the substitution is:

J3 = �(J1; J2)

2

= �(JMAX1 � 1; JMAX1)
� JMAX1

We will discuss below a simple technique for deciding when to stop the backward substitu-
tion. For example, in the code we are discussing, this technique would avoid the substitution
of JMAX1 by Expr which is redundant.

The � function in the example above could be augmented with the predicate of the
conditional statement preceding it. Statement S' would then take the form:

J3 := �(P; J1; J2)

This form of the � function returns the second or third parameter depending on the value
of the predicate. This type of function is called a high-level � function and was introduced
in [AWZ88]. The Gated Single Assignment (GSA) which was proposed in [BMO90] as a
part of the Program Dependence Web (PDW) also uses this form of the � function. In this
paper, we will use GSA as the intermediate representation for a program.

The rest of the paper describes a uniform symbolic analysis framework that can be
applied to the following three problems:

� Deriving symbolic values from symbolic expressions and the program control depen-
dences and determining the relationship between symbolic expressions (Section 2).

� Identifying recurrence and computing the symbolic upper and lower bounds of the
value of a recurrence (Section 3).

� Obtaining the symbolic value of array elements used as array subscripts (Section 4).

2 Demand-Driven Symbolic Interpretation

In this section, we �rst give a brief overview of GSA. Then we present a backward sub-
stitution scheme and show how to use the constructs in GSA together with the control
dependence to determine the symbolic value of an expression.

2.1 Gated Single Assignment

GSA introduces three pseudo-assignment functions, which are extensions of the � function
used in SSA:

� function : Replaces those � functions located immediately after an if statement. It
includes the predicate of the if statement as an additional parameter.

� � function : Replaces � functions at the head of a do loop.

� � function : Replaces � functions at the exit of a loop. It selects the last value produced
by a � function.

The following example illustrates the use of those pseudo-assignment functions in GSA.

3

X := 1 X0 := 1

L: do I = 1; N L: do I = 1; N fX1 := �(L; X0; X3)g
if (P) then X := X+ 1 if (P) then X2 := X1 + 1

enddo X3 = (P; X2; X1)
enddo

X4 := �(I > N; X1)

The function in the assignment X3 = (P; X2; X1) returns X2 or X1, depending on the value
of P. If P is true, the �rst argument is selected; otherwise the second argument is selected.
The � assignment is located in the control ow graph just before the do loop exit test. It
merges the value of X computed outside the loop, X0, with the value computed within the
loop body, X3. The loop label L is the �rst argument of this function. The � function selects
the last value of X computed by the loop. The � function, as de�ned in [BMO90], handles
loops with a zero-trip count awkwardly. For this reason, we prefer to replace the assignment
containing the � function above with

X4 := (N < 1; X0; �(I> N; X1))

If the loop is a zero-trip loop, then X4 will take the value X0 from outside the loop. Otherwise,
X4 will take the value from inside the loop when the loop exit condition is satis�ed. In
[BMO90], an e�cient algorithm is presented to construct GSA from the SSA representation
and the control ow graph of a program.

2.2 Backward Substitution and Path Projection

To derive the value for a symbolic variable at a point p in the GSA form of a program, we
�rst perform backward substitution. This process substitutes a variable with its reaching
de�nitions. The result is a symbolic expression, SE, where each term is either a constant
or a variable name. In the backward substitution, pseudo-assignment functions �, , and �

are treated as if they were ordinary functions.
The possible values of a backward-substituted symbolic expression can be narrowed

down if the predicates in the relevant if statements are taken into account. A symbolic path
condition PC is a predicate specifying the control ow condition under which the program
ow will reach a statement p. If p is control dependent on a collection C of if statements,
its PC can be de�ned as an expression involving the predicates in C. The path-restricted
value PV of a symbolic expression at statement p is the following projection of its symbolic
value SE:

PV = SE(PC) (1)

To compute the projection we can use the following rules:

(P; Vt; Vf)(PC) =

8><
>:

Vt(PC) if PC � P

Vf(PC) if PC � :P

(P; Vt(PC); Vf(PC)) otherwise (unknown)
(2)

�(L; Vinit; Viter)(PC) = �(L; Vinit(PC); Viter(PC)) (3)

�(P; V)(PC) = V (P ^ PC) (4)

4

We present next some examples of backward substitution and path projection. The
examples illustrate how these techniques improve the e�ectiveness of array privatization
[TP93]. The techniques are also useful in improving the accuracy of dependence analysis
[BE94b, BE94a]. The main task when performing privatization of an arrayA is to determine
whether or not in all iterations of the do loop each access to an element of A is dominated
by an assignment to the same element. In order to prove that the use region of an array
is always covered by a de�nition region, it is often necessary to determine the relationship
between symbolic variables. The �rst example only requires the use of path conditions.
Consider the following code segment:

dimension XE(10000)

S: NDFE0 := NDDF0 � NNPED0
D: do i = 1; NDFE0

XE(i) := :::

enddo

U: do i = 1; NDDF0
do j = 1; NNPED0

::: := XE((i� 1) � NNPED0 + j)
enddo

enddo

To prove that the array region XE(1 : NDFE0) de�ned in loop D covers the array region
XE(1 : NDDF0 � NNPED0) accessed in loop U, we need to prove that NDFE0 � NDDF0 � NNPED0.
This is easily done after NDFE0 is replaced by NDDF0 � NNPED0 using backward substitution.
The path condition for those points within loop U where XE is accessed is PCU = (NDDF0 �
1^NNPED0 � 1). The path condition at those points where XE is de�ned is PCD = (NDFE0 �
1) or, after the backward substitution, PCD = (NDDF0 � NNPED0 � 1). It is easy to see that
PCU � PCD and, therefore, whenever loop U has a non-zero trip count, loop D does too.

The next example illustrates the use of the projection rule for functions. Backward
substitution involving the � function and associated recurrences will be discussed in the
next section.

if (P) then JLOW0 := 2; JUP0 := JMAX� 1

else JLOW1 := 1; JUP1 := JMAX

JLOW2 = (P; JLOW0; JLOW1)
JUP2 = (P; JUP0; JUP1)

L: do

D: Assign to array region WORK(JLOW2 : JUP2)
U: if (P) then Use array region WORK(2 : JMAX� 1)

enddo

For the array WORK to be private to the loop L, we need to determine that the use of
WORK(2; JMAX� 1) at U is covered by the de�nition of WORK(JLOW2 : JUP2) at D. The PC at U
is P. Using projection rule for the function under the condition P, we have the following
replacements which prove the desired condition:

JLOW2 = (P; JLOW0; JLOW1)(P)

5

= JLOW0(P)
= 2

JUP2 = (P; JUP0; JUP1)(P)
= JUP0(P)
= JMAX� 1

Sometimes in array privatization it is su�cient to know the upper and lower bounds of a
symbolic variable. In this case we can ignore the predicate in the function and the PC

predicate and apply the minimum and maximum functions directly:

max((P; Vt; Vf)) = max(Vt; Vf) (5)

min((P; Vt; Vf)) = min(Vt; Vf) (6)

Using these two rules in the example above, we obtain:

max(JLOW2) = max((P; JLOW0; JLOW1))
= max(JLOW0; JLOW1)
= max(2; 1)
= 2

min(JUP2) = min((P; JUP0; JUP1))
= min(JUP0; JUP1)
= min(JMAX� 1; JMAX)
= JMAX� 1

which also prove the desired condition. The problem of determining whether PC � P is
NP-Complete [GJ79]. However, because the number of boolean variables in a program is
usually small, we expect the cost of computing the path projection to be small. The upper
and lower bound computations can be used to obtain the range of a variable when the
number of boolean variables in PC � P is large.

The path condition may be used to derive information about symbolic values. For
instance, consider the following loop:

do I = 1, N

R: X(I) := X(I+ N)
S: if (I > L) goto U

T: : : :

U: : : :

enddo

At statement R, the PC is 1 � I � N. This makes it possible to determine that there is no
data dependence between the instances of R. The PC at statement T is (I � L)^(1 � I � N).
It tells us more about the possible values of I at T. Incorporating path condition in the
analysis provides us with more power than GSA or SSA alone.

2.3 Comparison of Symbolic Expressions

The symbolic expression may still contain functions after path projection. In symbolic
analysis, we sometimes need to compare these expressions. [AWZ88] de�nes a congruence

6

relation between expressions with � assignments. The congruent variables are shown to
have equivalent values under structural isomorphism. Structural isomorphism can only be
used to determine equality; it cannot determine, for example, if one expression is always
larger than another. We de�ne next a class of expression pairs whose inequality relationship
can be determined at compile-time.

We call two expressions compatible if, after backward substitution, the non-constant
terms in one expression are a subset of the terms in the other. Only when two expressions are
compatible can their relationship be determined symbolically. Notice that the structurally
isomorphic expressions are compatible. For the purpose of comparison, two compatible
expressions E1; E2 can be classi�ed as follows:

1. None of E1 and E2 contains any pseudo-function: The expressions can be
compared by simplifying E1 �E2 symbolically. Their relationship can be determined
if the result is a constant.

2. Only one of E1 and E2 contains pseudo-functions: The comparison will be
based on the arguments of the function. To illustrate the method, assume that
E2 = (P; Vt; Vf) , where Vt; Vf may also contain pseudo-functions. To determine
whether E1 > E2, we reduce it to case 1 using the following necessary and su�cient
condition:

(E1 > (P; Vt; Vf)) � (E1 > Vt)^ (E1 > Vf) (7)

If Vt; Vf contain any pseudo-functions, the same procedure should be used recursively
on the right-hand side of the above equation. The result can then be evaluated as
in case 1. An equivalent approach is to compute the minimum and maximum values
for E2 using the technique we discussed before. Because E1 does not contain any
pseudo-function, it can be proven that:

(E1 > E2) � (E1 > max(E2)) (8)

3. Both E1 and E2 contain pseudo-functions: There are several ways to handle this
case. We will illustrate just one here. Assume again that E2 = (P; Vt; Vf). To prove
E1 > E2, the necessary and su�cient condition is:

E1 > (P; Vt; Vf) � (E1(P) > Vt) ^ (E1(:P) > Vf) (9)

Because E1 contains a pseudo-function, the path projections E1(P) and E1(:P) are
necessary in the above equation to cast the branching conditions to E1. For instance,
if E1 = (P; V 0

t ; V
0

f), the condition can be evaluated as follows:

((P; V 0

t ; V
0

f)(P) > Vt) ^ ((P; V 0

t ; V
0

f)(:P) > Vf) = (V 0

t > Vt)^ (V 0

f > Vf)

Each application of this rule eliminates one pseudo-function. It is applied recursively
until the right hand side is free of pseudo-functions. The problem is then reduced to
case 2.

We will call these three rules distribution rules. Rule 3 subsumes rule 2 because path
projection has no e�ect on an expression that does not contain any pseudo-function. Note
that for determining equalities, techniques based on structural isomorphism cannot identify

7

equalities when the order of the functions in two expressions are di�erent. Using the
distribution rules, we can identify those equalities.

The rules discussed above also apply to more complex expressions. For example, consider
E2 = (P; Vt; Vf) + exp. This expression can be normalized to (P; Vt + exp(P); Vf +
exp(:P)). In the analysis algorithm, normalization is deferred until a distribution is made
on the function in order to allow the common components in E1 to be canceled out with
(P; Vt; Vf) or exp.

2.4 Ordering of Backward Substitution

We conclude this section with a technique for ordering backward substitution to obtain
compatible expressions. As we mentioned before, it is not necessary to fully expand two
expressions to the point that they contain only constants and program inputs. It is more
e�cient to stop expanding as soon as two expressions become compatible. If reaching
de�nitions are substituted in the order they appear in the program's dominator tree, then
it is possible to avoid expanding an expression beyond what is necessary for the comparison.
The algorithm is shown below.

Algorithm Unify

Input: expressions s and t

1. Mark constants and matching identi�ers in s, t as dead.
2. while 9 active identifier 2 s; t do

Expand the identi�er whose reaching de�nition is the lowest in the dominator tree.
Mark dead constants and matching identi�ers as dead.

To summarize, the backward substitution scheme has several advantages over forward sub-
stitution. First, it is goal directed. In contrast, the traditional forward substitution will
blindly propagate all the information, even though most of it will never be used. Second,
it can stop expanding when all the variables match. With backward substitution, it is
seldom necessary to expand the expression in terms of the program inputs. Finally, in a
forward propagation scheme, everything must start from the most primitive variables and,
in the case of several levels of conditionals, the number of branches may quickly explode
and complexity may grow out of control. Since the backward tracing is goal directed and
incremental, we can easily set complexity constraint such as the maximum level of unwind-
ing. After that, the algorithm gives up and tries to obtain an approximate solution by
computing maxima and minima.

3 Recurrences and the � Function

Backward substitution of an expression involving a � function will form a recurrence because
of the back edge in a loop. The rule for substitution of a � function is to substitute the
second parameter of the � function until it becomes an expression of the variable itself or
an expression of another � assigned variables. This is illustrated in the following example.

L: do I = 1, N fJ1 := �(L; J0; J3)g
if (P) then J2 := J1 + A

J3 := (P; J2; J1)

8

enddo

Substituting terms in the � function leads to:

J1 = �(L; J0; L3)
= �(L; J0; (P; J2; J1))
= �(L; J0; (P; J1+ A; J1))

The recurrence can be interpreted as the following lambda function over the loop index.

�i:(J1(i)) � (i = 1; J0; (P; J1(i� 1) + A; J1(i� 1)))

After identifying the recurrence, we could use pattern matching to identify induction and
reduction variables. For instance, if P is always true and A is loop invariant, then J1(i) is
an induction variable with value J0 + (i� 1) � A. When P is always true and A is a linear
reference to an array, for example X(i), J1(i) is a reduction sum over X. For induction
variable identi�cation, this approach is equivalent to the Strong Connected Region (SCR)
algorithm given by [Wol92]. However, the symbolic substitution scheme is more general
because it can deal with those cases where no closed form expression can be obtained. For
instance, if the condition P is loop invariant, symbolic substitution can determine that the
value of J1(i) is either J0 + (i� 1) � A or J0.

When the closed form of a recurrence cannot be determined, it may still be possible to
compute a bound by selecting the arguments with maximum or minimum increment to
the recurrence. For example:

max(J1) = max(�(L; J0; (P; J1+ A; J1)))
= �(L; J0; max((P;J1+ A; J1)))
= �(L; J0; J1 + A)

min(J1) = min(�(L; J0; (P; J1+ A; J1)))
= �(L; J0; min((P;J1+ A; J1)))
= �(L; J0; J1)

The resulting two recurrence functions can now be solved to obtain the upper bound J0+N�A
and the lower bound J0.

4 Index Arrays

The use of array elements as subscripts makes dependence analysis and array privatization
more di�cult than when just scalars are used. When the value of an index array depends
on the program input, run-time analysis has to be used. Sometimes when an index array is
assigned with a symbolic expression, its value can be determined at compile-time. Consider
the following segment of code:

L: do J=1, JMAX

JPLUS(J) := J+ 1

enddo

JPLUS(JMAX) := Q

U: : : :

9

It is possible to determine at compiler time that the array element JPLUS(J) has value of
J+ 1 for J 2 [1; JMAX� 1] and Q for J = JMAX. We can use the GSA representation to �nd
out the value of JPLUS(J) at statement U. To this end, we use an extension of the SSA
representation to include arrays in the following way[CFR+91]:

1. Create a new array name for each array assignment;

2. Use the subscript to identify which element is assigned;

3. Replace the assignment with an update function �(array; subscript; value).

For example, an assignment of the form JPLUS(I) = exp will be converted to JPLUS1 =
�(JPLUS0; I; exp). The semantics of the � function is that JPLUS1(I) receives the value of
exp while the other elements of JPLUS1 will take the values of the corresponding elements
of JPLUS0. This representation maintains the single assignment property for array names.
Hence the def-use chain is still maintained by the links associated with unique array name.
Using this extension, our example can be transformed into the following SSA form:

L: do J = 1, JMAX fJPLUS2 := �(L; JPLUS0; JPLUS1)g
JPLUS1 := �(JPLUS2; J; J+ 1)

enddo

JPLUS3 := �(JPLUS2; JMAX; Q)

To �nd out the value of an element JPLUS3(K) in JPLUS3, we can use backward substitution
as follows:

JPLUS3(K) = �(JPLUS2; JMAX; Q)(K)
= (K = JMAX; Q; JPLUS2(K))
= (K = JMAX; Q; �(L; JPLUS0; JPLUS1)(K))
= (K = JMAX; Q; (1� K � JMAX; JPLUS1(K); JPLUS0(K)))
= (K = JMAX; Q; (1� K � JMAX; K+ 1; JPLUS0(K)))

In the above symbolic evaluation process, an expression of the form �(X; i; exp)(j) is eval-
uated to (j = i; exp; X(j)). An expression of the form �(L; Y; Z)(j) is instantiated to a list
of functions that select di�erent expressions for di�erent values of j. These evaluation
rules are straightforwardly derived from the de�nitions of the gate functions. To avoid
unnecessary array renaming, SSA conversion is done only on those arrays that are used as
subscripts.

5 Conclusion and Implementation

Symbolic analysis is important to parallelizing compilers. With the traditional forward sub-
stitution technique for symbolic analysis, it is di�cult to strike a balance between e�ciency
and accuracy. Forward substitution usually propagates too much unnecessary information
that is not used in the end, and propagates too little information for the few important
variables in the analysis.

We proposed in this paper a technique to derive information about symbolic variables
in a demand-driven way that is both e�cient and accurate. In contrast to global forward
substitution, the demand-driven technique introduces no overhead when there is no need for

10

the propagation and resolves complicated symbolic expressions on demand. We illustrated
the use of this technique in array privatization to determine the symbolic values of array
reference regions.

The technique in this paper has been implemented in the POLARIS restructuring com-
piler. Preliminary experience shows that it is both e�ective and e�cient. It can often meet
the symbolic analysis requirement of array privatization and dependence analysis.

References

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting Equality of Variables in
Programs. In Proc. of the 15th ACM Symposium on Principles of Programming

Languages, pages 1{11, 1988.

[BE94a] William Blume and Rudolf Eigenmann. The Range Test: A Dependence Test
for Symbolic, Non-linear Expressions. Technical Report 1345, Univ. of Illinois
at Urbana-Champaign, Cntr. for Supercomputing Res. & Dev., April 1994.

[BE94b] William Blume and Rudolf Eigenmann. Symbolic Analysis Techniques Needed
for the E�ective Parallelization of the Perfect Ben chmarks. Technical Report
1332, Univ. of Illinois at Urbana-Champaign, Cntr. for Supercomputing Res. &
Dev., January 1994.

[BEF+94] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeinger, David
Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and
Stephen Weatherford. Polaris: The Next Generation in Parallelizing Compil-
ers. Technical Report 1375, Univ of Illinois at Urbana-Champaign, Cntr for
Supercomputing Res & Dev, June 1994.

[BMO90] R. Ballance, A. Maccabe, and K. Ottenstein. The Program Dependence Web:
a Representation Supporting Control- Data- and Demand-Driven Interpretation
of Imperative Languages. In Proceedings of the SIGPLAN'90 Conference on

Programming Language Design and Implementation, pages 257{271, June 1990.

[CF87] Ron Cytron and Jeanne Ferante. What's in a Name? or The Value of Renaming
for Parallelism Detection and Storage Allocation. In Proc. 1987 International

Conf. on Parallel Processing, pages 19{27, August 1987.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. E�ciently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451{490, October 1991.

[CH78] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among
Variables of a Program. In Proceedings of the 5th Annual ACM Symposium on

Principles of Programming Languages, pages 84{97, January 1978.

[CHT79] T. E. Cheatham, G. H. Holloway, and J. A. Townley. Symbolic Evaluation
and the Analysis of Programs. IEEE Transactions on Software Engineering,
5(4):402{417, 1979.

11

[CR85] L. A. Clarke and D. J. Richardson. Applications of Symbolic Evaluation. Journal
of Systems and Software, 5(1):15{35, 1985.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of the NP-Completeness. Freeman, 1979.

[HP92] M. R. Haghighat and C. D. Polychronopoulos. Symbolic program analysis and
optimization for parallelizing compilers. In Proc. 5rd Workshop on Programming

Languages and Compilers for Parallel Computing, August 1992.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers and
Redundant Computation. In Proc. of the 15th ACM Symposium on Principles

of Programming Languages, pages 12{27, 1988.

[TP93] Peng Tu and David Padua. Automatic array privatization. In Proc. 6rd Work-

shop on Programming Languages and Compilers for Parallel Computing, August
1993.

[Wol92] Michael Wolfe. Beyond induction variables. ACM PLDI'92, 1992.

12

