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The dynamic evaluation of parallelizing compilers and the programs to which they are
applied is a �eld of abundant opportunity. Observing the dynamic behavior of a program
provides insights into the structure of a computation that may be unavailable by static analysis
methods.

A program may be represented by a data
ow graph generated from the dynamic 
ow of
information between the operations in the program. The minimum parallel execution time
of the program, as it is written, is the longest (critical) path through the dynamic data
ow
graph. An e�cient method of �nding the length of the critical path is presented for several
parallel execution models. The inherent parallelism is de�ned as the ratio of the total number
of operations executed to the number of operations in the critical path. The e�ectiveness of a
commercial parallelizing compiler is measured by comparing, for the programs in the Perfect
Benchmarks, the inherent parallelism of each program, with the parallelism explicitly recognized
by the compiler.

The general method of critical path analysis produces results for an unlimited number
of processors. Upper and lower bounds of the inherent parallelism, for the case of limited
processors, can be derived from the processor activity histogram, which records the number of
concurrent operations during each time period.

Stress analysis is a derivative of critical path analysis that determines the locations in a
program that have the largest contribution to the critical path. Inductions are a computation
that introduce an internal stress. A speci�c method is presented which measures the e�ects of
removing the serializing e�ects of inductions on the inherent parallelism.

Dependence analysis is crucial to the e�ective operation of parallelizing compilers. Static and
dynamic evaluation of the e�ectiveness of compile-time data dependence analysis is presented,
the evaluation compares the existing techniques against each other, and against the theoretical
optimal results. Special attention is paid to the dependences which serialize interprocedural
parallelism. In addition to evaluating the static dependence analysis techniques, a method for
�nding dynamic dependences is presented that includes a record of the dependence distances
that were present during an execution.
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Chapter 1

INTRODUCTION

Parallel processing evokes grand dreams of unlimited performance, of MIPS and MFLOPS.
With graceful coordination each processor dutifully shares the work. No time is wasted; each
processor acknowledges the requirements of the others and ful�lls their needs as they become
known. The execution pathway remains wide and uncluttered, enabling every processor to
contribute equally in reducing the execution time.

But then the dream turns to a nightmare. Roadblocks appear along the way to delay and
frustrate. Squabbles arise and tempers 
are as each processor valiantly tries to obtain the
resources required for its continued existence. Idle time and sloth run rampant as the pathway
is constricted so that only one task may proceed.

The nightmare arises in part from not knowing precisely how information is shared. At �rst
the program is an unfathomable collection of interrelated computations. Each computation
seemingly is entangled with every other, allowing only a single thread of execution to continue.
Through the illumination of the program with the available tools, structures begin to form, and
independent computations arise. But the tools do not provide su�cient illumination to peer
into the depths of the program, and portions remain obscured.

The tools that are available today combine to form the current state of parallelizing com-
pilers. Researchers are forging ahead, extending the scope and increasing the illumination of
which each tool is capable. Improvements in interprocedural analysis, dependence analysis,
symbolic manipulation, and aliasing all point towards a greater understanding of the program
and fewer portions that remain unknown.

The traditional method of restricting the analysis to static methods, disallowing feedback
from the programs execution, may be unduly restraining progress in parallel processing. This
thesis embarks upon a journey, charting unexplored areas and out�tting the programmer with
tools for dispelling the darkness and bringing the landscape into view. The methods presented
here not only provide additional information about the program's semantics, but also serve as
a measure with which to compare existing static analysis techniques.

1.1 The Grand Plan

Static analysis determines what a program is capable of doing. The static analysis techniques
used by parallelizing compilers give conservatively correct answers to semantic analysis prob-
lems. The static methods must consider every possible result of a speci�c program con�guration.
Dynamic analysis determines what a program actually does. It does not consider possibilities
that never occurred during the program's execution. In this way, it can generate optimistic
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answers that are still correct for a particular input data set. It is the subtle distinction between
static and dynamic analysis that makes it possible to use the latter to measure the e�ectiveness
of the static analysis methods.

The focus of this thesis is on discovering how dynamic analysis can be applied to enhance
the understanding of program behaviors and the e�ects of parallelizing compilers on those
programs. These two subjects are closely interrelated, and understanding one can lead to
increased understanding of the other.

For example, parallelizing compilers rely on data dependence analysis to determine the
structure of a program and to decide how the computations can be mapped onto a machine.
Data dependences calculated dynamically may be more precise (i.e., give additional informa-
tion) than those computed statically. The more precise dependence information may be a subset
of the dependences that can exist in some execution of the program, however, it is still useful for
two reasons. The �rst is hand tuning of the program through manual transformations. These
transformations can be performed to extract the inherent parallelism. Manual transformations
are necessary because the dynamically computed dependence information is no longer conserva-
tive and thus cannot be automatically applied without human intervention. The second usage
of more precise data dependence calculations is to use the information to evaluate the existing
static dependence tests. One can compare the dynamic data dependence calculations with the
existing dependence calculations used in the parallelizing compiler to show where the existing
techniques are lacking. It is the greater understanding of the program's semantics that solves
both problems; knowing where to apply the transformations, and knowing when the static
analyses are inadequate.

Parallelizing compilers are required to perform many analysis tasks in order to understand
the intent of the programmer who speci�ed the task to be accomplished by the program.
The best static analysis techniques available are employed by the compiler in this quest. As
innovations are developed, they are incorporated into the parallelizing compiler to improve its
performance. Normally this constant improvement in parallelizing compilers would be a source
of problems in evaluating the compilers. The parallelizing compiler may already be using the
best available static techniques. It may be impossible to create an improved technique, within
the same framework, against which to compare the methods used in the parallelizing compiler.
Here we have an advantage, because we step outside the static framework and include dynamic
analysis.

1.2 Understanding the Intent of a Program

Figure 1.1 shows the relationship among the experiments reported in Chapters 3 to 10. The
relationship represented is one of specialization. The descendants of an experiment or method
in Figure 1.1 either rely on the results of the parent or compute a more precise result than
the parent. The �gure shows that all the experiments rely on the Delta Program Manipulation
System, described in Chapter 3, for support services.

Delta is designed to be a prototyping environment for constructing source-to-source in-
strumenting systems and parallelizing compilers for Fortran. Static dependence analysis is an
intrinsic component of Delta. An experiment describing the e�ectiveness of static dependence
analysis is described in Chapter 8.

A dynamic variation of the static dependence analysis is described in Chapter 10. This
method of dynamic dependence analysis is performed through an instrumenting transformation

2



Static Dependence Analysis (Ch. 8)

Dynamic Dependence Analysis (Ch. 10)

Compiler Evaluation (Ch. 4)

Parallel Activity (Ch. 6)Delta (Ch. 3)

Critical Path Analysis (Ch. 4)

Dynamic Dependence Evaluation (Ch. 9)

Stress Analysis (Ch. 5)

Induction Variables (Ch. 7)

Figure 1.1: Relationship of experiments

written as a Delta function. One possible use of dynamic dependence analysis is to gain an
understanding of the information that is passed between loop iterations, without regard to
subroutine boundaries. Dynamic dependence analysis generates a report of the 
ow- and output-
dependences categorized by the loop that carries the dependence. The information generated by
the dynamic dependence analysis is more optimistic than the static analysis, since it reports only
the dependences that occurred, but it is more precise because it can also report interprocedural
dependence information that is lacking in many existing parallelizing compilers. Along with
the existence of a dependence, the distances of the carrying loop are recorded. The information
reported by dynamic dependence analysis is useful in isolating the variables that are shared
across di�erent loop iterations. Once the shared references are properly synchronized, the loop
can run concurrently.

Chapter 4 describes the principle of critical path analysis, a dynamic analysis technique upon
which the rest of the experiments are built. Critical path analysis is a technique that allows
the minimum parallel execution time to be calculated. This is accomplished by scheduling, in a
multiprocessor with an unlimited number of processing elements, each operation in the program
as early as possible, subject to all existing data and control dependences. It is assumed that
the only data dependences that need to be considered are the 
ow-dependences. All other data
dependences are ignored under the assumption that a good compiler can remove them.

Also in Chapter 4, the execution time of automatically parallelized programs is simulated
under the same assumptions as used by the critical path analysis. The comparison of the
average parallelism, obtained by the parallelizing compiler, with the inherent parallelism allows
the e�ectiveness of an existing parallelizing compiler to be determined.

Another use of the data generated by critical path analysis is described in Chapter 5.
The average parallelism (or speedup) numbers generated by critical path analysis are with
respect to an unlimited number of processors. If the number of processors is restricted, then
the performance will decrease. Chapter 5 describes an experiment to generate bounds on the
average parallelism under the constraint of limited processing resources.
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Other forms of dynamic analysis can be built on top of critical path analysis. Each form is
constructed as a tool to measure some aspect of the program. The most general tool developed
is that of stress analysis. Chapter 6 describes the concept of stress analysis and demonstrates
an implementation of a tool to measure the internal stress in a program. Any dependence which
di�erentially introduces a delay into a program's execution causes stress. Stress analysis does
not di�erentiate between the causes of the stress; it only indicates where the stress occurred.

Stress analysis can be categorized as a tool for determining important segments of the
program's critical path. In its pure form, stress analysis measures a program against itself. It
does not consider the e�ects of any outside in
uence such as the transformations performed
by a parallelizing compiler. In particular, the stress analysis tool can measure two types of
stress: (a) stress induced by data dependence and (b) stress induced via an ordering constraint.
Recurrences are an example of stress induced by a data dependence. Stress that is induced
via an ordering constraint may be removed by changing the lexical order of the statements.
This type of stress is found when a control dependence has a greater in
uence than a data
dependence.

Additional constraints must be added to the stress analysis technique to create other tools
that measure against the background of a parallelizing compiler. This approach is applied
to dependence evaluation in Chapter 9. Dynamic dependence evaluation compares the static
data dependence analysis with the true dependences that are encountered at run-time. This is
another form of stress analysis, where the di�erential of the data dependence arcs act as the
forces causing stress in the program.

An induction variable is any variable de�ned inside a loop whose value at any point in time
is a function of the loop index and the loop invariant values. The results of stress analysis
in Chapter 6 include implicitly the e�ects of induction variables but also include many other
e�ects. The general technique of stress analysis locates only the source of the stress and does
not predict the e�ects of removing the cause of the stress. Chapter 7 describes a tool that
modi�es the general technique of critical path analysis to not only report the location and
cause of stresses induced by induction variables, but also to calculate an upper bound on the
e�ect of removing the calculation of the variable.

As with most of the other experiments, induction variable evaluation has two uses. It can
be used to understand the program in isolation, by locating all existing induction variables, or
it can be used to evaluate a parallelizing compiler. Assuming that the parallelizing compiler
has eliminated all the induction variables that it was capable of eliminating, then any induction
variables remaining must have been missed by the parallelizing compiler.

1.3 Amdahl's Law

When one talks about the prospects of parallel processing, it is important to determine if any
potential exists at all. Amdahl's Law [Amd67] states that the parallel portion of a program
dictates the potential speedup. Equation (1.1) describes the relationship between the parallel
composition of the program and the speedup. The limit as the number of processors approaches
in�nity is shown in Equation (1.2):

Sp =
T1
Tp

=
T1

T1
h
(1� Fp) +

Fp
p

i (1.1)
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lim
p!1

Sp =
1

1� Fp
(1.2)

where Sp is the speedup on p processors, T1 and Tp are the sequential and parallel execution
times, and Fp is the fraction of parallel code in the program.

Thus, for a �xed Fp, the speedup is constant. The job of the parallelizing compiler is to
restructure the program to maximize the fraction of the program (Fp) that can be executed in
parallel. It is the intent of this thesis to provide methods for increasing our understanding of
program analysis tools in the hope of improving performance.

However, the assumption that Fp is constant may not be realistic for some problems
[GMB88]. As an example, if we assume that the sequential portion of the program grows
at �Nk and the parallel portion grows at �Nk+1, then the resulting fraction of parallelism can
be expressed as:

Fp =
�Nk+1

�Nk + �Nk+1
(1.3)

=
N

N + �=�
(1.4)

Taking the limit, from Equation (1.6), as the number of processors approach in�nity gives
Equation (1.7).

lim
p!1

Sp =
1

1� Fp
(1.5)

=
1

1� N
N+�=�

(1.6)

=
�

�
N + 1 (1.7)

If the parallel component of the execution time grows at a rate O(N) faster than the rate
of growth of the sequential component, then the potential speedup will also grow at a rate of
O(N) as demonstrated by Equation 1.7.

Therefore, all is not lost. Even if the parallelizing compiler is unable to change the frac-
tion of parallel computation in the code, we may be able to change the fraction of parallel
computation by changing the data-set size. Parallel processing wins both ways: by using a
parallelizing compiler to discover more parallel computation and through larger problems when
the parallelism scales with the data-set size.
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Chapter 2

BACKGROUND

2.1 Dependence Analysis

A data dependence is said to exist if the order in which two statements are executed a�ects
the results of the statements. The simplest case arises when the interaction is due to scalar
variables. For example, the following two consecutive statements

S1: A = B + C

S2: D = E + F

could be executed in any order, or in parallel, without a�ecting the result of the program
because they access di�erent variables, and therefore do not interact. However, the statements

S1: A = B + C

S2: D = A + 1

must be executed in the order speci�ed by the program because S2 uses a value computed by
S1. In these cases, we say that there is a dependence from S1 to S2, which indicates that S2
must execute after S1 to guarantee correctness.

A dependence exists from S1 to S2 if S1 accesses a variable modi�ed by S2 as illustrated by

S1: A = B + C

S2: B = E + F

or if both statements modify the same variable:

S1: A = B + C

S2: A = E + F

The dependence relation is antisymmetric. A dependence from S1 to S2 does not imply
the existence of a dependence from S2 to S1. A necessary condition for a dependence to exist
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from a statement S1 to a statement S2 is that an execution of S1 interacts with an execution of
S2, and that the execution of S1 precedes the execution of S2 in the sequential version of the
program.

Detecting dependences due to scalar variables is relatively simple. However, the study
of data dependence when the interaction involves arrays is more complicated. Most of the
work published on dependence analysis (including the tests considered in this chapter) focus
on statements with array references and assume that the two statements to be analyzed are
both inside the same (multiply-nested) DO loop. It is also possible to assume, without loss of
generality, that the loops are normalized; that is, the loop's lower limit is zero and the step is
one.

Consider the loop:

DO I1 = L1; U1
� � �

DO Id = Ld; Ud
Sv : X(f1(I1; : : : ; Id); f2(I1; : : : ; Id); : : : ; fn(I1; : : : ; Id)) = : : :

Sw : : : : = X(g1(I1; : : : ; Id); g2(I1; : : : ; Id); : : : ; gn(I1; : : : ; Id))
END DO

� � �
END DO

Here, X is an n-dimensional array, and fi and gi are functions from ZZ
d to ZZ.

To decide whether there is a dependence from Sv to Sw it is necessary to determine whether
there are two executions of Sv and Sw such that

(1) The execution of Sv takes place in iteration �I 0 = (I 01; I
0

2; : : : ; I
0

d)

(2) The execution of Sw takes place in iteration �I 00 = (I 001 ; I
00

2 ; : : : ; I
00

d )

(3) �I 0 � �I 00

(4) fi(�I
0) = gi(�I

00) for all (1 � i � n) and for some I 01; I
0

2; : : : ; I
0

d; I
00

1 ; I
00

2 ; : : : ; I
00

d within the loop
limits speci�ed in the program.

The conditions that determine a dependence from Sw to Sv are the same except that con-
dition (3) is replaced by (30): �I 00 < �I 0.

The problem of determining dependence is sometimes decomposed into several subproblems,
one for each possible ordering relationship between the components of the vectors �I 0 and �I 00.
For example, if �I 0; �I 00 2 ZZ

2, the condition �I 0 < �I 00 can be decomposed into four cases:

I 01 < I 001 and I 02 < I 002

I 01 < I 001 and I 02 = I 002

I 01 < I 001 and I 02 > I 002

I 01 = I 001 and I 02 < I 002

In general, these cases are speci�ed using direction vectors which are of the form 	 =
( 1; : : : ;  d) where each  k is one of <, >, or = and represents the ordering relation between

7



I 0k and I
00

k . In the case of the previous example, the direction vectors are (<;<), (<;=), (<;>),
and (=; <).

There is a potential dependence for each pair of array references within the body of the loop
if at least one of them is on the lefthand side of an assignment statement. For each potential
dependence it is necessary to invoke a dependence test to determine whether or not an actual
dependence exists. When the test determines that no actual dependence exists, it breaks the
potential dependence.

A potential dependence involves coupled subscripts if it can only be broken by simultaneously
considering the subscripts in a multidimensional array reference. Of the tests described in
this chapter, only the generalized GCD and the integer programming tests are able to handle
coupled subscripts. Other dependence tests have been developed speci�cally to handle the
coupled subscript case and are described in the literature [LYZ89, WT92].

The next two sections describe in detail the data dependence tests considered in this thesis.
Section 2.2 lists the simple and approximate data dependence tests. These tests are used
because they are quick and break most of the potential dependences. Section 2.3 lists data
dependence tests based on two variations of integer programming. These dependence tests can
be used when the approximate techniques cannot break the dependence.

2.2 Simple and Approximate Dependence Tests

When fi and gi are linear functions and the loop limits are known at compile-time, the data
dependence problem described above can be solved exactly through integer programming tech-
niques. However, for reasons of e�ciency it is usually solved through one of the approximate
solution techniques described below. Also, some of the tests (constant, GCD, and Banerjee in-
�nity) can be applied even when the loop limits are not known. All the techniques discussed here
require that fi and gi be linear functions of the iteration vector �I , and that all the coe�cients
and constant terms in these functions be known at compile-time. Alternatively, research into
symbolic dependence analysis [Hag90] has shown that it may be possible to extend the reach
of dependence analysis to cover subscripts whose coe�cients are not compile-time constants.

The goal of all the approximate techniques described below is to break potential depen-
dences. Except for the generalized GCD test, these techniques work one subscript at a time.
A potential dependence is broken only if the test shows that, for some i between 1 and n,
there are no index vectors �I 0 and �I 00 that satisfy the equation fi(�I

0) = gi(�I
00). Doing the test

independently for each subscript is conservative because the system of equations may not have
a solution even if each equation does. The constant and GCD tests do not use direction vectors.
The other tests, all derivatives of Banerjee's test, are applied once for each direction vector of
a potential dependence.

2.2.1 Constant Test

The constant test has been singled out for special consideration because it has an important
characteristic: it can prove dependence. If all the subscripts in the two array references are
loop invariant and have the same value, then there will always be a data dependence for all
potential direction vectors. If any pair of corresponding subscripts are constant and di�erent,
then there will never be a data dependence regardless of the values of any other subscript.
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Let A and B be references to the same scalar variable, perhaps via equivalence. Given two
statements S1 and S2 in a loopnest, where a scalar variable A is written to in S1 and a scalar
variable B is read from in S2, it is easy to determine if a dependence exists. The �rst step is
to determine whether control can 
ow from S1 to S2. If it is impossible for the de�nition of A
to reach the use of B, then there is no dependence. If the memory locations referred to by A
and B are identical and control can 
ow from S1 to S2 then there is a dependence. The two
locations can be the same for two reasons, either the references A and B refer to the same name
in the same lexical scope, or A and B are statically aliased or equivalenced.

The constant test for array references is a simple extension of the scalar dependence test.
Assume we have statements S1 and S2 (where control 
ows from S1 to S2) that have a write
to the array X(p1; : : : ; pn) in S1 and a read from the array X(q1; : : : ; qn) in S2. If a pair of
subscripts pk and qk are invariant in the loopnest and it is statically determinable that pk 6= qk ,
then the two references are proved independent.

If it is proven that for all k in [1 : : :n], pk = qk, then we have proven that the two array
references are dependent. Simple examples of this test are to compare the array references X(1)
with X(2) proving independence, and the array references X(M+1,N) with X(M+1,N), where M

and N are loop invariant, proving dependence.

2.2.2 GCD and Generalized GCD Tests

The greatest common divisor (GCD) test establishes an existence criterion for the solution
to integer diophantine equations. This test states that if the greatest common divisor of the
coe�cients of the equation divide the constant term, then a solution exists. Conversely, if it
does not divide the constant term, then no solution can exist. The following two examples
illustrate this test.

X(2 � I) and X(2 � J + 1) X(2 � I) and X(6 � J + 4)
2 � I � 2 � J = 1 2 � I � 6 � J = 4
gcd(2; 2) = 2 gcd(2; 6) = 2

2 does not divide 1 2 divides 4
No dependence Undecided

In the �rst column it is determined that the equation generated from the subscripts is
inconsistent and has no solution. Thus, it is impossible for a dependence to exist between
the two array references because they can never access the same memory location. However,
in the second column, we have shown that a solution exists to the dependence equation. If
this solution lies in the bounds of the iteration space of the enclosing loops, then dependence
is proven. Otherwise, if the solution lies outside the bounds of the iteration space, then no
dependence exists. In either case, checking the loop bounds is outside the scope of the GCD
test.

The generalized GCDmethod is described in [Ban88] and is an extension of the GCDmethod
that considers all subscripts in a multiply dimensioned array simultaneously. To illustrate this
algorithm, consider the model loopnest shown in Section 2.1. The condition for the existence
of a data dependence is that fk(�I 0) = gk(�I 00) for all k in [1 : : :m] for some value of �I 0 and
�I 00 in the iteration space. Since only linear functions are considered, we can rewrite fk(�I

0) =
Ak0 +

Pd
i=1(AkiI

0

i) and we can rewrite gk(�I 00) = Bk0 +
Pd
i=1(BkiI

00

i ) where Aki and Bki are the
ith coe�cient of the kth equation. Therefore, the requirement that fk(�I

0) = gk(�I
00) can then

be expressed as
Pd
i=1(AkiI

0

i � BkiI
00

i ) = (Bk0 � Ak0).
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The �nal equation is actually a system of linear diophantine equations, one for each subscript
position (i.e., value of k). A requirement that must be satis�ed for the existence of an integer
solution is that the greatest common divisor of the coe�cients of the lefthand side must divide
the righthand side for all equations. A solution exists i� gcd(Ak1; Ak2; � � � ; Bk1; Bk2; � � �) divides
(Bk0 �Ak0).

If an index space �x is de�ned as (�I 0 �I 00), then the equations can be rewritten in the form
�xA = �b where A is the collection of the coe�cients of each equation, and �b are the righthand
sides of the equations. The matrix A can always be factored into a unimodular matrix U and
an echelon matrix D (with element d11 > 0) such that UA = D [Ban88]. The determinant of a
unimodular matrix is either +1 or �1, and an echelon matrix is upper triangular.

The system of diophantine equations described by �xA = �b has a solution i� there exists an
integer vector �t such that �tD = �b. Since D is an echelon matrix, the solution to �tD = �b is much
easier to determine than that of the original problem.

The generalized gcd test can only prove the independence of two array references. If a
solution exists to the set of diophantine equations, we must assume dependence, even though
we have no guarantee that the solution belongs to the iteration space of the loopnest.

2.2.3 Banerjee's Inequalities

The mathematical basis for Banerjee's inequalities is derived from the Intermediate Value The-
orem that states: Let F be a continuous real valued function in Rn. Let Bmin; Bmax denote
any two values of F on a connected set < � Rn, and suppose that Bmin � c � Bmax. Then the
equation F(x) = c has a solution x 2 <. Conversely with Bmin and Bmax the minimum and
maximum values respectively of F in <, if Bmin � c � Bmax is not true, then no solution can
exist and independence has been proven. Data dependence tests based on this formulation of
Banerjee's inequalities cannot prove dependence since only the existence of a real valued solution
has been proven which does not always imply the existence of an integer valued solution.

Banerjee's test is de�ned as follows [WB87]. Given functions f and g and a direction vector
	, it must be shown whether f(�I 0) = g(�I 00) can hold for any �I 0, �I 00 under the constraints of
the direction vector 	 and the loop bounds. In the following, the symbols Ak and Bk are the
coe�cients of the subscripts being analyzed, i.e., f(�I 0) = A0+

P
AkI

0

k and g(
�I 00) = B0+

P
BkI

00

k .
The dependence equation can be stated as follows:

dX
k=1

(AkI
0

k �BkI
00

k ) = B0 �A0

For each value of k and corresponding direction  k ( k 2 f<;>;=g), we �nd a lower and
upper bound such that:

LB kk � Akxk �Bkyk � UB kk

under the assumption that xk and yk are any real values subject to:

Lk � xk ; yk � Uk

xk  k yk

10



Summing these bounds results in the inequality:

dX
k=1

LB kk �
dX

k=1

(Akxk �Bkyk) �
dX

k=1

UB kk

or, equivalently

dX
k=1

LB kk � B0 � A0 �
dX

k=1

UB kk

If either

dX
k=1

LB kk > B0 � A0 or
dX
k=1

UB kk < B0 �A0

hold, then the functions cannot intersect under the constraints of the direction vector. Clearly,
this formulation of Banerjee's test requires that all loop limits be known at compile-time.

When the loop bounds are all constant, the test is called Banerjee rectangular. When some
of the loop bounds are a function of outer loop indices, the test is called Banerjee trapezoidal.
For Banerjee trapezoidal, the bounds are no longer limited to Lk � Ik � Uk, but to the more
general bounds

pk0 +
k�1X
j=1

pkjIj � Ik � qk0 +
k�1X
j=1

qkjIj

The constants pkj and qkj de�ne the limits in the loop nest. Other than the more complicated
equations involved, the trapezoidal variation is identical to the rectangular test.

Traditionally the most widely studied dependence tests are those based on Banerjee's in-
equalities. Banerjee [Ban88] presents a formalization of these ideas. The basis for this depen-
dence test is the ability to compute the bounds for any linear function F .

In Banerjee's test, each subscript of a multidimensional array reference is evaluated indepen-
dently. Thus, this test is not able to determine independence correctly when analyzing coupled
subscripts. Coupling occurs when the dependence can only be analyzed fully by simultaneously
considering all subscripts in the array references.

2.2.4 Banerjee In�nity Test

For program parallelization the dependence tests must be conservative. They must report all
dependences and assume dependence if independence cannot be proven. Another way of stating
this criterion is that the true dependence arcs for a given iteration space are always a subset
of the arcs present in any iteration space that is a superset of the given iteration space. Thus,
increasing the iteration space does not violate the conservative criteria.

Given an integer i in the subset of the integers allowable by the Fortran language, de�neM
to be an arbitrarily large integer such that the relationship �M < i <M holds. We expand
this notation to include any arbitrary linear function f(i) involving integers legal in Fortran
programs, of the integer i so that the relationship �M < f(i) <M is true.
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For any normalized loop where the loop index is bounded by 0 � I � N with the assumption
that 0 � N , we can rewrite this constraint as 0 � I �M. Since the iteration space [0 : : : N ] is
a subset of the iteration space [0 : : :M], any dependence arcs found over [0 : : : N ] will also be
found in the iteration space [0 : : :M].

The in�nity test is the same as the rectangular Banerjee test if one assumes that all loops
are normalized, to have a lower bound of 0 and an upper bound ofM. The appropriate changes
are made in the Banerjee rectangular algorithm to accomplish this.

2.3 Integer Programming Based Dependence Tests

Data dependence analysis of linear array references is equivalent to deciding if there is an in-
teger solution to a set of linear equalities and inequalities [SM89]. Therefore, it makes sense
to consider using integer-programming-based methods in the experiments. Mathematical pro-
gramming whether linear or integer requires the use of an objective function. The goal is either
to minimize or maximize an objective function. Dependence analysis is interested in the exis-
tence or non-existence of a solution. Thus, the choice of the objective function has little impact,
but may alter the order in which the iteration space is searched.

The integer programming problem can be stated as: Does there exist �x such that A�x = �b,
B�x � 0, �x � 0, for integer �x. In this formulation, the matrix A refers to the coe�cients of the
equalities, and the matrix B refers to the coe�cients of the inequalities describing the bounds
of the iteration space.

General integer programming techniques have many advantages over the approximations
mentioned in the previous sections. The ability to consider simultaneously all subscripts of an
array reference allows this dependence test to analyze coupled subscripts correctly. A�ne loop
bounds are incorporated naturally into the inequality matrix. Execution constraints such as
covering conditionals can be introduced into the dependence equations.

In the literature, it has been reported that the linear programming approximation to the
full integer programming algorithm is su�cient in most cases [MHL91].

2.3.1 Simplex Based Integer Programming Test

Several methods are available to solve the integer programming problem. One method of
implementation is the Branch and Bound algorithm. This algorithm works by �rst solving the
real valued linear programming problem using the simplex method. The solution is checked to
see if it is integral. The �rst non-integer component (xi) is selected and is used to create two
new integer programming problems with new constraints. The �rst problem is the same as the
original problem with the additional constraint xi � bvalue of xic. The second problem is the
same as the original problem with the additional constraint xi � dvalue of xie. This constraint
process generates a binary tree of problems that repeatedly divide the iteration space.

In e�ect, the Branch and Bound algorithm does an exhaustive search of the iteration space;
however, it optimizes the search. Any region of the iteration space that does not have at
least a real valued solution will not be searched for an integer solution. Once an integral
solution is found, the process stops and reports success. The implementation of the Branch and
Bound algorithm reported here requires that all variables have non-negative values, and that
the iteration space is bounded.
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2.3.2 Omega Test

The Omega Test [Pug91] is an extension of the Fourier-Motzkin linear-programming algorithm
allowing integer constraints on the solution vector. In addition to supporting the full capabilities
of integer-programming, the Omega Test also permits the systematic handling of unknown
additive terms. Consider the subscripts X(I+N) and X(I0) where 1 � I, I0 � N (I and I0

are lexically the same variable). The Omega Test supports the addition of N as an unknown
constrained variable. After the addition of the loop limit, we �nd that the system of equations
is inconsistent since I+N 6= I0 for all I, I0 in [1: : :N].

We will use the Omega Test as the �nal data dependence test in the experiments. Currently,
the Omega Test is the most accurate data dependence test with a practical implementation in
existence.
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Chapter 3

THE DELTA PROGRAM

MANIPULATION SYSTEM

3.1 Introduction

The ability to investigate a new concept rapidly can enhance the productivity of a researcher.
By allowing new ideas to be quickly prototyped, the researcher can exhibit the feasibility of
hypothetical ideas and demonstrate their practicality. This chapter describes a prototyping
tool that can be used to explore concepts in restructuring compilers.

We believe that providing compiler writers with a prototyping tool will accelerate the devel-
opment of more robust compilers and new applications for the compiler techniques. In addition,
such a tool can serve as an open experimental laboratory to augment the textual curriculum in
compiler construction.

The initial implementation of the Delta Program Manipulation System (Delta) [Pad89] is
targeted to the Fortran 77 source language. The core of Delta is an open system of functions
embedded in the SETL language [Sny90, Lev89]. A Delta user composes these functions to
create various kinds of \value-added" Fortran 77 pre-processors.

The inspiration for Delta came in part from the symbolic algebra environments that have
evolved over the years. Systems such as Macsyma, Reduce, Maple and Mathematica create an
environment to interactively explore mathematical equations. A user enters an equation into
the system, applies a transformation, and is immediately presented with the result. This instant
feedback allows the method of experimentation used to be incrementally altered depending on
the result from the previous operation.

Delta has been designed to perform the same role as a symbolic algebra system, but for a
di�erent problem domain. A Fortran compilation unit will replace the equation as the elemental
object in Delta. Function application is the method used in Delta for applying transformations
to each compilation unit.

Another source of inspiration derives partly from Knuth's dream of programming by means
of languages+program manipulating editors. It is possible to think of Delta as a programmable
editor that performs semantic editing of Fortran compilation units.

Source-to-source transformations are a common way of adding functionality to a compilation
unit. In the case of Delta, all transformations work with Fortran 77 plus annotations. With
the addition of dynamic memory allocation to the target language, it is possible to express
all other transformations as annotations to the source language. Many transformations are

14



possible at the source code level, including some common scalar optimizations and source
annotations to indicate vectorization or parallelization. Instrumenting a compilation unit can
also be viewed as a program transformation. This chapter will illustrate the application of
Delta to an instrumentation task.

3.2 The SETL Language

SETL was developed at the Courant Institute [SDDS86] for the purpose of facilitating program
development using standard mathematical expressions to operate on the intrinsic data types. In
SETL and the examples that follow, the '$' symbol will be used to start a source comment that
extends to the end of the line. The elemental data types in SETL include booleans, unrestricted
integers, reals, character strings and functions. The symbol OM is de�ned to represent an
unde�ned value. It is returned as an error condition by operations that have an unde�ned
result and generally can be used to indicate an unknown or unde�ned value. The compound

Tuples: [1, 4, 9, 16]; $ First four perfect squares.

Sets: f2, 7, 3, 5g; $ First four prime numbers.

Maps: f["one", 1], ["two", 2], ["three", 3]g;$ Function from names to numbers.

Figure 3.1: Example SETL datatypes

data types in SETL, as shown in Figure 3.1, are the ordered collection called a tuple, and a
unique unordered collection called a set. Sets and tuples may contain any datatype as elements.
A special kind of set is called a map. A map is a set of 2-tuples whose �rst elements are
unique. A map can behave like a discrete function from the �rst element of each tuple to the
corresponding second element. Maps are used in Delta to represent databases such as symbol
tables, statement tables, and property lists of various program constructs.

SETL is an imperative language whose control constructs follow the Algol family of lan-
guages. However, SETL has also inherited many properties from Lisp. Functions in SETL
are �rst class objects, arguments are passed by value, and data are stored in dynamic heap
allocated memory with garbage collection.

SETL supports multiple assignment using a tuple as the lefthand side of an assignment
statement. The statement [a, b] := [1, 2]; is similar to the two statements a := 1; b :=

2;. However, notice that the righthand side is evaluated in its entirety before the lefthand side;
thus, to swap two variables the statement [x, y] := [y, x]; would be su�cient.

The current implementation of Delta is written in a restricted subset of two dialects of SETL.
The syntax of the language implemented in the ISETL2 [Lev89] interpreter is used to create the
source code except where similar constructs are not available in the SETL2 [Sny90] compiler.
Thus, the language used is the intersection of the capabilities available in the implementations
of ISETL2 and SETL2. Other features of SETL that are needed in this chapter will be described
as they are used.
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3.3 Organization of Delta

Delta has two main components. The �rst is a scanner, which translates a sequence of syntac-
tically correct Fortran 77 compilation units into a sequence of SETL data objects referred to in
this section as program objects. The second component of Delta is a collection of SETL func-
tions that operate on components of these translated compilation units (or program objects).

The organization of the Delta program object, which represent a program compilation unit
(subroutine, function, block data, or main program), is a nested collection of SETL data ob-
jects. The Delta program object is designed to be self-documenting and verbose (even wordy),
at the great expense of e�ciency. To accomplish the documentation, �eld names in the pro-
gram object are represented as character strings. The top-level structure of this object is a
map from the domain f"symtab", "routine type", "initial statement", "expression",

"statements"g onto their values. Other optional �elds may also be present at the top-level as
required to represent features of the Fortran source code.

Each value of the top-level structures in the program object belong to a set of possible val-
ues. The �eld "routine type" is a member of the set f"ROUTINE", "FUNCTION", "PROGRAM",

"BLOCKDATA"g. The "initial statement" �eld contains a statement tag that names the lex-
ically �rst statement in the (otherwise unordered) statement table. The "symtab" �eld is a
database containing the program's symbol table. This database is implemented as a map from
each identi�er onto a map describing the properties of that identi�er. The "expression"

�eld is a tuple of expression nodes containing explicit trees for the expressions represented in
the original Fortran source code. The last required �eld is the "statements" database. The
"statements" database is a map from statement tags onto maps describing the properties of
each statement.

Statement tags are an arbitrary character string. The scanner creates tags of the form "Sn"

where n ranges from 1 to the number of statements in the compilation unit. Therefore, "S1",
"S2", and "S34" are all examples of statement tags.

[f["op","INTEGER CONSTANT"],["value",123],["type","INTEGER"]g, $ expression (1)

f["op","INTEGER CONSTANT"],["value",321],["type","INTEGER"]g, $ expression (2)

f["op","+"],["type","INTEGER"],["args",[1,2]]g] $ expression (3)

Figure 3.2: Exploded form of expression 123+321

[f["op","+"],["type","INTEGER"],["args",
[ f["op","INTEGER CONSTANT"],["value",123],["type","INTEGER"]g,
f["op","INTEGER CONSTANT"],["value",321],["type","INTEGER"]g]]g]

Figure 3.3: Imploded form of expression 123+321

Two forms of expressions are maintained inside Delta. We can refer to these forms as the
\exploded" form (Figure 3.2), stored in the expression table, and the \imploded" form (Figure
3.3), used by most Delta functions. Delta maintains the ability to operate on both forms for
the 
exibility that each form provides.
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SETL has no primitive pointer datatype. Therefore, SETL cannot copy an explicit pointer
to an object and then modify the object referenced by the pointer. Because of this lack, in the
\exploded" form (Figure 3.2) the expression table indices are used as a form of pointer. The
children of an expression node are indicated by their corresponding indices in the expression
table. The \imploded" form (Figure 3.3) represents the same information as that contained in
the \exploded" form except that instead of pointing to the node's children, the children are
nested within the expression.

3.4 Using Delta to Instrument Fortran Programs

Instrumenting a source �le to obtain program statistics is a common way of measuring a pro-
gram's behavior. In this chapter, we discuss the instrumentation of a Fortran program. The
instrumentation described next is a simple form of execution analysis that summarizes the time
spent in each loop nest. More complex instrumentation methods are discussed in Chapters 4
through 10.

One common use of program instrumentation is to collect an execution pro�le. The partic-
ular execution pro�le considered in this chapter is the time spent in the lexical loop nests of a
program. Determining the execution time of a loop nest is important because those loops that
consume the largest portion of the execution time are prime candidates for optimization. It is
possible to consider all loops in a program, but instrumenting inner loops may add signi�cant
overhead to the execution without providing any signi�cant information. Thus, for this example
we will only compute the execution time of the outermost loop. To simplify the instrumentation
library, all instrumentation intervals (i.e., lexically outermost loops) are uniquely identi�ed by
an integer. A mapping from these integers to a line in the source code is required to generate
an understandable report. The instrumentation revolves around an interval �le that contains
this mapping of interval numbers to source code locations. The interval �le is generated during
the instrumentation process, and it is used during the program's execution.

We now describe an example of how the �nal instrumentation will look. The instrumentation
algorithm is described in the next section. Consider a program consisting of two �les, test.f
and subs.f. The �le test.f shown in Figure 3.4 contains the main program TEST. Figure
3.5 lists the two subroutines, IDENT and MATMUL, that reside in the �le subs.f. This example
program initializes two matrices B and C to the identity matrix, multiplies the matrices, places
the result in the matrix A, and outputs the result.

The Fortran parser used by Delta normalizes the input source code to minimize the syntactic
di�erences between programs. In this example the DO loops are converted to the more modern
DO-ENDDO form, all variables are explicitly declared, and the loop nesting structure is properly
indented.

The instrumentation library we describe consists of four subroutines. The �rst initializes
the interval structure for the program. A call to INIT INTERVALS(interval-�le) initializes and
loads the name of each interval that will be encountered during the program's execution. The
next subroutine, EXIT INTERVALS(summary-�le), writes the summary of the execution infor-
mation for each loopnest to summary-�le. The other two subroutines, START INTERVAL(n) and
END INTERVAL(n), delineate the beginning and end of each outermost DO loop. A di�erent in-
teger n is assigned to each interval. Figures 3.6 and 3.7 re
ect the result after instrumentation.
The symbol ) is used to mark the statements that were added as part of the instrumentation.
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PROGRAM TEST

PARAMETER (N=10)

REAL A(N,N), B(N,N), C(N,N)

CALL IDENT(B,N)

CALL IDENT(C,N)

CALL MATMUL(A,B,C,N)

DO 1 J = 1, N

1 PRINT *, (A(I,J), I=1,N)

END

Figure 3.4: The original source �le test.f

SUBROUTINE MATMUL(A,B,C,N)

REAL A(N,N), B(N,N), C(N,N)

DO 2 I = 1,N

DO 2 J = 1,N

X = 0.0

DO 3 K = 1,N

3 X = X + B(I,K) * C(K,J)

2 A(I,J) = X

RETURN

END

SUBROUTINE IDENT(A,N)

REAL A(N,N)

DO 4 I = 1, N

DO 5 J = 1, N

5 A(I,J) = 0.0

4 A(I,I) = 1.0

RETURN

END

Figure 3.5: The original source �le subs.f
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PROGRAM TEST

EXTERNAL IDENT, MATMUL

REAL A, B, C

INTEGER I, J, N

PARAMETER (N=10)

DIMENSION A(N, N), B(N, N), C(N, N)

) CALL INIT INTERVALS('LOOPS.intvl')

CALL IDENT(B,N)

CALL IDENT(C,N)

CALL MATMUL(A,B,C,N)

) CALL START INTERVAL(1)

DO J = 1, N, 1

PRINT *, (A(I,J),I=1,N)

ENDDO

) CALL END INTERVAL(1)

) CALL EXIT INTERVALS('LOOPS.sum')

STOP

END

Figure 3.6: The instrumented source �le test.fi

SUBROUTINE MATMUL(A,B,C,N)

REAL X, A, B, C

INTEGER I, J, N, K

DIMENSION A(N, N), B(N, N), C(N, N)

) CALL START INTERVAL(2)

DO I = 1, N, 1

DO J = 1, N, 1

X = 0.0

DO K = 1, N, 1

X = X+B(I,K)*C(K,J)

ENDDO

A(I,J) = X

ENDDO

ENDDO

) CALL END INTERVAL(2)

RETURN

END

SUBROUTINE IDENT(A,N)

REAL A

INTEGER I, J, N

DIMENSION A(N, N)

) CALL START INTERVAL(3)

DO I = 1, N, 1

DO J = 1, N, 1

A(I,J) = 0.0

ENDDO

A(I,I) = 1.0

ENDDO

) CALL END INTERVAL(3)

RETURN

END

Figure 3.7: The instrumented source �le subs.fi
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1 TEST:7

2 MATMUL:3

3 IDENT:14

Figure 3.8: Generated interval �le, LOOPS.intvl

This type of program instrumentation is possible with the use of a wide variety of tools
ranging from awk scripts to custom application programs. It is our intent to show that with the
assistance of a prototyping environment, such as Delta, it is easy to synthesize a transformation
from the primitive functions.

The �le LOOPS.intvl, shown in Figure 3.8, contains the mapping of interval numbers onto
interval names. For this example the �rst loop is at line 7 of the main program, the second
loop is at line 3 of the �le containing the routine MATMUL, and the third outermost loop is at
line 14 of the second �le that also contains IDENT.

3.5 Delta Function De�nitions for Instrumentation

The instrumentation task, as de�ned in Section 3.4, is to add timing calls to all outermost
loops in the program. Approaching this task in a top-down manner, we �rst de�ne the driver
to iterate over the Fortran source �les and the compilation units included in each source �le.

Delta provides a standard interface to the Unix command line when used as a compiled
stand-alone application. The design of the top level driver will accommodate the compiled
Delta interface and will also be useful as an interactive function. The compiled Delta interface
calls a function named main() when executed, passing the Unix command line arguments as a
tuple of character strings.

In this function, we wish to supply a tuple of Fortran source �le names and have all the
compilation units in each of the source �les instrumented and written to �les with the same
root name as the original �le name but with the �le name extension of ".fi" instead of ".f".

The �rst statement in the function (shown in Figure 3.9) de�nes the options passed to the
scanner when it is invoked. The options variable contains a database of global con�gurations
for Delta. The "+line" directive to the scanner instructs it to add source line numbering
information to each program object. This directive gives us a unique correlation between
statements in the Delta program object and lines in the original source �le. This 
ag is disabled
by default to conserve memory.

The main() routine is designed to accept an optional command line switch, "-r". If this
switch is present on the command line, then the required parameter to the switch is the root
for the name of the interval �le; otherwise the root will default to the �le name "LOOPS". The
�le name extension of the interval �le will always be .intvl". Thus if the "-r" switch is not
speci�ed, the interval �le name defaults to "LOOPS.intvl".

The Delta function getopt() mimics the behavior of the Unix library function of the same
name [ATT]. In this example, the getopt() function scans the args tuple to �nd a switch of
the form "-r root". The function then removes the switch and its argument from the args
list, installs ["root"] as the value of the database 
ags for the index "r", and returns the
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main := func( args );

local do_loops, f, fd, flags, i, root;

options("scanner") := " +line ";

[ flags, args ] := getopt( "r:", args );

root := (flags("r") ? ["LOOPS"])(1);

do_loops := [];

for f in args do

fd := openw( f + "i" );

foreach_compilation_unit( f,

func(pgm_unit);

local pgm;

[pgm, do_loops] :=

instrument_program(pgm_unit,root,do_loops);

write_program_fd( pgm, OM, fd );

end);

close( fd );

end for;

$ Create the file to map interval numbers to loop names

fd := openw( root + ".intvl" );

for f = do_loops(i) do

writeln i, " ", f to fd;

end for;

close( fd );

return OM;

end;

Figure 3.9: Driver function for instrumentation process
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database along with the updated argument list. This database is a set of two-tuples where the
�rst element of the tuple is the switch character and the second element is the value.

Since we are requiring an argument for the "-r" switch, the value in the 
ags database will
be a tuple of values. This behavior is de�ned because the command line switch may be speci�ed
multiple times. The statement root := (flags("r") ? ["LOOPS"])(1); �nds the tuple for

ag "-r" and assigns the �rst element of the tuple to the variable root otherwise if defaults to
the name "LOOPS".

Next we initialize the variable do loops to the empty tuple to signify that no loops have
been encountered, and iterate over the �les that remain in the argument list. In each iteration
we �rst open a �le for the instrumented program; then we call the generic routine to handle
invoking the scanner on the Fortran source code.

The function foreach compilation unit() takes two arguments. The �rst argument is
the name of the Fortran source �le to load. The second argument is a function that will be
applied to each compilation unit in the source �le. The value returned by the SETL function
foreach compilation unit() is a tuple of the values resulting from the application of the
second functional argument. For this example, the responsibility of the invoked anonymous
function is to instrument the compilation unit, accumulate the list of loops, and write the
modi�ed program to the open �le descriptor.

This programming style takes advantage of the scope rules for variable nesting. Because
the anonymous function was created inside the function main(), it has access to all of main()'s
local variables. In this manner, the variable do loops can be updated and communicated to
the rest of the function without the use of a global variable.

As the last operation of the loop iteration, the �le descriptor for the output source �le is
closed before processing the next input source �le. To conclude the instrumentation the interval
�le must be written. We open the interval �le, write out the index and name associated with
all the loops that have been instrumented, and close the �le.

3.5.1 Routine Instrumentation

Next, we describe the function (Figure 3.10) responsible for determining where to add the
instrumentation calls. The arguments to this function are the compilation unit to instrument,
pgm, the name of the intervals �le, root, and a list of the loops already processed.

The �rst function call to the routine, setup(), handles analysis such as annotating the
program object with a 
ow graph, and in-out sets for each statement. After the preliminary
preparations are complete, a copy of the name of the compilation unit is stored in the local
variable name to ease future use. If a name was not declared for the compilation unit, then the
default will be the empty string.

Notice the special format of the expression using the ? operator. As mentioned in Section
3.2, SETL uses OM as an object to represent an unde�ned value. The ? operator returns its left
operand if it is not OM; otherwise it returns its right operand. A more verbose and expensive
method would be to use the statement name := (if routine name(pgm) = OM then "" else

routine name(pgm) end if);.
The instrumentation we are performing requires that an interval �le containing the mapping

from interval identi�ers to interval names be opened at the beginning of the program's execution
and closed at the end of the program's execution. The call to "INIT INTERVALS" should only
be placed as the �rst executable statement in the main program. To �nd this location we check
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$ Instrument a compilation unit to add the interval tracing statements.

instrument_program := func( pgm, root, do_loops );

local name, s, stmt;

pgm := setup(pgm);

name := routine_name(pgm) ? "";

if pgm("routine_type") = "PROGRAM" then

s := first_ENTRY( pgm ) ? pgm("initial_statement");

pgm := instrument_add_call( pgm, s, "INIT_INTERVALS",

COMMA([CST("'"+root+".intvl'")]));

end if;

for s in list_stmts(pgm) do

stmt := pgm("statements")(s);

if stmt("st") = "DO" and stmt("outer") = OM then

do_loops := do_loops with

(if stmt("line") /= OM then

name+":"+integer_to_string(stmt("line"))

else

name+":$"+integer_to_string(#do_loops+1)

end if);

pgm := instrument_add_call( pgm, preceding_stmt(pgm, s),

"START_INTERVAL", COMMA([CST(#do_loops)]));

pgm := instrument_add_call( pgm, matching_enddo(pgm, s),

"END_INTERVAL", COMMA([CST(#do_loops)]));

elseif stmt("st") = "STOP" then

pgm := instrument_add_call(pgm, preceding_stmt(pgm, s),

"EXIT_INTERVALS", COMMA([CST("'"+root+".sum'")]));

end if;

end for;

return [pgm, do_loops];

end;

Figure 3.10: Function to instrument a compilation unit
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the "routine type" of the compilation unit to see if we are currently operating on a routine of
type "PROGRAM". If we are working on the main program, we insert the initialization call either
after the entry point, if the program was written with an explicit PROGRAM statement, or after
the initial executable statement if no PROGRAM statement was found.

The arguments to a subroutine or function call are children of a "," expression node. The
"," node is created with a call to the Delta function COMMA(). A constant expression node is
created with the CST() call, where the type of the node is determined from the type of the SETL
object passed as its argument. An integer will be of Fortran type INTEGER, a character string
starting with "'" is the Fortran type CHARACTER and otherwise a character string is of Fortran
type REAL. The SETL expression COMMA([CST("'"+root+".intvl'")]) creates an imploded
argument list with one argument that is a Fortran character string.

Next we want to iterate over the statements in the program and add the instrumentation
calls at the appropriate points in the compilation unit. The function list stmts() returns a
tuple of statement tags in lexical order for the compilation unit. For each statement in the
program we copy the statement properties into a local variable to simplify the access to the
�elds.

If the statement is a DO loop header, we may need to add instrumentation calls to the loop.
We need to check if this loop is nested inside any other loop. The "outer" �eld in the statement
contains the statement tag of the lexically enclosing loop. If this statement is the outermost
loop, then the "outer" �eld will not be present and a reference to that �eld will return the
value OM.

The interval for this loop will now be de�ned. If the scanner added a "line" �eld to each
statement (as requested by the "+line" directive to the scanner), then we will concatenate the
name of the routine with the line number of the loop to be used as the name of this interval. The
position in the do loops list is the interval number. The SETL expression #do loops returns
the length of the do loops tuple. If the scanner did not insert a line number, then we will
sequential number the loops as they are encountered. Finally we add the "START INTERVAL"

and "END INTERVAL" calls before and after the loop.
This almost completes the instrumentation of the loops in the compilation unit. We may

need to add a call to close the interval �le when the program terminates. In Delta, the only way
a program may terminate is for it to execute a Fortran STOP statement. Thus, by searching for
every STOP statement in each compilation unit and adding a call to "EXIT INTERVALS" before
the STOP statement, we are assured to call this routine wherever the program could possibly
terminate.

The instrument program() routine returns the modi�ed program object and the current
list of loops to the calling routine. This function is structured to return these values to eliminate
access to global variables and strictly limit the communication between functions to values
explicitly passes as arguments and the values returned as results from the functions.

Figure 3.11 de�nes a support function to add a CALL statement to the program. In Delta
a CALL statement is represented as a map that includes an entry for the name of the called
routine along with an entry for the arguments at this call site. The function make call stmt()

creates an entry in the statement table representing a "CALL" statement to the routine speci�ed
by the variable name with the argument list referenced by e.

The function explode args tree() translates from the \imploded" form of an expression
tree and installs it as the \exploded" form in the compilation unit's expression table. The values
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$ Make a CALL statement after line <s>

$ to routine <name> with <args> in <pgm>.

instrument_add_call := func( pgm, s, name, args );

local e, t;

[pgm, e] := explode_args_tree(pgm, args);

[pgm, t] := make_call_stmt(pgm, name, e);

return add_after_stmt( pgm, s, t );

end;

Figure 3.11: Support function to create and link a CALL statement into a program

returned from this function are the modi�ed compilation unit and the index of the expression
in the expression table.

Finally, we complete this support function by linking the new call statement t, into the
program, lexically after the statement speci�ed as the function's argument s. These three
SETL functions (Figures 3.9, 3.10, and 3.11) constitute a solution to the problem of adding
instrumenting call statements around outermost loops.

3.6 Possible Enhancements

The example in this chapter illustrates well the concepts of a prototyping environment. How-
ever, the implementation of this instrumentation strategy is missing a feature that is allowable
in Fortran. Assume a loop, with an exit from within the loop. The "EXIT INTERVAL" call may
not be made when the loop is actually terminated. Luckily, because the full power of Delta is
available, it is trivial to add the enhancements to detect when a branch of some kind leaves the
scope of the loop. Other transformations are also possible and may bene�t from the ability of
Delta to compute data
ow, control dependence or data dependence information along with any
other static analyses one might wish to implement.

3.7 Conclusion

Delta is the environment used to implement the experiments in this thesis. Without the use
of systems such as Delta, it would have been more di�cult to �nish the work described in the
other chapters.

Through the use of a simple example, we have shown that it is possible to build an open,
extensible prototyping environment for restructuring compilers. We have found that because
of the concise nature of the SETL language, along with the 
exible self documenting data
structures and garbage collection of dynamic objects, we can rapidly design and implement
many transformations. It is our desire that tools such as Delta can be used to help with
the development of new techniques and be used as a tool to educate the next generation of
restructuring compiler writers.
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Chapter 4

CRITICAL PATH ANALYSIS

4.1 Introduction

Compilers that translate sequential programs into semantically equivalent parallel or vector
forms, known as parallelizing compilers [KKP+81, PW86], are an integral part of most super-
computers and have a signi�cant in
uence on their performance. Despite their importance,
there have been few attempts to evaluate systematically the e�ectiveness of parallelizing com-
pilers, even though such evaluation is necessary to compare the e�ectiveness of di�erent trans-
lation strategies and would be of great help in determining which techniques would bene�t from
further development [Blu92].

Two main approaches have been followed in the past to evaluate parallelizing compilers.
The �rst measures the execution time of a sequential program or synthetic DO loop and that of
the parallelized version, and uses the ratio

speedup =
execution time of sequential program

execution time of automatically parallelized program
(4.1)

or just the denominator as a measurement of translation e�ectiveness. The execution times in
equation (4.1) are measured either by executing the program on a parallel computer or by static
estimation [KBC+74, Lee80, KSC+84]. The second approach uses a collection of synthetic DO

loops to evaluate the parallelizer by counting how many, and observing which loops it parallelizes
[CDL88]. Both of these approaches produce useful but incomplete information. We believe other
complementary approaches are necessary to improve our understanding of the performance of
parallelizers.

In this chapter we describe a new approach to evaluating parallelizing compilers that is
easy to apply and provides important information that cannot be obtained by following the two
traditional approaches just discussed. The method we propose, described in sections 4.2 and
4.3, measures the program parallelism missed by the parallelizer by comparing the execution
time of the automatically parallelized program with an upper bound of the optimal parallel
execution time. The information provided by this analysis should be very useful for improving
the parallelizer and for studying the e�ectiveness of parallelization.

In section 4.4 we use this approach to evaluate the e�ectiveness of a commercially available
parallelizer, KAP/Concurrent [Kuc90], on a few linear algebra kernel routines from Numerical
Recipes [PFTV88] and a selection of the Perfect Benchmarks R
 [Per89] programs.

26



4.2 Overview of the Evaluation Method

In the method described here, the translation quality of a parallelizer is evaluated by comparing
the execution time of the parallelized program with an upper bound of the optimal parallel
execution time. Both the execution times and the upper bound are computed assuming an ideal
machine that has an unlimited number of processors and therefore can exploit an unbounded
amount of parallelism. In the work reported here, we assume that in the ideal machine each
arithmetic operation, memory write, and intrinsic function invocation consumes one unit of
time. All other activities | including forking and synchronization overhead, memory reads,
and I/O | are assumed to be free. This choice was made in part for historical reasons, but
mainly because we felt that evaluating execution time in this way re
ects the characteristics of
the programs in a machine-independent manner. For example, the overhead for synchronization
and forking is clearly a function of the target machine and not of the program, and therefore we
decided to ignore such times. Also, in many machines it is possible to overlap the execution of
operations with memory reads and writes. We decided to represent this occurrence by ignoring
the time to do memory reads. Clearly, the choices we have made could be the subject of debate,
but we believe that substantially the same results as reported below would be obtained with
any other sensible choice. The assumption that the ideal machine has an unbounded number of
processors also contributes to making the evaluation machine-independent. However, complete
machine-independence in this regard is not always possible because some parallelizers may
restrict the parallelism they exploit due to some architectural characteristics of the target
machine. For example, parallelizers for the Alliant FX/80 [All85] attempt to exploit only one
level of loop parallelism.

The upper bound on the optimal parallel execution time used for our evaluation is the
maximum length over all 
ow-dependence chains generated by an execution of the program.
This value is computed by instrumenting the program to keep track of all memory references as
discussed below. This instrumentation strategy was developed by Kumar [Kum88] to measure
the implicit parallelism present in a program. This technique was later used by Yew and Chen
[Che89, CSY90] to measure other important program characteristics. Several other authors have
used similar approaches to measure inherent parallelism [NF84, KBG90, Fu90]. In the work
reported here, the e�ects of the output- and anti-dependences are disregarded because these
dependences can always be eliminated, although sometimes at a high cost, through storage
management transformations performed by the parallelizing compiler.

Our proposal is to use the ratio

execution time of automatically parallelized program

upper bound of optimum parallel execution time
(4.2)

to estimate, on the ideal machine described above, how close the speedup produced by the par-
allelizer is to the best possible speedup. We believe this is a good indication of the e�ectiveness
of a parallelizer on a particular program because it takes into account the potential parallelism
present in the program. This approach is similar to that used to evaluate page replacement
strategies by comparing their behavior to an optimal strategy such as OPT [Bel66]. One di�er-
ence is that it is not possible for us to obtain the optimal execution time because parallelizers
can (and often do) apply algorithm substitution. For example, parallelizing compilers may elim-
inate induction variables and replace recurrence solvers and matrix-multiplication loops with
invocations to library subroutine. Finding all the algorithms in a program and replacing them
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with the best possible algorithm in existence is, in general, not possible. Therefore instead of
computing an optimal execution time, we compute an upper bound that should still be useful
to help us in the evaluation process.

Because parallelizing compilers may change some algorithms, the execution time of the auto-
matically parallelized program could be less than the upper bound computed by instrumenting
the program. To avoid this problem, the upper bound of the optimal parallel execution time is
computed by instrumenting the automatically parallelized program, not the original program.
In this way the upper bound is computed only after all the algorithm substitutions have taken
place, and therefore the following inequality is guaranteed to hold:

execution time of automatically parallelized program

upper bound of optimal parallel execution time
� 1 (4.3)

The instrumentation approach we use is valid only for sequential programs. Therefore, the
automatically parallelized program has to be serialized before it is instrumented. This is easy
for the parallelizer we evaluate in this chapter, where serialization can be done just by ignoring
the generated annotations.

In our work we compute two upper bounds of the optimal execution time. For the �rst
upper bound, no restrictions are made. This corresponds to the maximum length of the

ow-dependences computed between operations and therefore assumes that parallelism at the
operation-level can be exploited. The second upper bound restricts the program to loop-level
parallelism. The loop-level parallelism restriction is implemented by assuming an arti�cial con-
trol dependence from each statement in the program to its sequential successor in the serial
execution unless the two statement instances are in di�erent iterations of the same DO loop
nest. The operation level upper bound gives us an estimation of the total amount of parallelism
available. The loop-level parallelism is used because today's parallelizers deal almost exclusively
with the extraction of parallelism at the loop-level.

The two types of upper bounds (operation and loop level) were also used by Yew and Chen
for the MaxPar project [Che89, CSY90]. However, they allow the concurrent execution of
iterations from disjoint loop nests. Our approach is more restricted. At the loop-level, we only
allow the statements in di�erent iterations of the same loop nest to execute concurrently. This
restriction should allow a better correlation between the automatic parallelization tools and our
simulations.

4.3 Implementation

The approach to program instrumentation that is used in this experiment is similar to the
method used by M. Kumar [Kum88]. We chose this approach because it is e�cient enough to
allow us to run several programs with large execution times that are costly to process through
MaxPar because of resource limitations.1 In addition to the instrumentation of sequential
programs, we added the ability to instrument explicitly parallel programs as generated by
KAP/Concurrent [Kuc90]. Furthermore, the existence of two instrumentation systems, MaxPar
and ours, has the additional advantage that the replication can aid in the debugging of both
systems because we can compare the results and make corrections when discrepancies arise.

1MaxPar is able to compute more parameters than our system. The instrumented code has a subroutine call

inserted after each primitive operation to collect the timing information. This makes the system 
exible but has

a detrimental e�ect on performance.

28



Parallel Fortran

Fortran 77

KAP/Concurrent

Critical Path Instrumentation

Compiler Exploited
    Parallelism

 Implicit
Parallelism

Figure 4.1: General experiment overview

The implementation of the instrumentation tool described below was facilitated by the Delta
program manipulation system described in Chapter 3. Figure 4.1 illustrates the major steps we
followed in the experiment reported here. First the original source code is transformed through
KAP to obtain the reference program. Using this reference program as the base, the program is
instrumented to compute the run-time behavior on the target machine. Figure 4.1 shows that
two versions of the program are created. One evaluates the execution time of the automatically
parallelized program on the ideal machine. The other version computes the implicit parallelism
as an upper bound on the optimal parallel execution time. Furthermore, the implicit parallelism
is computed in two ways as discussed above, namely loop and operation level.

Throughout this section the reader should remember that, even though we are discussing
parallelism in its various forms, all experiments were done on a sequential computer. In the rest
of this section we describe the way that programs are instrumented by our system to compute
the sequential and parallel execution times on the ideal machines. The instrumentation code
accurately computes the execution time of the ideal machine in terms of operations that are
accumulated during the execution. The instrumented code reveals the 
ow-dependences implicit
in the program's execution. The 
ow-dependences are used to derive the upper bounds of the
optimal execution time.

In section 4.3.1 we present the instrumentation used to count the number of arithmetic op-
erations in the program that corresponds to the sequential execution time on the ideal machine.
In section 4.3.2 we brie
y describe KAP/Concurrent and its target parallel language. This is
the parallelizer used for the experiments in section 4.4. KAP/Concurrent is a Fortran source-
to-source preprocessor that discovers loop-level parallelism. The result of this preprocessor is a
program written with Concurrent's parallel programming directives (similar to the PCF Fortran
[Par90] parallelism speci�cation) to represent the parallelism. In section 4.3.3 we discuss the
instrumentation used to measure the execution time of the automatically parallelized program,
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and from section 4.3.4 to 4.3.8 we discuss how the upper-bound to the optimal execution time
is computed.

4.3.1 Measuring the Sequential Execution Time of the Parallelized Program

To compute the sequential execution time on the ideal machine, the output of the parallelizer is
instrumented and then executed. For KAP/Concurrent, the restructured program is annotated
with compiler directives indicating where parallel activity is requested. By disregarding these
directives, we have a sequential program to use as the basis for these experiments.

The code is instrumented with a common block in each of the subroutines that allows the
operation count, N$N, to be accumulated in a single shared variable across the entire program.
The value of this operation count at the end of the program is our sequential execution time.
To decrease the number of operations in the instrumented program, the operation count is
incremented only once in each block of assignment statements.

Consider, for example, the following subroutine.

S1: SUBROUTINE DAXPY(N,DA,DX,DY)

S2: DIMENSION DX(*), DY(*)

S3: IF (N .LT. 1) RETURN

S4: DO I = 1, N

S5: DY(I) = DY(I) + DA*DX(I)

S6: ENDDO

S7: END

After the operation count phase of the instrumentation has been completed, the subroutine
has the form as shown next.

S1: SUBROUTINE DAXPY(N,DA,DX,DY)

S2: DIMENSION DX(*), DY(*)

COMMON /N$NBLOCK/ N$N

I1: N$N = N$N + 1

S3: IF (N .LT. 1) RETURN

S4: DO I = 1, N

S5: DY(I) = DY(I) + DA*DX(I)

I2: N$N = N$N + 3

S6: ENDDO

S7: END

Statement I1 counts the operation in S3, and I2 counts the three operations, two arithmetic
operations and one memory write, in S5. Notice that array o�set computations, memory
reads, and the bookkeeping needed to implement the DO loops do not in
uence the value of
N$N. However, if necessary, these values could be added to improve the correlation with real
machines.
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4.3.2 Parallel Constructs Produced by KAP/Concurrent

As already mentioned, KAP/Concurrent automatically translates Fortran programs into par-
allel form for the Concurrent Computer Corp. workstations. As an example of the transforma-
tions performed, consider the following simple loop.

S1: DO I = 1, N

S2: DY(I) = DY(I) + DA*DX(I)

S3: ENDDO

This loop can be trivially transformed into the following parallel loop with the addition of
the PARALLEL PDO directive.

CCUR$ PARALLEL PDO NEW( I)

S1: DO I = 1, N

S2: DY(I) = DY(I) + DA*DX(I)

S3: ENDDO

In the above loop you will notice that no data dependences exist. In the next example we
will include a reduction operation in the loop body.

S1: DO I = 1, N

S2: DY(I) = DY(I) + DA*DX(I)

S3: SUM = SUM + DY(I)

S4: ENDDO

The user has the option of requesting that KAP parallelize loops like this by reordering
some of the operations, as shown next.

CCUR$ PARALLEL PDO NEW( I,SUM1)

CCUR$ INITIAL SECTION

SUM1 = 0.

CCUR$ END INITIAL SECTION

S1: DO I = 1, N

S2: DY(I) = DY(I) + DA*DX(I)

S3: SUM1 = SUM1 + DY(I)

S4: ENDDO

CCUR$ FINAL SECTION LOCK

SUM = SUM + SUM1

CCUR$ END PDO

However, in the experiments reported in section 4.4, we restrict KAP by not permitting the
associative reordering of operations. Although this restriction does inhibit KAP's capabilities,
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the upper bounds of the optimal execution times used in this chapter also do not consider re-
ordering of associative operations. Therefore, even though we are not allowing KAP to perform
to its full potential, we obtain a reliable comparison in the absence of reduction optimization.
When reordering is inhibited, KAP generates the following code for the previous loop.

CCUR$ PARALLEL PDO NEW( I)

S1: DO I = 1, N

S2: DY(I) = DY(I) + DA*DX(I)

CCUR$ ORDERED SECTION( 1)

S3: SUM = SUM + DY(I)

CCUR$ END ORDERED SECTION( 1)

S4: ENDDO

In this loop, the di�erent iterations of the ordered section execute in the same order as
in the sequential program. Through the addition of the ORDERED SECTION directives, KAP
preserves the original summation order of the array DY. Generally, any number of ordered
sections is possible in a PARALLEL PDO. In this approach, the number of parallel processors
that may be used pro�tably is limited by the number and nature of the statements in the loop
body as well as the number of iterations. Without ordered sections, the parallelism is limited
only by the number of iterations. The ordering constraint of the ordered section implies that
the iterations will be executed in sequential order with statements S2 and S3 overlapped in
successive iterations.

The standard name used for this type of synchronized parallelism is a doacross loop
[PKL80, Cyt86]. The doacross model of parallelism is more powerful than the simple ORDERED
SECTION implementation because doacross allows any type of synchronization in a parallel loop
as long as it goes from lower to higher iterations. In the ORDERED SECTION implementation,
synchronization is always between consecutive iterations. The doacross loop optimization is
applicable only when several partially independent statements exist in the loop body. If the
summation (S3) had been the only statement in the previous loop, no parallelism could have
been exploited.

4.3.3 Measuring the Parallel Execution Time of the Parallelized Program

The parallel execution time is measured by instrumenting the automatically parallelized pro-
gram and then executing the resulting program sequentially. The generation of the instrumented
code is guided by the Concurrent parallelism directives (CCUR$). The measurements are taken
on the same program version used to compute the sequential execution time.

The execution time on the ideal parallel machine is computed by running an instrumented
version that accumulates the execution time using the tracking variable N$N. Notice that this
variable has the same name as that used to compute the sequential execution time. This does
not cause any problems because the sequential execution time is computed in a separate run.
Before entering a parallel loop, two other tracking variables, N$Sn and M$Sn, are initialized. Sn
represents the label of the nth DO loop. The variable N$Sn contains the execution time before
entering the loop. At the beginning of each iteration, the current execution time (contained in
the tracking variable N$N) is assigned the value of N$Sn that simulates a scheduling policy in
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which each iteration of the loop is assigned to a separate processor. This is possible because,
in the ideal machine, we assume the existence of an unbounded number of processors.

Our model of execution for loop-level parallelism requires a barrier after the execution of
a parallel loop. To compute the earliest completion time of the barrier, we need to know the
maximal completion time over all iterations of the parallel loop body. The tracking variable
M$Sn is created to compute this value. At the end of the loop body we compute the maximal
execution time of the loop body (M$Sn) by comparing it with the maximum so far and recording
the larger value. After the loop exits, the accumulated execution time N$N is replaced by the
maximum completion time for a loop iteration, M$Sn.

To illustrate these ideas, consider the following annotated loop.

CCUR$ PARALLEL PDO NEW( I)

S1: DO I = 1, N

S2: A(I) = B(I) + C(I)

S3: ENDDO

The transformed loop, shown next, is created by the addition of tracking statements to
simulate the e�ects of parallel execution.

M$S1 = N$N

N$S1 = N$N

S1: DO I = 1, N

N$N = N$S1

S2: A(I) = B(I) + C(I)

N$N = N$N + 2

M$S1 = MAX(M$S1,N$N)

S3: ENDDO

N$N = M$S1

The ORDERED SECTION directive is handled similarly to the parallel loop directive. A variable
records the completion time of the ordered section, and then the same variable is used to
compute the earliest possible time when the ordered critical section on the next iteration may
begin. As an example, we will examine the following annotated loop containing an ordered
section.

CCUR$ PARALLEL PDO NEW( I)

S1: DO I = 2, N

� � �
CCUR$ BEGIN ORDERED SECTION( 1)

S2: A(I-1) = A(I) + 1

CCUR$ END ORDERED SECTION( 1)

� � �
ENDDO
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Notice that the above core code fragment de�nes an ordered section surrounding statement
S2. The calculation of the starting and completion times are done through the addition of state-
ments to update the tracking variable M$S2. The variable M$S2 tracks the earliest completion
time of the ordered critical section on each iteration. The transformed code is shown next.

N$S1 = N$N

M$S1 = N$N

M$S2 = N$N

S1: DO I = 2, N

N$N = N$S1

� � �
N$N = MAX(N$N, M$S2)

S2: A(I-1) = A(I) + 1

N$N = N$N + 3

M$S2 = MAX(M$S2,N$N)

� � �
M$S1 = MAX(M$S1,N$N)

ENDDO

N$N = M$S1

4.3.4 Shadow Variables and Operation-Level Implicit Parallelism

To compute the intrinsic operation-level parallelism, we follow an approach similar to that de-
scribed in [Kum88]; that is, we associate a shadow variable with each of the program's variables
and array elements. The purpose of the shadow variable is to make the data dependences
explicit during the program's execution. The convention we have used is to concatenate the
string \C$" with the variable name to create a new variable called the shadow of the original
variable. The shadow variables are initialized to zero.

Starting with the program version as transformed by KAP, we introduce shadow variables
and tracking statements. Immediately after an assignment to a variable, its shadow variable is
assigned the earliest possible time that this assignment can take place under the assumptions
of the ideal machine and ignoring output- and anti-dependences. Special attention must also
be paid to variables that are equivalenced or in common blocks, as well as parameters to
functions and subroutines to make sure that all speci�c declarations are propagated to the
shadow variables.

The creation of the tracking code is straightforward. Given an expression A=B+C and the
shadow variable for each of the core variables (C$A, C$B, C$C), tracking is done by an expres-
sion that mirrors the run-time behavior of the statement on our ideal machine. For this example
the tracking statement would be C$A = MAX(C$B,C$C)+2. We can interpret this assignment to
mean that the value assigned to A will be available as soon as both variables B and C become
available and two operations, the addition and the memory store into A, are executed.

To illustrate the instrumentation we use to measure operation-level parallelism, consider
the following loop:
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S1: DO I = N, 1, -1

S2: SUM = B(I)

S3: DO J = I+1, N

S4: SUM = SUM - A(I,J) * B(J)

S5: ENDDO

S6: B(I) = SUM / A(I,I)

S7: ENDDO

The operation-level execution time is computed by assignments to the shadow variables, one for
each original assignment statement. This is illustrated in the following instrumented version of
the previous loop.

C$I = C$N

S1: DO I = N, 1, -1

S2: SUM = B(I)

C$SUM = MAX(C$B(I),C$I)+1

C$J = MAX(C$I+1,C$N)

S3: DO J = I+1, N

S4: SUM = SUM - A(I,J) * B(J)

C$SUM = MAX(C$SUM,MAX(C$A(I,J),C$B(J),C$I,C$J)+1)+2

S5: ENDDO

S6: B(I) = SUM / A(I,I)

C$B(I) = MAX(C$I,MAX(C$SUM,C$A(I,I),C$I)+1)+1

S7: ENDDO

Notice that here we assume that independent operations within an expression can proceed in
parallel, with the MAX functions inserted according to this criteria. For example, after statement
S4, two nested MAX functions are invoked, each corresponding to a di�erent operation.

The execution time of the program on the ideal machine corresponds to the maximum over
the value of all the shadow variables at the end of the program.

DO loops are considered a special form for parallel execution. It is assumed that all iterations
may begin at the same time. No extra dependence is assumed to exist to update the index
variable. This assumption is a point of di�erence between this work and the work presented by
M. Kumar [Kum88].

4.3.5 Shadow Variables and Loop-Level Implicit Parallelism

The computation of loop-level parallelism requires the addition of a control dependence from
every statement instance to its successors, except when the successor is in a di�erent loop
iteration. Thus, a dependence chain is created using a new set of tracking variables of the
form S$Sn, that forces the sequential execution of statements S2, S3, and S4. The value of the
tracking variable S$Sn is the earliest possible completion time of the statement labeled Sn. The
loop of the previous section is instrumented as follows:
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C$I = MAX(S$S0, C$N) ! S0 is the statement immediately

S$S1 = C$I ! before S1

M$S6 = S$S1

S1: DO I = N, 1, -1

S2: SUM = B(I)

C$SUM = MAX(S$S1,C$B(I),C$I)+1

S$S2 = C$SUM

C$J = MAX(S$S2,C$I+1,C$N)

S$S3 = C$J

M$S4 = S$S3

S3: DO J = I+1, N

S4: SUM = SUM - A(I,J) * B(J)

C$SUM = MAX(S$S3,C$SUM,C$A(I,J),C$B(J),C$I,C$J)+3

S$S4 = C$SUM

M$S4 = MAX(S$S4,M$S4)

S5: ENDDO

S$S5 = M$S4

S6: B(I) = SUM / A(I,I)

C$B(I) = MAX(S$S5,C$I,C$SUM,C$A(I,I),C$I)+2

S$S6 = C$B(I)

M$S6 = MAX(S$S6,M$S6)

S7: ENDDO

In this instrumented loop, the variables M$S4 and M$S6 keep track of the completion time
of the loop as described in Section 4.3.3. The example shows that for loop-level parallelism,
we also require that a statement in an iteration does not start until all the values needed
are available from earlier iterations. The examples above show that when we measure loop-
level parallelism, we require that all operands for an entire statement be available before the
statement can execute. The addition of the control dependences to enforce sequentiality in a
block of statements also ensures that only statements in di�erent iterations of the same loop
nest can execute concurrently.

4.3.6 Declaration of Shadow Variables

A few points need to be raised about the shadow variables used in the instrumented code. In
order for the instrumentation to work, the aliasing between the shadow variables must mirror
the aliasing between the core program variables. In particular the static aliasing caused by
equivalences must be preserved. This is easy to implement. Assuming we have a type correct
program; duplicate the equivalence statements, and change the core variables into shadow
variables.

The declarations

REAL X(100), Y(100)

EQUIVALENCE (X(1), Y(1))
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are transformed into the following. Notice that the elements of X and Y that are aliased are the
same elements of C$X and C$Y that are aliased.

REAL X(100), Y(100)

INTEGER C$X(100), C$Y(100)

EQUIVALENCE (X(1), Y(1))

EQUIVALENCE (C$X(1), C$Y(1))

This works as long as the program is type correct. If the original program contained equiv-
alenced variables whose base type were di�erent sizes, then the shadow variables could not be
aliased in the same manner.

Common blocks are another declaration that must be propagated into the shadow variables.
The following declaration

REAL X(100), Y(100)

COMMON /BLOCK/ X, Y

must be replicated in the shadow variables as:

REAL X(100), Y(100)

INTEGER C$X(100), C$Y(100)

COMMON /BLOCK/ X, Y

COMMON /C$BLOCK/ C$X, C$Y

This is another form of static aliasing. Here the aliasing is between common blocks in
di�erent compilation units. For static aliasing to work, the storage required for the core program
variable must be a constant ratio to the storage required for the shadow variable.

One common case arises that violates this assumption. It is a common Fortran programming
practice to alias REAL and COMPLEX datatypes. This aliasing is guaranteed to be correct by the
Fortran standard. The COMPLEX type is de�ned to be composed of a contiguous sequence of two
REAL storage locations. The instrumentation must accommodate this programming practice.
The solution to this problem is to promote the shadow variable of a COMPLEX core variable by
adding a dimension to the shadow variable.

A program fragment that declares an aliased COMPLEX array must be treated specially.

REAL X(100)

COMPLEX Y(50)

EQUIVALENCE (X(1), Y(1))

Instead of de�ning the dimension of the shadow to be identical to the dimension of the
core variable, we add an extra leading dimension to the shadow of the COMPLEX variable. This
leading dimension had a length of 2. In e�ect, we are now shadowing the components of the
COMPLEX variable rather than treating it as an indivisible entity.
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REAL X(100)

COMPLEX Y(50)

INTEGER C$X(100), C$Y(2,50)

EQUIVALENCE (X(1), Y(1))

EQUIVALENCE (C$X(1), C$Y(1,1))

In addition to the changes in the declaration, the additional dimension must be added to
each reference of the COMPLEX variables shadow. A read of the core variable Y(I) is shadowed
by the code, MAX(C$Y(1,I),C$Y(2,I)). A write to the core variable Y(I) is shadowed by two
writes, the �rst to C$Y(1,I) and the second write to C$B(2,I).

4.3.7 Subroutine and Function Calls

Subroutine and function calls must propagate the availability times of the arguments from the
call site to the body of the called routine. This propagation is accomplished by associating a
shadow variable with each formal argument, e�ectively doubling the number of parameters.

An additional formal argument is added. It is named C$Sn, where Sn is the name of the
current statement. This �nal parameter is used both to calculate the initial starting time of
the subroutine and to propagate the implicit completion time back to the calling routine. For
example, the subroutine call:

S1: CALL DAXPY(N, A, X, Y)

is transformed into the following code by the addition of the shadow variables expressions for
each of the formal arguments and the tracking variable for the control dependences.

C$S1 = � � �
S1: CALL DAXPY(N, A, X, Y, C$N, C$A, C$X, C$Y, C$S1)

4.3.8 Control Dependence

In addition to the 
ow-dependences handled by the shadow variables, we also need to model the
e�ects of control dependences in calculating potential speedups at the operation and loop levels.
The reason for including control dependence information is to preclude speculative parallelism.
Future experiments may relax this constraint to study speci�cally the e�ects of speculative
execution.

The control dependence algorithm, described in the calculation of the SSA form [CFR+88]
and the dominators algorithm from Lengauer and Tarjan [LT79], are used as the basis of
the control dependence instrumentation for this experiment. To take control dependences into
account, all statements that are control dependent on a given conditional statement, for example
Sn, must wait until Sn completes execution. The tracking variable S$Sn contains the earliest
time at which statements that are control dependent on statement Sn may begin executing.

For example, in the following code fragment there is a control dependence from S1 to S2.
Thus the availability time of the core variable A must wait until statement S1 is executed.
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S$S1 = MAX(� � �, C$B+1)

S1: IF (B .GT. 0) THEN

S2: A = B + C

C$A = MAX(S$S1, C$B, C$C)+2

ENDIF

4.4 Experimental Evaluation of KAP/Concurrent

The experiments were run using two collections of programs. The �rst collection is a subset
of the Perfect Benchmarks [Per89] (listed in Table 4.1), and the second collection is a set of
subroutines from Numerical Recipes [PFTV88] (listed in Table 4.4). Because of the minimal
overhead of our approach, it was possible to use the complete data-sets as released for the
Perfect Benchmarks rather than a subset of the data. Also, the dense linear algebra kernels
from Numerical Recipes were executed with larger (100� 100) matrices rather than the 20� 20
matrices used in the driver program distributed by the publisher.

A network of SPARC-based workstations running a cross development version of KAP/Con-
current were used to perform the experiments. Always, as noted in section 4.3.2, reductions
were executed sequentially.

4.4.1 Speedup for the Perfect Benchmarks

The Perfect Benchmarks are a collection of programs that are not simple loop kernels. This suite
was created to represent typical supercomputer workloads to evaluate the relative performance
of large machines. In this experiment, we used these programs to illustrate our approach in
evaluating the e�ectiveness of a parallelizing compiler.

Table 4.2 lists the sequential execution times on the ideal machine of the selected Perfect
Benchmarks programs. Also included in the table are the optimal parallel execution times at
both the operation-level and the loop-level as well as the execution time on the ideal machine
of the program after it is transformed by KAP.

Table 4.3 shows how the parallelism in the programs is a�ected when the granularity is
changed to allow only concurrent execution of loop iterations. In this table we show four
columns corresponding to the four ratios in equations (4.4) to (4.8).

A=B =
sequential execution time

upper bound of opt. oper. level parallel execution time
(4.4)

A=C =
sequential execution time

upper bound of opt. loop level parallel execution time
(4.5)

D=C =
execution time of automatically parallelized program

upper bound of opt. loop level parallel execution time
(4.6)

A=D =
sequential execution time

execution time of automatically parallelized program
(4.7)

C=B =
operation level speedup

loop level speedup
=

(4.4)

(4.5)
(4.8)
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Equation (4.4) gives a lower bound of the best possible speedup if the operation-level gran-
ularity is assumed. Equation (4.5) gives a lower bound of the best possible speedup if loop-level
granularity is assumed. Equation (4.6) estimates how much more parallelism is available at the
loop-level beyond what was extracted by KAP. Equation (4.7) is the program speedup on the
ideal machine resulting from the automatic parallelization. Finally, equation (4.8) computes
the speedup missed by limiting program to loop-level parallelism.

Code Lines Institution Description Application Area

adm(AP) 6101 IBM Air Pollution meteorology
arc2d(SR) 3965 Cray Supersonic Reentry aerodynamics
bdna(NA) 3977 IBM Nucleic Acid simulation physical chemistry

dyfesm(SD) 7608 CSRD Structural Dynamics structural mechanics
flo52q(TF) 1986 Princeton Transonic Flow aerodynamics

mdg(LW) 1238 IBM Water Molecule physical chemistry
mg3d(SM) 2812 Cray Seismic Migration geology

ocean(OC) 4343 Princeton Ocean Circulation 
uid mechanics
qcd2(LG) 2326 Caltech Lattice Gauge particle physics

spec77(WS) 3885 CSRD Weather Simulation meteorology
spice(CS) 18521 CSRD Circuit Simulation electronics
track(MT) 3784 Caltech Missile Tracking signal processing
trfd(TI) 484 IBM Integral Transforms physical chemistry

Table 4.1: Codes that constitute the Perfect Benchmarks suite

Column C=B of Table 4.3 show that the ratio of operation-level speedup to loop-level speedup
can be large. With a few exceptions (mg3d(SM) and spec77(WS)), the ratios show factors of less
than 1000 lost by limiting the parallelism to loop nests. The reasons for the exceptional cases
may be arithmetic reductions and undetected induction variable computations that serialize
entire loop nests.

S1: SUBROUTINE FN(A, B, C, N)

S2: DIMENSION A(*), B(*), C(*)

S3: DO I = 1, N

S4: A(K) = B(K) + C(K)

� � �
S5: K = K + INC

S6: ENDDO

S7: END

Figure 4.2: Example of serialization owing to induction

For example, a large number of the loops in mg3d(SM) have an inductive sequence used as the
indices of an array similar to that shown in Figure 4.2. KAP is unable to replace the induction
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A B C D
KAP Processed Upper Bound of Optimal Parallel KAP Processed

Sequential Oper. Level Loop Level Parallel
Program Execution Time Execution Time Execution Time Execution Time

adm(AP) 882543678 370067 19376214 293283144
arc2d(SR) 3111818981 484295 9260970 46944930
bdna(NA) 1486434605 1924852 10653147 1174503030

dyfesm(SD) 493417301 17312687 27541614 125697238
flo52q(TF) 1137847449 1314872 5498661 14827201

mdg(LW) 3702652187 1164733 695103388 2622955696
mg3d(SM) 40208052983 104165 32113276595 34343884638
ocean(OC) 3666136327 151746 13459093 2751447397
qcd2(LG) 513706328 14450029 217907412 444952424

spec77(WS) 105341264921 1008972 7614414132 100263251801
track(MT) 119955628 422324 3098391 108472677
trfd(TI) 637768455 98509 7256709 61740989

Table 4.2: Simulated and optimal execution times for selected Perfect Benchmarks programs

A=B A=C D=C A=D C=B
Lower Bound of Optimal KAP Parallelized Program Operation
Oper. Level Loop Level Loop Level Speedup Level Speedup

Program Speedup Speedup Remaining Obtained Remaining

adm(AP) 2384.8 45.5 15.1 3.0 52.4
arc2d(SR) 6425.5 336.0 5.1 66.3 19.6
bdna(NA) 772.2 139.5 110.2 1.3 5.5

dyfesm(SD) 28.5 17.9 4.6 3.9 1.6
flo52q(TF) 865.4 206.9 2.7 76.7 4.2

mdg(LW) 3179.0 5.3 3.8 1.4 596.8
mg3d(SM) 386003.5 1.3 1.1 1.2 308292.4
ocean(OC) 24159.7 272.4 204.4 1.3 88.7
qcd2(LG) 35.6 2.4 2.0 1.2 15.1

spec77(WS) 104404.5 13.8 13.2 1.1 7546.7
track(MT) 284.0 38.7 35.0 1.1 7.3
trfd(TI) 6474.2 87.9 8.5 10.3 73.7

Table 4.3: Speedup ratios for selected Perfect Benchmarks programs
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by a direct calculation, and the induction variable computation encloses each iteration in a
cycle that includes a 
ow-dependence from S5 to S4 and a control dependence from S4 to S5.
This cycle serializes the entire loop because statement reordering is not considered for loop-level
parallelism. The corresponding problem does not appear for operation-level parallelism since
we are able to calculate the e�ects of statement reordering when calculating operation-level
parallelism. Clearly, if statement reordering were done, the implicit loop parallelism would lie
somewhere between the loop-level reported here and the operation-level parallelism.

The speedups obtained by KAP (except for arc2d(SR), flo52q(TF), and trfd(TI)) are
small (column A=D). The actual speedup on a real machine would probably be lower because,
as mentioned above, we have not considered the overhead that may be associated with a given
parallel loop, or with overheads for architecture-speci�c transactions such as memory latency.

We �nd that in general, when interprocedural analysis and reduction transformations are
precluded, KAP usually detects little parallelism even though more is available at the loop-level
(in two cases, bdna(NA) and ocean(OC), up to several 100 times more parallelism, as shown
in column D=C). However, we should point out that the types of inherent parallelism that our
method detects in the applications may not be e�ciently executable on existing machines. The
conventional wisdom that \most of the computation is in the loops" would imply that without
further transformations, restricting parallelism to only the doall and doacross forms will still
be missing a substantial amount of the potential concurrency. Optimizations such as high-level
spreading or loop distribution may be needed to allow the loop nests to execute concurrently.

4.4.2 Speedup for Numerical Recipe Kernels

The routines that have been selected for inclusion in this chapter (listed in Table 4.4) are dense
linear algebra kernels. The published data-set size for the dense matrices is 20� 20. However,
to increase the amount of work being done, the results reported in Tables 4.5 and 4.6 are based
on randomly constructed 100� 100 matrices.

Code Lines Dominant Algorithm

GAUSSJ 135 Gauss-Jordan elimination with full pivoting
LUDCMP 136 LU decomposition with partial pivoting
LUBKSB 128 LU back substitution
TRIDAG 60 Tridiagonal matrix solution
MPROVE 171 Iterative improvement of linear equations
VANDER 108 Solution of Vandermonde matrices
TOEPLZ 116 Solution of Toeplitz matrices
SVBKSB 312 Single value back substitution
SVDCMP 290 Single value decomposition

Table 4.4: Selected codes from the Numerical Recipes programs

As in Section 4.4.1 for the Perfect Benchmarks, we again see a wide range of parallelism
present at the operation-level. The smallest operation-level speedup is a factor of 3.4 reported
for TRIDAG in column A=B of Table 4.6. The inner loops of this routine include a tight recurrence
that is the reason for the small inherent parallelism.
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A B C D
KAP Processed Upper Bound of Optimal Parallel KAP Processed

Sequential Oper. Level Loop Level Parallel
Program Execution Time Execution Time Execution Time Execution Time

GAUSSJ 7610382 3348 26579 1473773
LUDCMP 4172506 11419 52736 1124197
LUBKSB 1258863 22020 68166 1150557
TRIDAG 349979 80001 170011 349979
MRPOVE 21974235 2292085 3905964 21875037
VANDER 586972 22982 76059 468568
TOEPLZ 279077 10799 74442 205223
SVBKSB 27508854 216715 538829 1804296
SVDCMP 31336552 216310 537719 1802278

Table 4.5: Simulated and optimal execution times for selected Numerical Recipes programs

A=B A=C D=C A=D C=B
Lower Bound of Optimal KAP Parallelized Program Operation
Oper. Level Loop Level Loop Level Speedup Level Speedup

Program Speedup Speedup Remaining Obtained Remaining

GAUSSJ 2273.1 286.3 55.4 5.2 7.9
LUDCMP 365.4 79.1 21.3 3.7 4.6
LUBKSB 57.2 18.5 16.9 1.1 3.1
TRIDAG 4.4 2.1 2.1 1.0 2.1
MRPOVE 9.6 5.6 5.6 1.0 1.7
VANDER 25.5 7.7 6.2 1.3 3.3
TOEPLZ 25.8 3.7 2.8 1.4 6.9
SVBKSB 126.9 51.1 3.3 15.2 2.5
SVDCMP 144.9 58.3 3.4 17.4 2.5

Table 4.6: Speedup ratios for selected Numerical Recipes programs
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As with the Perfect Benchmarks, these results show the vast disparity in inherent parallelism
present in the linear algebra kernels. The ratios of potential operation-level parallelism to
potential loop-level parallelism (column C=B) again illustrating the need for further study in
the methods for extracting parallelism.
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Figure 4.3: Speedup curves for SVDCMP

Finally, by observing the speedups over the automatically restructured code, we see that
in several cases KAP has not extracted a signi�cant portion of the available loop parallelism,
shown by the potential speedups over KAP (column D=C in Table 4.6). Another important
factor is that as the data-set size grows, so does the parallelism in the programs. This is
illustrated in Figure 4.3 (for the SVDCMP program) whose horizontal axis corresponds to the size
of N where an N�N matrix was input data. The corresponding �gures for the other programs
are similar or show even worse KAP/Concurrent performance on these kernels.

A curious fact shown by Figure 4.3 is the speedup obtain by KAP. This speedup, denoted
by the thick black line, is consistently less that the inherent parallelism measured for the
routines. The poor performance is directly related to the use of semi-sequential algorithms
that KAP/Concurrent was not able to analyze properly. It is important to observe that the
speedup of the automatically parallelized program remains practically constant while the po-
tential speedup grows linearly with the data-set size.

4.5 Conclusion

This chapter presents a method of evaluating parallelizing compilers by providing a \yardstick"
with which to measure them. The results suggest that intrinsic parallelism is as widely var-
ied as the parallelism extracted by KAP. From examinations of the source code, apparently
factors such as variables whose values are unknown at compile time, subscripted subscripts,
non-parallelizable statements, and subroutine calls are prime candidates for increased e�ort.
Another large category of missing parallelism is in unrecognized doacross loops.

44



It is important to remember that these experiments were performed without allowing the
parallelization of reductions and other recurrences. Therefore, the speedups obtained by the
parallelizers are not the best possible, and the evaluation of KAP/Concurrent presented here is
not exhaustive. Despite this, the parallelizer is sometimes successful in obtaining a performance
close to optimum. In future studies we plan to analyze the in
uences of the parallelization of
recurrences on the overall performance of the program and characterize the types of parallelism
leading to the high potential speedups found in the analyzed programs.
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Chapter 5

PARALLEL ACTIVITY

MEASUREMENTS

5.1 Introduction

The calculation of inherent parallelism presented in Chapter 4 produces summarized information
for the results of an optimally executed program on an unlimited number of processors. It
may also be useful to create a more detailed picture of the processor activity throughout the
program's execution in order to measure processor utilization. M. Kumar [Kum88] collected
the processor activity histogram (PAH) for this purpose.

The histogram representation of processor activity may provide some vague indication of the
shape of the parallelism, but it is di�cult to conclude anything quantitatively meaningful using
this representation. It may be obvious that the parallelism present in the program operates in
phases, with bursts of activity. Or it may be evident that the parallelism is constant throughout
the execution. The shape of the PAH helps to determine the homogeneity of the parallel activity.

In this chapter we discuss the computation of the PAH and use it in two ways. The �rst is
traditional: we will graph the PAH as an intuitive representation of parallel execution (though
direct display). The second use will be as data in the computation of bounds on the speedup
for restricted numbers of processors.

Section 5.2 describes the background for this experiment and gives an overview of the
techniques used. In Section 5.3 we describe a method of collecting the histogram data accurately
on an operation-by-operation basis. We provide a heuristic to approximate processor activity in
Section 5.4 based on loop iterations. Two methods of recording the loop intervals are discussed,
one based on histograms with �xed bucket sizes, and one that creates histogram buckets with
variable sizes determined by the temporal overlap of the loop iterations. In Section 5.5 we
show how to calculate upper and lower bounds on the inherent parallelism when only a limited
number of processors are available. These bounds are derived from the PAH calculated assuming
unlimited resources. Finally, we present our conclusions in Section 5.7.

5.2 Overview of the Evaluation Method

As noted in Chapter 4, a sequential program is a sequence of operations related by data and
control dependences specifying a minimum partial order of the calculations for correct execu-
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tion. Sequential programs are overspeci�ed, including such extraneous notions such as lexical
statement ordering and the reuse of storage.

In Chapter 4, we described an instrumentation technique called critical path analysis for
propagating timestamps along a data
ow graph to determine the critical path length. This tech-
nique provides information about the execution time and thus the overall parallelism (assuming
unlimited processors) for the loop, module, or program granularity.

The results of critical path analysis are reported as a coarse summary of the information
available during the computation. We would like to collect more precise information about the
parallel activity during a program's execution. In particular, we would like to know the number
of processors that are active at each time step. One possible presentation of this information is
through a processor activity histogram (PAH). The shape of the PAH indicates the processor
utilization. As the shape of the PAH approaches rectangular, the processor e�ciency approaches
one. That is, the percentage of time that a processor is idle approaches zero.

The PAH can also be used as raw data for further calculations. One use is the derivation of
bounds on the average parallelism for limited numbers of processing elements. We will expand
on this topic further in Section 5.5.

5.3 Histogram Generation

A useful tool in examining parallel execution is the processor activity histogram (PAH). The
PAH describes the number of concurrent operations that can be executed in each clock period,
assuming an unlimited number of processors. The generation of this histogram requires that
we record the time when each operation in the program was executed.

In Chapter 4 we describe a method, with low overhead, for performing the critical path
calculation. With this method, the calculations of the critical path length are included inline
with the program. Owing to the increased overhead, it may be impractical to add subroutine
calls to collect operation-granularity data on the parallelism.

The information needed to update the PAH may only be available as intermediate results in
the critical path calculations. The addition of the subroutine calls and the statements needed to
generate explicitly the intermediate timestamps necessary to update the PAH would drastically
change the style and size of the generated code and also increase the overhead.

As another possibility, Section 5.4 describes an alternative instrumentation method that
integrates well within the framework of the critical path calculations.

An alternative not used in this chapter, but available as a more accurate method, is to
change the instrumentation method by incorporating operation-granularity measurements. The
experiment presented in Chapter 7 describes a method that instruments each operation in the
program. The purpose of the instrumentation is to determine the e�ects of induction variables
on the critical path length. Since each operation is individually instrumented, it is trivial to
add histogram collection to this method.

5.3.1 Histogram Buckets

From Chapter 4, we observe that the execution time for loop-level parallelism varies over a
wide range. In particular, the execution time ranges from approximately 3 million time units to
execution times in the billions of time units. Thus, it may be impractical to collect a �ne grain
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representation of the PAH. For reasons of e�ciency and practicality, histogram generation may
require that the time-quanta or bucket size (q) be greater than one time unit.

The standard method of de�ning larger buckets for histogram creation purposes is to use
a mapping function f to translate from time units into buckets. The mapping function is
f(t) = bt=qc. This function has the e�ect of including in bucket b = f(t), of quanta size (q),
the time period [b � q : : : (b+ 1) � q � 1].

It is easy and natural to increase the PAH bucket size in response to constraints on the
instrumented program. A drawback of the larger bucket sizes is a loss of precision on the
inherent parallelism bounds. In Section 5.5.3, we illustrate the loosening of the parallelism
bounds when less precise information is recorded in the PAH.

We can safely assume that at least one operation must be executed during each internal time-
quanta. The construction of the instrumentation for critical path analysis requires that each
operation begin execution when all of its operands are available. Because of this construction,
the critical path can only be lengthened by the execution of an additional operation that depends
on a calculation already in the critical path.

5.4 Histogram Generation from Loop Iterations

One approach to the generation of the PAH, is to observe that we can model the parallel
execution of a program, using loop-level parallelism, by observing that each loop iteration
is executed sequentially. Figure 5.1 illustrates this type of parallelism with four iterations.
Each iteration starts at a temporal o�set from the previous iteration. The �gure used in this

1 3 5 7 11 13 15 17

Figure 5.1: Doacross style loop scheduling

example illustrates a doacross loop where a constant positive delay (of 2 units) is added to
each iteration. If all the iterations started simultaneously, with no delay, we would have an
example of the classic doall loop. The other extreme is for each iteration to begin executing
after the previous iteration has completed. This last class of DO loops are examples of sequential
loops.

If we know the time when the iteration starts (S) and the time at which it terminates (T ),
we can be assured that, ignoring any intra-iteration delays or stalls, a processor was allocated
to the iteration over the interval S : : :T . Using this heuristic we can eliminate the calls to the
support routines that record processor activity for each operation and replace them with a pair
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of subroutine calls at the beginning and end of each loop iteration. This reduction in subroutine
calls represents a signi�cant overhead reduction.

5.4.1 Natural Interval Storage

We may wish to take advantage of the natural boundaries de�ned in Figure 5.1. In this �gure,
regions exist where the loop iterations overlap each other. If the histogram intervals are de�ned
to correspond to these natural intervals, then we may be able to reduce the storage required
for the PAH.

50 ... 59
20

 0 ... 49
50

60 ... 99
40

Figure 5.2: Example interval decomposition

Assume we have two intervals, one [0 : : :99] with an operation count of 100, and the other
[50 : : :59] with an operation count of 10. When these intervals are merged, we create three new
non-overlapping intervals to describe the e�ects of the two original intervals. For this example
shown in Figure 5.2, the two original intervals have been decomposed into three intervals,
[0 : : :49] with count 50, [50 : : :59] with count 20, and [60 : : :99] with count 40.

Unfortunately, the storage requirements for each interval in a natural decomposition is
considerably larger than for a �xed interval. In the �xed interval decomposition, only one
memory word is required for each interval to store the number of operations accumulated over
that interval. Since the interval size is constant for all PAH buckets, one global interval size is
su�cient to calculate the starting and ending times of the interval covered by the bucket.

In contrast, when using a natural interval decomposition, much more information is required
that is speci�c to each interval. The starting time of the interval and its size are both necessary.
Also, it is bene�cial to have the PAH represented as a dynamic balanced tree for e�ciency in
accessing the PAH. Two or three additional memory words are required to maintain the tree
structure. The words are used as pointers to the children and possibly the parent of the interval.
Thus, the natural interval size must be at least four times larger than the �xed interval size
in order for the additional storage requirements of the natural interval decomposition to be
amortized. The natural interval decomposition has not been found to generate intervals more
than four times larger than the �xed interval decomposition. Therefore, we have chosen to
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use the �xed interval decomposition as the storage mechanism implemented for experiments
described in the remainder of this chapter.

5.4.2 Heuristics for Interval Measurements from Loop Iterations

The idealized approach, described previously in Section 5.4.1 for recording intervals, has a
problem that needs to be addressed. The execution model of parallel loops, which was described
in Chapter 4, assumes that all loop iterations begin at the same moment, at time S, immediately
after the DO loop header has executed. Each loop iteration executes concurrently until it requires
information that has not yet been computed. When an iteration needs such a value, it stalls or
waits for the information to become available. This process continues until the last statement
in the iteration has been executed. For this model, we see that iteration i starts at time S and
terminates when all dependences have been enforced and all operations have been executed at
time Ti.

When we look at these timestamps, we see that the timestamp Ti represents an accurate
termination time for loop iteration i. However, each iteration begins execution at time S. To
estimate the real start time (Si) for each iteration we assume that the operations executed
during the iteration are packed as late as possible and the delay slots are all scheduled as early
as possible. This heuristic approximates the execution semantics of a doacross loop where
a delay is inserted at the beginning of each loop iteration to enforce the data dependences
present in the loop. If we assume that Ni operations are executed by iteration i, then we can
approximate the starting time by Si = Ti �Ni.

Once the true starting (Si) and terminating (Ti) times for each iteration are known, we can
record this interval in the PAH. For each iteration interval, we know that one processor was
assigned to execute the operations in that iteration.

5.5 Average Parallelism for Limited Processors

Computing the average inherent parallelism for a program is done through the determination
of the critical path during an execution of the program. A limitation of the simple algorithms
that determine critical path length is that they do not take into account limited resources such
as having a restricted number of processors available.

When taking limited resources into account, you need to assume an algorithm for scheduling
the resources. It is not di�cult to design an algorithm for any particular scheduling policy.
However, it may be impossible to design an optimal scheduling algorithm without knowledge of
future events. Even if the information is known, the algorithm to generate the optimal schedule
is NP-Complete [BC76].

We may also want to determine the results for di�erent numbers of processors. Even if we
could design and implement a scheduling policy, we would be required either to re-execute the
program for each resource level or to keep track simultaneously of all resource levels during one
execution. The �rst approach is time consuming, requiring the program to be rerun for each
datapoint. The second approach is complex and cumbersome, requiring the support code to
consider all resource levels simultaneously.

We have decided to avoid the aforementioned problems by performing post-process analysis
of the PAH to determine the average parallelism for a speci�c number of processors. We do
not have a perfect record of the dependences present during the program's execution. The only
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information recorded is that each operation in a histogram bucket is dependent on the results
of one or more operations in the previous bucket. Thus we are not able to generate the optimal
schedule that produces the maximal inherent parallelism for a given number of processors. We
can, however, provide bounds to the inherent parallelism.

5.5.1 Upper Bounds of Parallel Execution Time

If we examine the PAH, we see that each bucket of the histogram contains a number of op-
erations. The operations were placed in a speci�c bucket because they could not be placed
in any earlier bucket; doing so would violate the data dependences in the program. Similarly,
each operation in every subsequent bucket could not be moved to an earlier bucket because
the operation depends on a value produced by at least one operation in an earlier bucket. The
critical-operation is depicted by a bold line encircling the operation.

Assuming we have a PAH with granularity of a single clock period, we can easily derive a
lower bound for the parallel execute time. For each bucket in the PAH with operation count n,
we execute bn=pc cycles will all p processors followed by one cycle using mod(n; p) processors.
Each clock period in the original histogram is replaced by dn=pe clock periods. We will refer to
this method as cyclic scheduling.

If we assume that the elements in each bucket are ordered from �rst/bottom to last/top,
then cyclic scheduling assumes that each subsequent operation depends on the last operation in
the current bucket as shown in Figure 5.3. Examples of cyclic scheduling of the PAH in Figure
5.3 with p = 2 and p = 5 are shown in Figures 5.4 and 5.5, respectively.

We are assured that selecting last-critical is a correct schedule since we are enforcing all
dependences that were present in the original execution. Cyclic scheduling provides us with
an upper bound on parallel execution time on p processors, and a lower bound for the average
parallelism or speedup.

5.5.2 Lower Bounds of Parallel Execution Time

The simplest upper bound for average parallelism (speedup) is to assume that all operations
can be perfectly packed onto the p processors with no regard for the existing data dependences.
This approximation always produces an average parallelism linear in the number of processors.
Obviously this provides an upper bound on the average parallelism and a lower bound on the
parallel execution time, but we would like to have a tighter bound.

To generate the lower bound on the parallel execution, it seems natural to focus on the
element in the other extreme position of the bucket from the critical-operation used by cyclic
scheduling. If we assume, as shown in Figure 5.6, that all operations in subsequent buckets are
dependent only on one operation in the bucket, then we may be able to overlap the operations
in subsequent buckets with some of the operations in the current bucket. For the lower bound
on parallel execution, de�ne the �rst operation as the critical-operation shown by the bold lines
in Figure 5.6. Figures 5.7 and 5.8 show the results of optimistic scheduling for the PAH shown
in Figure 5.6 for p = 2 and p = 5.

We can show that the �rst-critical scheduling policy is the tightest lower bound that can
be placed on the parallel execution time derived from the PAH. For each histogram bucket i,
each operation must be dependent on at least one operation in bucket i � 1 or else it would
be in bucket i � 1. However, we do not know which operation causes the dependence. The
best we can do is to assume that the �rst operation executed for the ith bucket satis�es all
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Figure 5.3: Assume the last/top operation is the critical-operation

Figure 5.4: Cyclic (last-critical) scheduling with p = 2

Figure 5.5: Cyclic (last-critical) scheduling with p = 5
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Figure 5.6: Assume the �rst/bottom operation is the critical-operation

Figure 5.7: Schedule (�rst-critical) assuming most optimistic assumptions, p = 2

Figure 5.8: Schedule (�rst-critical) assuming most optimistic assumptions, p = 5
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forward dependences for every operation in the ith bucket. If we assume that it is not the �rst
operation in the bucket that causes the dependence then we might be assuming wrong, (i.e.
it was the �rst operation), and thus we have not computed the lower bound on the parallel
execution time. Therefore, the �rst-critical choice leads to the computation of the lower bound
on the parallel execution time.

total  0
for i  1 to number of buckets do

n  bucket[i].count
total  total + d n/p e

end for

Figure 5.9: Calculate upper bound of parallel execution time for q = 1

Figure 5.9 lists the code to compute the upper bound of parallel execution time. This
algorithm uses a cyclic schedule for a PAH with q = 1 to generate a correct schedule.

total  0
extra  0
for i  1 to number of buckets do

n  bucket[i].count + extra
total  total + b n/p c
extra  mod(n,p)

end for

total  total + d extra/p e

Figure 5.10: Calculate lower bound of parallel execution time for q = 1

In Figure 5.10 we show how to compute the lower bound of parallel execution time. The
second algorithm uses a heuristic that is not conservative to determine the lower bound of the
parallel execution time.

5.5.3 Using Larger Time Quanta

The best results can be obtained when each bucket in the PAH corresponds to one unit of
time. However, it may be impractical to keep information of this extreme detail. We may
be required to reduce the detail of the PAH to make it practical to compute the histogram
information. Inaccuracies occur with larger quanta when trying to determine the distribution
of the operations inside the bucket. It is possible that almost any distribution of the operations
may occur. However, we can distinguish two distributions as the logical extremes for the
purposes of this experiment. We assume, for the computation of the lower bound of the parallel
execution time, that we have an L-shaped distribution of the operations. The L distribution
is the most optimistic distribution since at least one operation must be executed during each
time period. If, during each time period, we only require one operation to be executed, then
the remaining operations are free to be placed anywhere in the interval. Placing the remaining
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operations as early as possible (i.e., at the left end of the interval) allows them to be scheduled
with the most 
exibility. In Figure 5.11 you can see that in a histogram bucket containing n
operations with size q corresponding to a time-quanta of q clock units, n�q+1 of the operations
are assumed to execute during the �rst time unit of the bucket, while one operation is assumed
to execute for each of the subsequent time units in the bucket.

If we execute the optimistic scheduling algorithm with p = 2 and p = 5, we observe that
the resulting operation schedule is shown in Figures 5.12 and 5.13.

Similarly, if we assume the opposite extreme that schedules any extra operations as late as
possible, we generate a distribution looking like a reverse L, as shown in Figure 5.14. The bold
circles represent the operations that are the cause of the serializing dependences.

Using cyclic scheduling on the PAH with the number of processors set to 2 and 5 gives the
results shown in Figures 5.15 and 5.16.

5.5.4 Algorithms for Larger Time Quanta

It is possible to use the algorithms presented in Figures 5.9 and 5.10 to handle a PAH with
larger quanta sizes.

For the upper bound on parallel execution time, distribute the operations in each bucket
as illustrated in Figure 5.14. Each bucket contains q time steps. Partition each bucket into
q sub-intervals of size one. In each sub-interval, select the last/top operation as the critical-
operation. Since we have repartitioned the bucket into sub-intervals of one time unit, we can
apply the algorithm from Figure 5.9 to the sub-intervals.

A corresponding change can be made for the lower bound on the parallel execution time. To
calculate the lower bound on the parallel execution time, distribute the operations as shown in
Figure 5.11. Partition each bucket or time-quanta into individual time units. Select the bottom
operation in each sub-interval as the critical-operation. Now since each bucket has time quanta
q = 1, we can directly apply the previous algorithm shown in Figure 5.10.

It may be more e�cient to calculate the bounds directly when using larger bucket sizes
rather than to reduce the problem to the previous case. The algorithm, shown in Figure 5.17,
computes the upper bound of parallel execution time assuming a time-quanta (q) or bucket size
greater than one.

Corresponding to Figure 5.10 for q = 1, Figure 5.18 describes the algorithm to compute the
lower bound of parallel execution time assuming a time-quanta (q) or bucket size greater than
one.

5.5.5 Limiting the Resources Used by the Execution

If a program executes several million or billion operations during its run, we may require an
enormous amount of storage to maintain the processor activity histogram (PAH). One approach
to alleviate this problem is to summarize the information as it is being collected.

The constrained execution times for limited resources can be calculated over the interval
[0 : : :T ], if we have recorded all operations that occur in this interval. However in the simulation
methods used, each iteration of a loop begins at the same time. For any time T after the entry
into a loop, the summary information cannot be computed until the loop is terminated. It has
been informally observed that many of the Perfect Benchmarks R
 programs spent the majority
of their execution inside at least one loop nest. Since we would only be able to summarize the
histogram when no loop nests are active, this approach o�ers little advantage.
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Figure 5.11: Assuming leftmost distribution

Figure 5.12: Assuming leftmost scheduling distribution p = 2

Figure 5.13: Assuming leftmost scheduling distribution p = 5
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Figure 5.14: Assuming rightmost distribution

Figure 5.15: Assuming rightmost scheduling distribution p = 2

Figure 5.16: Assuming rightmost scheduling distribution p = 5
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total  0
for i  1 to number of buckets do

count  bucket[i].count
if (count < q) then

total  total + count
else

total  total + (q - 1)
count  count - (q - 1)
if (count > 0) then

total  total + d count/p e
end if

end if

end for

Figure 5.17: Calculate upper bound of parallel execution time for q > 1

total  0
extra  0
for i  1 to number of buckets do

count  bucket[i].count + extra
if (count > 0) then

total  total + q
count  count - (q * p)
if (count � p) then

total  total + b count/p c
count  mod(count,p)

end if

if (count � 0) then
extra  0

else

extra  count
end if

end if

end for

if (extra > 0) then
total  total + d extra/p e

end if

Figure 5.18: Calculate lower bound of parallel execution time for q > 1
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The ability to specify a time-quanta larger than one allows the PAH to be reduced in size, at
the expense of accuracy, to �t into the available memory constraints. A direct correlation exists
between the size of the time-quanta and the tightness of the bounds. Thus, we would like to
use the smallest time-quanta possible without over
owing the available storage. The minimum
time-quanta may be unknown at the start of the program's execution since it is based on the
parallel execution time for an unlimited number of processors. If the minimum time-quanta
is known then we can customize each run to use the minimum possible quanta. However, if
the parallel execution time is unknown, then the minimum quanta time can be determined
dynamically.

The strategy for dynamically determining the minimum quanta size is �rst to assume that
a quanta of one is su�cient. When the PAH is about to over
ow, double the size of the quanta
and combine adjacent entries in the PAH to create a new histogram table based on the new
quanta. Since we have combined adjacent histogram buckets, the latter half of the table will be
free to record future operations. This strategy results in O(log2(�nal time-quanta)) adjustments
to the PAH.

5.6 Average Parallelism Results

The methods described in the previous sections were applied to several programs. First a simple
benchmark, the 10x10 matrix multiply, was used. This program exhibits almost linear speedup.

Figures 5.19 to 5.21 illustrate the e�ects of di�erent time-quanta or bucket sizes on the
calculated speedup values. Figure 5.19 gives the truest picture of the real speedup obtainable
with limited numbers of processors. This �gure shows that for a 10x10 matrix multiply, as it
was written, we can only use less than 100 processors. The upper bound for this example is
linear in the number of processors, the lower bound is a stairstep, where dramatic improvements
are noticed whenever the number of processors is a divisor of 100.

Figures 5.20 and 5.21 show the e�ects that larger time-quanta or PAH bucket sizes have on
the inherent parallelism bounds. In both cases the number of processors required to achieve
maximum parallelism has increased owing to the operation distribution e�ects and uncertainty
described in Section 5.5.3. It is also apparent from these graphs that the lower bound, calculated
by cyclic scheduling, changes from the stair-step appearance in Figure 5.19 to a much smoother
appearance in the other two �gures.

An important property of the average parallelism calculation for limited resources is shown
by these �gures. The bounds on the average parallelism are the tightest when the quanta size of
the PAH buckets is the smallest. When the quanta size is increased, the bounds for the larger
quanta are looser than the bounds for smaller quanta. This property permits the techniques
described in this chapter to be used for larger quanta sizes at the expense of precision while
maintaining the correctness of the bounds.

5.6.1 Perfect Benchmarks Results

The remaining examples are from selected Perfect Benchmarks. The time-quanta chosen for
each program was computed by the dynamic processes described in Section 5.5.5. Each example
shows the results portrayed as accurately as possible within the bounds of the given memory
constraints. A 16-megabyte bu�er was used to store the PAH for these experiments.
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Figure 5.19: Average parallelism for 10x10 matrix multiply, quanta = 1
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Figure 5.20: Average parallelism for 10x10 matrix multiply, quanta = 4
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Figure 5.21: Average parallelism for 10x10 matrix multiply, quanta = 16
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The parallel activity histogram for each program lists three curves that, because of limited
resolution, may not all be visible. The PAH is divided into 512 display periods and the mini-
mum, maximum, and average values are computed for each interval in the display period. The
y-axis displays the number of concurrent operations at each time interval. The tops of some
curves are not displayed since they exceed the maximum value of the y-axis.

Each of the average parallelism plots contains two curves. The curve drawn in a dashed line
is the lower bound on the average parallelism, and the solid line is the upper bound. All graphs
of average parallelism show the same asymptotic behavior. This behavior is expected since
there is no penalty for the saturation of a resource such as memory bandwidth. The bounds
asymptotically converge on the average parallelism for the unlimited processor case.

Two observations stand out when examining the graphs of the average parallelism. The �rst
observation is that the upper and lower bounds are tight. Only a small amount of uncertainty
exists about the true parallelism at each point on the graphs. The second observation is that,
on all the graphs, a knee in the curve exists where increasing the number of processors does
not have a signi�cant impact of the average parallelism.

The programs presented in these graphs fall into three categories based on the knees in the
average parallelism graphs. The �rst category is held by qcd2(LG). This program is unique for
having the lowest knee. For qcd2(LG) it would be impractical to use more than 20 processors.
The second category are those programs where up to 500 processors would be useful. Most of
the programs �t in this category. The exceptions are the two programs that could use up to
1000 processors e�ciently. This last category consists of ocean(OC) and flo52q(TF).

Other measures can be taken of the graphs depending on the characteristics of interest.
Examples might be the number of processors required to get 90% of asymptotic parallelism or
the number of processors needed to get 50% of the asymptotic parallelism.

5.7 Conclusion

Inherent parallelism is a concept that has been used to show the potential for parallel execution.
We have shown in this chapter that the processor activity histogram (PAH) can be easily
collected as a by product of critical path analysis. We presented two methods for collecting the
PAH of parallel activity for an unbounded number of processing elements.

The �rst method computes the PAH exactly, at operation-level granularity, by issuing a
subroutine call for each operation. This method is not used by the experiments in this chapter.
The method we used summarizes the activity inside a loop iteration by estimating processor
activity from the number of operations performed and completion time of the iteration. The
�rst method collects the parallel activity for each operation. The second method uses a heuristic
to summarize the parallel activity for an entire loop iteration.

Given the PAH for an unlimited number of processors, we have shown that it is possible to
compute bounds for the case of limited processing resources. The lower bound is computed using
cyclic scheduling of the operations in each histogram bucket. The upper bound is calculated by
allowing some of the operations in adjacent buckets to execute concurrently. We have shown in
this chapter that for large Fortran programs selected from the Perfect Benchmarks, the upper
and lower bounds are tight and provide a good estimate on the real speedup curve. We have
also shown that histogram bucket sizes greater than one cause degradation in the accuracy of
the bounds.
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Figure 5.22: Parallel activity histogram for adm(AP)
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Figure 5.23: Average parallelism for adm(AP)
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Figure 5.24: Parallel activity histogram for bdna(NA)
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Figure 5.25: Average parallelism for bdna(NA)
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Figure 5.26: Parallel activity histogram for dyfesm(SD)
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Figure 5.27: Average parallelism for dyfesm(SD)
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Figure 5.28: Parallel activity histogram for flo52q(TF)
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Figure 5.29: Average parallelism for flo52q(TF)
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Figure 5.30: Parallel activity histogram for ocean(OC)
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Figure 5.31: Average parallelism for ocean(OC)
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Figure 5.32: Parallel activity histogram for qcd2(LG)
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Figure 5.33: Average parallelism for qcd2(LG)
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Figure 5.34: Parallel activity histogram for track(MT)
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Figure 5.35: Average parallelism for track(MT)
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Figure 5.36: Parallel activity histogram for trfd(TI)
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Figure 5.37: Average parallelism for trfd(TI)
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Chapter 6

STRESS ANALYSIS

6.1 Introduction

An analogy can be formed between the dependence arcs present in a program and the load-
bearing members in a physical structure. The stresses present in the load-bearing members of
a structure can be calculated from the forces imposed on the structure. The forces present at
each point in a structure and by analogy in a program need to be balanced in order to have a
static equilibrium.

Figure 6.1: Critical path representation via node stress

The dependence arcs in the program can be divided into load-bearing and non-load-bearing
components. The load-bearing components are those that give rise to the critical path. All
other components are considered redundant because they are enforced by the load-bearing
dependence arcs. Critical path analysis attempts to schedule all operations as early as possible
in the parallel execution. The dependence arcs apply an opposing force to counteract the
tendencies of operations to move earlier in time.

At every point in the program, each incoming dependence arc contributes a time when the
operations may begin. The arc with the maximum timestamp is the critical dependence arc.
In Figure 6.1, the critical path is illustrated by the bold arrows. The curved arrows represent
the data dependences that are redundant in determining the execution time of the operation.
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We describe in this chapter a technique for determining the impact of a particular statement
on the critical path length of a program. This idea is the basis for the experiments in Chapters
7 and 9. In addition to de�ning an interesting idea, we present a tool to display directly the
locations in the program that induce the highest stress on the operations contributing to the
length of the critical path.

6.2 Overview of the Evaluation Method

The ability to calculate internal stress is a direct consequence of the methods used to calculate
the critical path length. The method shown in Chapter 4 to instrument Fortran programs
propagates timestamps through the program's dynamic data-
ow graph. Stress analysis mea-
sures the di�erentials between the dependences that act on each node in the data-
ow graph.
The results of the stress analysis are locations that locally in
uence the critical path. Since
the di�erentials are a local phenomenon and the critical path is a global phenomenon, some
discrepancies do exist. It is possible for some of the statements reported by stress analysis to
be redundant because the local forces induce stress that is not globally propagated.

Inherent parallelism, as calculated by critical path analysis, re
ects dependences that are
intrinsic to a program. In addition to these dependences, the program can be augmented with
arti�cial control dependence arcs, as described in Chapter 4, to simulate the restrictions placed
on execution to simulate loop-level parallelism.

Data
Dependences

Control 
Dependences

Figure 6.2: Grouping of dependence arcs for stress calculations

The ability to calculate a program's internal stress arises when the dependences or forces
acting on a statement can be divided into several classes. Each class represents a programming
idiom. For the purposes of this experiment we will de�ne two classes, as shown in Figure 6.2. We
will group all 
ow-dependences into the �rst class. The main idiom recognized in the �rst class
is the use of recurrences to specify inductions and reductions. The second class will be control
dependences. The control dependences enforce the 
ow of control required for conditionals and
loops as well as the arti�cial dependences introduced to sequentialize the statements in loop
iterations. The idioms recognized by the control dependences include speculative calculations
and statement reordering.

In each class of dependences, we de�ne the critical dependence as that which imposes the
largest force on the operation. Alternatively, the force can be interpreted as the value of the
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timestamp propagated by the dependence arc. The arc that has the largest timestamp is then
the critical dependence arc.

In Figure 6.2, let X be the timestamp propagated by the critical dependence arc in the
group of data dependences (indicated by the bold arc). From the same �gure we can let Y be
the timestamp propagated by the critical control dependence arc. The dependence di�erential
is the absolute value of X � Y .

T0

T1, T2, T3, T4, T5

Figure 6.3: Recurrences in stress analysis.

To see how each of these classes is used, consider the e�ects of the dependences present
during the execution of a program. Figure 6.3 illustrates a node with one control dependence
arc that has a value of T0 and one data recurrence arc with a series of timestamps T1; : : : ; T5.
In the series of timestamps generated and consumed by the recurrence, we have the property
that T0 < T1 < T2 < � � � < T5 and thus Ti > T0 for all i > 0. We can capture the information
that the recurrence is degrading system performance by recording the sum of the dependence
di�erentials between the timestamps propagated by the critical arc in each iteration, that isP
i(Ti� T0).
Accumulating the dependence di�erentials may not be the best method of determining the

importance of the stress placed on an operation. It may be more enlightening to calculate the
maximum of the dependence di�erentials instead of the sum. The sum of the di�erentials has
the intuitive advantage that it represents the entire contribution of the node in the data-
ow
graph to the critical path length. Since each instance contributes a small part to the total,
summing the individual di�erentials re
ects its average contribution.

However, two operations with the same stress value may not be comparable. If the �rst is
a summation of a large number of tiny dependence di�erentials, it may not be advantageous
to remove any particular one of the arcs that cause the stress. But, if the entire stress value
reported is the result of one instance, a minor change to the program may have a large impact
on the critical path length.

It may be important to use both methods of calculating the �nal weight of stress on an
operation. For the remainder of this chapter we illustrate the examples using the method of
adding the individual dependence di�erentials.

6.3 Results

In Sections 6.1 and 6.2 we saw that, at each point in the program, stress analysis calculates
the forces (i.e., dependences) that act on a statement or operation. It is a simple matter to
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compare the forces/dependences at each point to determine if they are uniform. The dependence
di�erential as de�ned in Section 6.2 is used to determine uniformity. When the forces are not
uniform, or one force is dominant, we can use this information to infer where the program needs
to be changed to eliminate this force and potentially reduce the length of the critical path.

Line#
1 PROGRAM EX1

2 REAL A(5)

3 K = 0

4 DO I = 1, 5

5 K = K + 1

6 A(K) = I

7 ENDDO

8 END

----- SUMMARY: Stress Relation Recognition -----

EX1 MODULE

<S> EX1:5 K:20

Figure 6.4: Example one

Figure 6.4 gives a simple example of a dependence cycle that serializes a loop. Here we are
dealing with an induction variable, but in the general case it could be any data dependence
that forces future iteration to wait for the current iteration. Figure 6.5 shows graphically how
the execution of the program proceeds. The thin arrows represent control dependences and the
thick arrows represent data dependences. We can redraw this graph as shown in Figure 6.6
to make the critical path more evident. It can be seen in this �gure that the cross-iteration

ow-dependences from statement 5 to itself determines the critical path.

The format of the resulting output is as follows. For each routine in the program we create
a list of statements. Each statement starts with the label <S> to show a stress relationship.
Following the label is a statement tag of the form routine:line. For example, EX1:5 shows
a reference to line 5 in the �le that contains the routine EX1. A list of pairs of the form
cause:count follow the statement tag. If the cause is a data dependence induced by a variable
in the statement, the name of the variable is shown. If the cause is a control dependence, the
line number of the source of the control dependence is shown. In Figure 6.4, the stress report
shows that the statement on line 5 of routine EX1 was di�erentially delayed owing to the use
the of variable K. In no other statement of this example was a di�erential delay or unbalanced
force detected.

The count �eld of the stress report gives a relative weight to the importance of this particular
stress. The higher the count, the more importance this statement has, at least locally. The
result of K:20 shows that the variable K caused a cumulative delay of 20 time units. This is easy
to observe from the program. Each loop iteration starts at the same time. Statement 5 requires
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2 time units to execute, one for the addition and one for the store. At the �rst iteration we
have a delay of 0. The second iteration must wait for the value to be computed during the �rst
iteration, so it has a delay of 2. Similarly we add 2 to the delay for each subsequent iteration.
The total 0 + 2 + 4 + 6 + 8 is 20.

PROGRAM EX1

REAL A

INTEGER S$S1, S$S2, S$S3, S$S4, S$S5, S$S6

INTEGER C$EX1, K, C$K, N$Z, N$N, I, C$I, C$A

DIMENSION A(5), C$A(5)

COMMON /N$NBLOCK/ N$N, N$Z

CALL MSTRESS$ENTRY('EX1',C$EX1)

S$S1 = C$EX1

S$S3 = C$EX1

K = 0

CALL STRESS$STMT('EX1:3',C$K,1,0,1,S$S1,'K!1')

S$S2 = C$K

CALL STRESS$STMT('EX1:4',C$I,0,0,1,S$S2,'I!3')

S$S6 = C$I

DO I = 1, 5, 1

S$S3 = C$I

K = K+1

CALL STRESS$STMT('EX1:5',C$K,2,2,C$K,S$S3,1,S$S3,'K!K!4!4')

S$S4 = C$K

A(K) = I

CALL STRESS$STMT('EX1:6',C$A(K),1,3,C$I,C$K,S$S3,2,S$S4,S$S3,'A(K)!I!K!4!5!4')

S$S5 = C$A(K)

S$S6 = MAX(S$S5,S$S3,S$S6)

ENDDO

C$I = MAX(C$I,S$S6)

S$S3 = MAX(S$S3,S$S6)

C$EX1 = MAX(S$S3,C$I,C$EX1,C$K)

CALL MSTRESS$EXIT('EX1',C$EX1)

STOP

END

Figure 6.7: Example one instrumented code

Figure 6.7 shows a program listing after the original code has been instrumented. In addition
to the support routines at the beginning and end of the routine (that maintain the dynamic
call tree and collect parallelism statistics), we call the routine STRESS$STMT() to record the
di�erences in the dependences arcs. The support routine STRESS$STMT() has a variable number
of arguments. The �rst argument is the statement tag of the form routine:line. The tag is
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printed by the stress report as a means of correlating the results with the original source code.
The second argument is the shadow variable for the lefthand side of the assignment statement.

The next argument is an integer describing the number of time units required to execute
this statement once all the operands are available. For example, if the shadow expression is
$X=MAX($A,$B)+2, then the third argument to the STRESS$STMT call would be 2. Two lists of
shadow variables follow the operation count. Since these lists vary in length, each is preceded
by the number of elements it contains. The �rst list of shadow variables includes the data
dependences; the second list contains the control dependences. Finally, as the last argument
we have a character string using the \!" character as a separator of the names for each of
the shadow variables. If we are describing a control dependence, then the line number of the
dependence is recorded as its name.

The routine STRESS$STMT determines the maximum timestamp in each list of shadow vari-
ables. It then �nds the di�erence between the largest timestamp in each list and adds the
dependence di�erential to an array kept for each statement. This array has one element for
each of the dependences passed into the routine. A pointer to the �nal argument is cached in
the internal structures so that the results can be displayed in terms of the program's original
variables, instead of being displayed as a position in the call to the support routine.

6.3.1 Stress Analysis Examples

Another property of stress analysis is pointed out in Figure 6.8. Here we have two unrelated
inductions, one in the variable A and one in the variable X. The �rst line of the stress report
shows the data dependence on the variable A at line 5. The second line of the stress report,
however, does not tell us about the variable X. It does correctly identify line 7 as a problem
and reports that a control dependence to line 6 degraded performance. The counts on the two
lines of the report show that the induction variable in line 5 is of much greater impact than the
control dependence at line 7. What this is really indicating is that we need a cobegin/coend
pair inside the loop body to compute the two sequences concurrently. We note that the small
count value for EX2:7 is a consequence of the e�ects of loop-level parallelism. The bulk of
the delay required to calculate the induction w.r.t. X is already forced to occur owing to the
calculation of A. Thus, the delay penalty for the second induction calculation is hidden by the
�rst.

Finally, in Figure 6.9, we see that a loop can purely have control dependences as the only
points of stress in the program. In this example we calculate three values into local variables
and then use these three values to compute a result. The stress results show that statements 6
and 7 are delayed because of the immediately previous statement. Statement 6 must arbitrarily
wait for the calculation of A(I), and statement 7 must wait for the calculation of both A(I) and
B(I). Here the code could be written more e�ciently by either distributing the computation
into separate loops, or introducing a cobegin/coend pair to calculate concurrently the values
of A(I), B(I), and C(I).

6.4 Conclusion

Analogous to the load-bearing members in a physical structure, dependences give form and
support to parallel programs. Interpreting the dependence arcs in a constrained program in a
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Line#
1 PROGRAM EX2

2 A = 0

3 X = 0

4 DO I = 1, 10

5 A = A + 1

6 B = A + 1

7 X = X + 1

8 Y = X + 1

9 ENDDO

10 END

----- SUMMARY: Stress Relation Recognition -----

EX2 MODULE

<S> EX2:5 A:90

<S> EX2:7 6:4

Figure 6.8: Example two

Line#
1 PROGRAM EX3

2 REAL A(10), B(10), C(10)

3

4 DO I = 1, 10

5 A(I) = I*2+1

6 B(I) = I*3+2

7 C(I) = I*4+3

8 D(I) = A(I) + B(I) + C(I)

9 END DO

10 END

----- SUMMARY: Stress Relation Recognition -----

EX3 MODULE

<S> EX3:6 5:30

<S> EX3:7 6:60

Figure 6.9: Example three
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similar manner to the components of a physical structure allows one to grasp intuitively the
concept of a critical path and to calculate the \load-bearing" dependences in a program.

If we separate the dependences into data and control sets, we can compare the relevance
of the arcs of each type on an operation in the program. Summing the di�erence in tension
(i.e., timestamps) along the maximum arcs in each set indicates the general cause of the stress
at that operation. If the data arcs have a higher sum of the di�erences then it is a recurrence
that has serialized this section of code. On the other hand, if the control arcs have a higher
sum, then it may be the arti�cial order of the statements under loop-level parallelism that is
constraining the parallelism.

In the �rst case of degradations owing to recurrences, it may be possible to reduce the
stress with a parallel recurrence solver, or through induction variable elimination. The second
case of the control arcs being predominant may be eliminated by reordering the statements, or
concurrently executing the lexically sequentialized statements.
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Chapter 7

INDUCTION VARIABLES

7.1 Introduction

Parallelizing compilers are used to recognize explicitly the parallelism that is implicit in a
program. Through the use of program transformations, the parallelizing compiler may be able
to substitute an alternative algorithm that eliminates the data dependences contained in the
original code. The process of induction variable elimination is an example of this class of
transformation.

S1: K = 0

S2: DO I = 1, N

S3: K = K + 3

S4: A(K) = A(K) + 1

S5: ENDDO

Figure 7.1: Example of a loop with an induction variable

A variable K is called an induction variable of a loop L if the value of the variable at every
point in L is strictly a function of the iteration number and loop invariant values. The values of
the induction variable form an arithmetic sequence. A basic induction variable is de�ned to be
an induction variable K such that every time the variable K changes value, it is incremented or
decremented by a constant value [ASU86]. In the experiments reported here, we are interested
in generalized induction variables [EHLP91], that is, we allow multiplication as well as addition
for the basic induction variables and do not restrict the values to be in an arithmetic sequence.

For the loop shown in Figure 7.1, the variable K in statement S3 is incremented by a constant
(3) in each iteration of the loop. It is important to note that the code, as it is written, has
a cross-iteration 
ow-dependence from S3 to itself. The e�ect of this 
ow-dependence is to
serialize the loop since iteration I+1 must wait until the value of K, in iteration I, has been
computed.

If we replace the induction variable K with an expression involving the loop's index variable
(shown in Figure 7.2), then we break the 
ow-dependence and allow the loop to execute in
parallel. The parallel execution is only possible if we also eliminate the output-dependence on
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S1: K = 0

S2: DO I = 1, N

S3: K = 3*I

S4: A(K) = A(K) + 1

S5: ENDDO

Figure 7.2: After induction variable elimination

K possibly via localization of the scalar variable. We are assuming throughout these examples
that the computation of the index variable for a loop does not introduce a serializing bottleneck.
We can make this assumption because the iteration space of a loop can be pre-computed from
the information in the DO statement.

S2: DO I = 1, N

S4: A(3*I) = A(3*I) + 1

S5: ENDDO

Figure 7.3: After forward substitution and dead code elimination

The �nal result is shown in Figure 7.3. If the value of K is not live on exit from the loop,
then we can do forward substitution and deadcode elimination to obtain the �nal form.

The sequence of transformations presented here are traditionally used by parallelizing com-
pilers to expose parallelism that is not immediately obvious. We have transformed a loop that
must be executed sequentially into the �nal form that can be executed as a parallel doall loop.
These transformations are not always bene�cial. You will notice that we replaced a single ad-
dition from the �rst example with 2 multiplications in the last. This is the opposite of strength
reduction. If the multiplications are more expensive than the addition and the iteration space
of the loop is small, we may have introduced more overhead into the program than can be
eliminated through the use of parallelism. Also, if the elimination of induction variables does
not eliminate cross-iteration 
ow-dependences caused by other statements in the loopnest we
may produce an equivalent serial loop that has higher overhead than the original. Because
of this e�ect, commercial parallelizing compilers such as KAP/Concurrent do not remove the
induction variable unless it can create a parallel loop.

It is natural that parallelizing compilers should attempt to recognize all induction variables
in a program, and to remove those that are inhibiting the parallel performance of the program.
One would like to be able to measure the success of the parallelizing compiler at this task. How-
ever, at the present time, we are unaware of any technique that can measure the performance
degradation of induction variables that either were not recognized as such or were not removed
from the program.

Through the technique of critical path analysis (de�ned in Chapter 4), we present a method
by which the e�ects of generalized induction variables can be measured. In Section 7.2, we
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describe the general overview of our method. Section 7.3 describes the implementation used to
compute the results. Section 7.4 displays the results from the experiments. Section 7.5 presents
our conclusions.

7.2 Overview of the Evaluation Method

Induction variable elimination is a mature area where many useful techniques exist. However,
no technique has been proved optimal in the presence of incomplete information resulting from
imprecise interprocedural analysis or variables whose values are known only at run-time. In the
absence of optimal solutions, we are reduced to making comparative measurements. To make
the comparison, you need a \better" method with which to compare.

In Chapter 4 we described a technique that can be used to calculate the inherent parallelism
present in an application; the method used for the experiments described in this chapter is a
variation of that technique. For the experiments presented in this chapter, we use the speedup
measured by critical path analysis as the basis for our comparisons.

The calculation of inherent parallelism involves the instrumentation and execution of the
source program. The instrumentation relies on a shadow variable associated with each of the
original variables, containing a \timestamp" that indicates the earliest time that any compu-
tation using that value may begin.

In general terms, the critical path length computation requires that each statement compute
the expression MAX(forall operand timestamps)+time for operators; that is, each statement must
wait until each of its operands is available before it can begin, and then the results from the
statement will be available a constant amount of time later.

This general strategy is adequate if we are interested only in tracking one parameter per
variable (i.e., the timestamp). However, to calculate the e�ects of induction variables, we need
to be able to classify all the variables in the program.

To accomplish the bookkeeping required for this additional information we de�ne the shadow
variable as a pointer to an auxiliary structure instead of a timestamp. Most Fortran 77 com-
pilers, including ours, are capable of allocating all variables statically at compile-time. We can
take advantage of this behavior by noting that uninitialized shadow variables contain the value
0. We can interpret this value as a NULL pointer in the support libraries, and use this value
to signify that a shadow structure has not been allocated for this variable. Whenever a shadow
variable is passed into the support library we �rst check the shadow's value; if it is NULL
we create a shadow structure and place the address of the shadow structure into the shadow
variable of the Fortran program.

In addition to the modi�cations in the instrumentation needed to collect shadow structures,
we also need to calculate the mode of each variable de�nition. In Section 7.2.1 we de�ne a
lattice of states that the mode of a variable de�nition may take. These states describe what
is known about the type of the variable. It classi�es the values as unknown, constant, loop
invariant, induction variable, or anything. The instrumentation support library handles the
transitions among these states owing to operations such as addition or multiplication being
applied to the values.
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7.2.1 State Space for Variable Identi�cation

Table 7.1 lists the states that the mode of a statement make take. The statement's mode is the
classi�cation of the value that it produces. Each statement that produces a value is classi�ed
according to this table. If a statement does not produce a value, then by default it is placed in
the BOT state. Every statement and every value produced by the program is classi�ed as being
in one of these states.

State De�nition

TOP nothing of interest
MAx a multiple of an additive induction variable
AMx an addition of a multiplicative induction variable
Mx a multiplicative induction variable
M1 a partial multiplicative induction variable
Ax an additive induction variable
A1 a partial additive induction variable
LIV a loop invariant variable
CST a constant
BOT could be anything

Table 7.1: De�nition of lattice points

Each variable has a �eld in its shadow structure pointing back to the statement that pro-
duced the value. By following this pointer back to the statement, we can classify the value
contained in a variable to determine if it is part of an inductive sequence. If the variable is
an induction variable, then we can eliminate its e�ects on the length of the critical path to
calculate a bound on the bene�t derived from eliminating the induction calculation.

Transitions between the states in Table 7.1 are shown by Figures 7.4 and 7.5. Details are
shown in Tables 7.2 and 7.3. When an operation is performed during the program's execution,
the states of the values are used as indices into the tables to �nd the resulting state.

In Figures 7.4, 7.5, and 7.8 we have omitted the arcs from BOT to all other nodes, and
from all nodes to TOP for clarity in the diagrams. Self-transition arcs are also omitted from the
diagrams. In each of the �gures the arcs may be traversed on meeting with the appropriate
variable state. Figures 7.4 and 7.5 describe symmetric transition diagrams. The initial state in
the diagram may be that of either the left or the right operand of the operation.

Table 7.2 and Figure 7.4 show the transition diagram when two values meet under an ad-
dition/subtraction. We treat subtraction in an identical manner to addition. This treatment
allows for the possibility of recognizing more potential induction sequences, but it also opens
the possibility to erroneously classify a sequence of operations as an induction. No distinc-
tion is made between the forms X � Y and Y � X . As can be seen from the diagram, an
addition/subtraction can only move into the states A1, Ax, AMx, or TOP.

Table 7.3 and Figure 7.5 show a similar situation to Figure 7.4 except that the transitions
assume we are processing a multiplication/division operation. As in the case for transitions on
addition and subtraction, division is treated identically to multiplication. Again this opens the
method to inaccuracies owing to the ordering of the operands. The expressions X=Y and Y=X
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BOT

CST

A1

MAx

Ax

M1

Mx

AMx

TOP

LIV

Figure 7.4: Lattice for ADD merge

BOT CST LIV A1 Ax M1 Mx MAx AMx TOP

CST CST A1 Ax Ax TOP AMx TOP AMx TOP

LIV A1 A1 Ax Ax TOP AMx TOP AMx TOP

A1 Ax Ax A1 Ax TOP TOP TOP TOP TOP

Ax Ax Ax Ax Ax TOP TOP TOP TOP TOP

M1 TOP TOP TOP TOP TOP TOP TOP TOP TOP

Mx AMx AMx TOP TOP TOP TOP TOP TOP TOP

MAx TOP TOP TOP TOP TOP TOP TOP TOP TOP

AMx AMx AMx TOP TOP TOP TOP TOP TOP TOP

TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP

Table 7.2: Transition table for addition and subtraction merge
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BOT

CST

A1

MAx

Ax

M1

Mx

AMx

TOP

LIV

Figure 7.5: Lattice for MUL merge

BOT CST LIV A1 Ax M1 Mx MAx AMx TOP

CST CST M1 TOP MAx Mx Mx MAx TOP TOP

LIV M1 M1 TOP MAx Mx Mx MAx TOP TOP

A1 TOP TOP TOP TOP TOP TOP TOP TOP TOP

Ax MAx MAx TOP TOP TOP TOP TOP TOP TOP

M1 Mx Mx TOP TOP M1 Mx TOP TOP TOP

Mx Mx Mx TOP TOP Mx Mx TOP TOP TOP

MAx MAx MAx TOP TOP TOP TOP TOP TOP TOP

AMx TOP TOP TOP TOP TOP TOP TOP TOP TOP

TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP

Table 7.3: Transition table for multiplication and division merge
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are treated in the same manner. Using these transitions, we can only move into the states M1,
Mx, MAx, or TOP.

7.2.2 Use of Transition Tables

To illustrate the use of the transition diagrams, consider the simple loop shown in Figure 7.6.

S1: K = 0

S2: DO I = 1, 10

S3: K = K + 1

S4: A(I) = K

S5: ENDDO

Figure 7.6: Example for induction variable recognition

Assume that the shadow of a variable is declared to be the name of the original variable
preceded by a '$'. Initially all shadow variables are 0 (i.e., NULL). On the �rst reference to
each shadow variable by the support library, the shadow is initialized to a newly created shadow
structure. Initially this structure refers with its .from �eld to a statement whose mode is in
the BOT state.

After the execution of statement S1 we have $K.from=S1 and S1.mode=CST. The DO state-
ment initializes $I.from=S2 and S2.mode=Ax. We assume that all index variables used in DO

loops are classi�ed as additive induction variables.
The righthand side of statement S3 is the expression K+1. The �rst time statement S3

is executed we set $K.from=S1 which is outside the loop, so instead of using S1.mode, we
substitute the mode of LIV to indicate that at this point in the loop, K's value is loop invariant.
The constant 1 obviously has the mode CST, and the transition table for addition says that the
meet of the state LIV with the state CST produces the state A1. The state A1 indicates that
this variable might be an induction variable, but it is too early to be sure.

After executing statement S3 we have $K.from=S3 and S3.mode=A1. Executing statement
S4 copies the information in $K into $A(I). However, since $I.from=S2 and S2.mode=Ax, which
is not constant or loop invariant, we must assign S4.mode=TOP. This additional step allows our
method to distinguish induction on array elements from reductions over the array elements.

The second iteration of the loop produces slightly di�erent results. Statement S3 again
has the expression K+1. This time $K.from=S3, which is inside the loop; therefore we do not
modify the mode of $K. The mode of $K=S3.mode=A1. The meet of A1 and CST from Figure
7.4 produces Ax, which is the �nal state, describing the variable as an induction variable.

Again S4 copies $K into $A(I) with the alteration that the use of a subscript on the lefthand
or righthand side that is not loop invariant caused the mode of the statement to be TOP state.
For any subsequent iteration we have the same pattern repeating. The mode of the shadow $K

has stabilized to the state Ax.
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7.2.3 Enhancement to the Model

A problem exist in the use of the lattices that have been proposed. In particular, the prior mode
of the statement is not considered when computing the new mode of the statement. Consider
the simple loop in Figure 7.7.

S1 DO I = 1, N

S2 K = 0

S3 K = K + 1

S4 K = K + 1

S6 ENDDO

Figure 7.7: Problem example for induction variable recognition

It is obvious that the variable K in this loop has a constant value at each statement in the
loop. However, if we use the lattice de�ned for addition, we have S2.mode=CST, S3.mode=A1,
and S4.mode=Ax. From this example we see that increasing the height of the lattice (i.e.,
adding A2, A3, A4) will just defer the problem since we can always construct an example that
will incorrectly classify the statements.

We have settled on a two-stage de�nition (A1, Ax) for this experiment to eliminate the
obviously incorrect classi�cations. The problem with dynamic execution is that statements
S3 and S4 look like an unrolled loop. It would seem possible to use the dynamic loop nesting
structure of the program to eliminate these erroneous classi�cations. However, this would entail
the creation of a database of variables assigned inside each loop, along with the overhead of
maintaining the database. The overhead for this approach makes it infeasible.

The solution we have adopted for this problem of incorrectly classifying some statements is
to create a lattice transformation based on the assignment or store operator.

Figure 7.8 is the �nal important transition diagram. Unlike Figures 7.4 and 7.5, Figure
7.8 describes a nonsymmetric transition diagram. The current state of the lefthand side of the
assignment is always used as the initial state. In Table 7.4 the new state of the statement is
computed by using the previous state as the index into the rows, and using the new state as the
index into the columns. The basic premise of this transition is that a mode can never propagate
down in the lattice. The mode must remain the same or move up. For example, if the previous
mode was Ax and we want to de�ne the statement to have mode CST, then we would assign the
mode of TOP to the statement.

The basic idea is that the classi�cation state of a statement can never go down in the lattice.
If the lefthand side of the assignment has a previous mode, then we use Figure 7.8 to determine
the new state by meeting the old state with the state of the righthand side. Thus for our
example we merge the previous de�nition of the variable K with the current de�nition of K+1.

For the �rst iteration of statement S2, we have the previous de�nition S2.mode=BOT, and
the current de�nition to be CST. The meet of these states assigns the de�nition of S2.mode=CST.
Likewise for statements S3 and S4 we assign the modes S3.mode=A1 and S4.mode=Ax.

During the second iteration of the loop, we now have the current de�nition of K coming
from statement S4.mode=Ax. The meet of Ax with CST attempts to move down the lattice. This
is not allowed; thus the result is TOP. Therefore, we de�ne S2.mode to be TOP. The state of
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BOT

CST

A1

MAx

Ax

M1

Mx

AMx

TOP

LIV

Figure 7.8: Lattice for STORE merge

BOT CST LIV A1 Ax M1 Mx MAx AMx TOP

CST CST LIV A1 Ax M1 Mx MAx AMx TOP

LIV TOP LIV A1 Ax M1 Mx MAx AMx TOP

A1 TOP TOP A1 Ax TOP TOP MAx TOP TOP

Ax TOP TOP TOP Ax TOP TOP MAx TOP TOP

M1 TOP TOP TOP TOP M1 Mx TOP AMx TOP

Mx TOP TOP TOP TOP TOP Mx TOP AMx TOP

MAx TOP TOP TOP TOP TOP TOP MAx TOP TOP

AMx TOP TOP TOP TOP TOP TOP TOP AMx TOP

TOP TOP TOP TOP TOP TOP TOP TOP TOP TOP

Table 7.4: Transition table for store merge
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K, S2.mode, propagates through the statements causing both S3.mode and S4.mode to be TOP.
This is a stable con�guration, so no further changes will be made.

7.2.4 De�ciencies of this Approach

Our method is based on a simple state machine for the value in each variable. This approach
has limitations to its accuracy. In the example shown in Figure 7.9, we have two inner loops.

S0 K = 0

S1 DO I = 1, N

S2 K = K + 1

S3 DO J = 1, N

S4 K = K ** 2

S5 ENDDO

S6 DO J = 1, N

S7 K = K + 1

S8 ENDDO

S9 ENDDO

Figure 7.9: Inaccuracies for the induction variable recognition

We can see from a hand analysis of this fragment that the only induction variable is the
variable K in loop S6 at statement S7. However, because of the way that loop invariant variables
are computed, we declare K at statement S2 to also be an induction variable.

To see why our method arrives as this conclusion we will simulate the algorithm. In the S1
loopnest, �rst $K.from=S0, which produces $K.from=S2 and S2.mode=A1, after statement S2
is executed. Then in loop S3 we determine that $K.from=S4 and S4.mode=TOP.

On entry to loop S6, we see that $K.from=S4, which is outside the S6 loop; thus instead of
using the mode TOP, we substitute the mode LIV during the �rst iteration producing $K.from=S7
and S7.mode=A1. The second iteration has $K.from=S7 (i.e., inside the loop body) converging
to S7.mode=Ax.

On the second iteration of the outer loop, at statement S2 we have the variable $K.from=S7,
and S7.mode=Ax. Meeting the previous state of S2.mode (i.e., A1) with S7.mode (i.e., Ax), we
climb the lattice and store Ax. Thus the stable con�guration of this loopnest is: S2.mode=Ax,
S4.mode=TOP, and S7.mode=Ax.

As with Section 7.2.3, this is another example where a stack-based database of variable
classi�cations would be needed to save and restore the mode of each variable on entry and exit
from a loop.

Since the purpose of our experiment is to compute an upper bound of the e�ects of induction
variables on the critical path length, we can ignore these inaccuracies as long as they err on the
side of recognizing more induction variables than are present in the program.

The technique presented here will overestimate the number of induction variables in the
program and thus can only provide an upper bound to the parallelism that is present in the
programs after removing all induction variables.
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7.3 Implementation

The need to maintain multiple data items in the shadow structure changes the style of the
instrumentation code. In Chapter 4 we were able to use the built-in Fortran intrinsics to prop-
agate the shadow timestamps since they were basic Fortran datatypes. Now that a structure
is required to hold the shadow information, we are forced to use auxiliary support routines
for most of the work, instead of coding the bulk of the instrumentation inline. The reliance
on support routines has the advantage that we can arbitrarily change the behavior of the in-
strumented program without changing the instrumentation code, but it has severe performance
problems owing to the subroutine call overhead when compared with inline code.

typedef struct shadow f
DATATYPE timestamp;

DATATYPE industamp;

DATATYPE last_access;

struct node *from;

g SHADOW;

Figure 7.10: Shadow structure datatype

The structure shown in Figure 7.10 lists the �elds of the structure that are maintained by
the support routines. The two timestamps, timestamp and industamp, are the current length
of the critical path with and without the in
uence of induction variables respectively. The
last access �eld gives the global iteration number for the current loop. Finally, the .from

pointer refers to the statement that de�ned this value. The mode of this value can be obtained
by following this pointer.

The support routines all follow a similar pattern. The �rst argument to the routines is a
character string that describes the source statement that is being executed. The string starts
with the name of the routine being executed. If there exists ENTRY statements in the body of the
routine, then the routine name will be the name in the SUBROUTINE or FUNCTION declaration. If
we are referring to a speci�c line in the source code, a colon and the line number are appended
to the string. For example, if we are at line 13 of the subroutine MATMUL, then the �rst argument
to the support routines would be 'MATMUL:13'.

We have chosen a varargs format for the argument list of the auxiliary routines. Many of the
support routines are required to evaluate the e�ects of an arithmetic expression on the critical
path length, and on the classi�cation of the variables. The last two sections of the argument list
to the support routines are the operator string and the operand list. The number of operands
present in the subroutine call is calculated from the number of ' ' operators in the operator
string. We will describe the operator string in more detail in Section 7.3.2.

The instrumented code relies on many support routines. To delineate when a module
boundary has been crossed, the routines AB$PENTRY and AB$PEXIT are used. The entry routine
assigns a value to the root of the control dependence graph. The exit routine copies the �nal
node of the control dependence graph into the variable used to summarize the execution time
for the routine.
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AB$PENTRY( 'MATMUL', S$S1, 1, S$MATMUL )

AB$PEXIT( 'MATMUL', S$MATMUL, 1, S$S999 )

Similar routine are used for the entry and exit from loops.

AB$LENTRY( 'MATMUL:36', S$S36, 1, S$S35, 'C CAA$', C$N )

AB$LEXIT( 'MATMUL:36', S$S36, 1, S$S45 )

Each iteration of a loop in the routine is assigned a unique global iteration number. The
only purpose of the AB$IENTRY and AB$IEXIT routines are to assign the correct GIN to the
current �eld of the active loop. The use of the loop tag as the argument allows error checking
for consistency.

AB$IENTRY( 'MATMUL:36' )

AB$IEXIT( 'MATMUL:36' )

The main instrumentation support routines are called AB$STMT and AB$CONTROL. All possible
induction values must be de�ned via an assignment statement in the program. The AB$STMT

routine interprets the e�ects of the operations applied in the statement on the mode of the
variable and the timestamp of the results. The routine AB$CONTROL is similar, except that the
control dependence calculations can never de�ne an induction variable.

AB$STMT( 'MATMUL:13', S$S3, 2, S$S1, S$S2, C$K, ' C+$', C$K )

AB$CONTROL( 'MATMUL:13', S$S3, 2, S$S1, S$S2, C$K, ' C+$', C$K )

I/O is an important consideration for the timing model and for determining induction
variables. Any value read by an input statement is de�ned to have the mode TOP. The execution
time of the program is also altered by the I/O statements. We enforce the rule that all I/O
must occur in the same order as in the original program.

AB$INPUT('MATMUL:44', 0, S$S5, 1, S$S4, '$')

AB$OUTPUT('MATMUL:44', 0, S$S5, 1, S$S4, '$')

7.3.1 Invariant Variable Recognition

The purpose of each call to the support routines is to update the shadow structures. One
important aspect of the shadow variable is the iteration count (last access) associated with
each variable. To determine an optimistic set of induction variables correctly we must �rst be
able to determine if a variable is loop-invariant.

We will de�ne a variable to be loop-invariant if the last update to the variable occurred
before the current loop was entered. If the variable has been modi�ed since the current loop
was entered, then we classify the variable as loop-variant.

The method used to determine when a variable was last modi�ed is based on a global itera-
tion number (GIN). The GIN is initialized to zero at the start of the program and incremented
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by one each time a loop iteration begins. We record two values associated with the DO state-
ment. The �rst value is stored in the �eld named start. The GIN is assigned to the start

�eld just before the DO statement is executed. The second value is stored in the �eld named
current. We increment the GIN and assign it to the current �eld at the beginning of each
iteration of the loop.

The GIN provides us with a frame of reference against which to determine if a variable
contains a value that is invariant in the current loop. Each loop in the program is tagged with
a pair (S;C) that are the global iteration numbers for the start (i.e., �rst iteration) and the
current (i.e., the current iteration).

If we have a variable whose last access �eld has the value A, and A < S, we are sure
that the variable has not been modi�ed since the invocation of the loop. We can prove this
statement by noting that if A < S, we had not even arrived at the DO loop in question when
this variable was modi�ed. Conversely, if we have a variable with last access �eld A where
A � S, then we are assured that the variable has been modi�ed since the entry into the loop
because the access stamp A could not be created until the loop had entered.

The mode of LIV is reserved for the case of a loop-invariant variable. When executing the
' ' (push) instruction of our stack-based interpreter, we check the last access �eld of the
shadow variable, and if the last de�nition of the variable is outside the current loop, then we
assume that the variable is invariant with respect to the current loop. It should be noted that
we are being slightly lax in the traditional de�nition of loop-invariant for induction variable
recognition.

S1 DO I = 1, N

S2 M = � � �
S3 DO J = 1, N

S4 : : :
S5 K = K + M

S6 : : :
S7 ENDDO

S8 ENDDO

Here we recognize K as being an induction variable (which is correct in the innermost loop)
and M as being loop-invariant; the only relaxation we have done is not to be speci�c about what
loops we are referring to for M and K. In our model, every reference of K dynamically after the
assignment in S5 will be assumed to be an induction variable.

7.3.2 RPN Statement Form

The recognition of induction variables requires that we trace the operations that are performed
on the values.

We translate the expression into a stack-based form and assign a one-character token to
each operation. The expression D=(A+B)*(B+C) is translated into the call:

AB$STMT('SUB:2', S$S2, 1, � � �, C$D, ' + +*$' C$A, C$B, C$B, C$C)
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We interpret the statement to mean that, S$S2 and C$D are both assigned values from the
expression MAX(S$S1, C$A, C$B, C$B, C$C)+3.

To interpret this statement, ' ' represented the push operation, '+' is an addition, '*'
is a multiplication, and '$' is the end-of-string or result token. The following list of tokens
describes the operator set used by the stack machine. We are only interested in sequences of
operations involving addition/subtraction or multiplication/division. The '.' operator is used
for all other binary operations, causing the mode to be de�ned as TOP.

The operators \+-*/.XA" are all binary operators. For all these cases we Pop A, Pop
B, calculate C, and Push C onto the operand stack. For all the binary operators, C.time =
MAX(A.time, B.time).

'+' The addition operator is treated identically as the '-' operator. This operation takes one
time unit. The mode of C is calculated with the add-merge table in Figure 7.4 as C.mode
= add-merge(A.mode, B.mode).

'*' The multiplication operator is treated identically as the '/' operator. This operation
also takes one time unit. As with addition, C.mode = mul-merge(A.mode, B.mode).

'.' The point signi�es an operation that forces the result of the merge to be TOP. This
operation takes one time unit. We force C.mode = TOP.

'X' Assume the top two items on the evaluation stack are the two halves of a complex vari-
able. Create a new entry with C.mode = TOP (i.e., assume complex variables can not be
induction variables).

'A' This is the anything or abstract operation. It takes no time and removes one entry from
the evaluation stack. The mode of C is the more general of the modes of A and B.

We also have a collection of unary operators. These operators all remove a value from the
stack and optionally push a result onto the stack.

'N' The negation operation takes one time unit. It forces the mode of the operand at the top
of the stack to be TOP.

'@' Pop an operand o� the evaluation stack and assume it is being used for array subscripting.
If this value is not loop-invariant, then set the 
ag global=TOP. Set the global time,
timestamp = MAX(timestamp, A.time).

',' Pop an operand from the stack and assume it is an operand to a function call or an
intrinsic function call. Set the global time, timestamp = MAX(timestamp, A.time).

Finally, we have operators that do not remove any operands from the stack and optionally
push a result onto the operand stack.

'C' Push an operand of mode CST onto the evaluation stack.

' ' This operation corresponds to a variable usage. It pushes the next variable in the argu-
ment list of the call to the support routine onto the evaluation stack. If the variable was
de�ned outside the current loop, then it is said to have mode LIV when placed on the
evaluation stack. If the mode of the variable is one of Ax, Mx, MAx, or AMx, then erase the
industamp �eld of the shadow to avoid propagating the time constraint.
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'F' A function call, force the result to be TOP.

'I' An intrinsic function call, force the result to be TOP.

'$' The end of string or result token.

7.3.3 Example Instrumentation

To see how this �ts together, we will start with the example shown in Figure 7.11. This example
shows a doubly nested loop that de�nes a triangular iteration space. In this simple example we
are copying a portion of the matrix A into the array B. Each iteration of the loopnest increments
a counter and copies an element of the triangular portion of the matrix A into a linear array
B. This is a good example for induction variable usage because the form of the program with
the variable K removed is almost unreadable, while it is easy to determine the purpose of the
original version of the program.

1 PROGRAM TCOPY

2 REAL A, B

3 INTEGER I, J, K, N

4 PARAMETER (N=100)

5 DIMENSION A(N, N), B(N*N)

6 K = 0

7 DO I = 1, N, 1

8 DO J = 1, I, 1

9 K = K+1

10 B(K) = A(I,J)

11 ENDDO

12 ENDDO

13 PRINT *, B(K)

14 STOP

15 END

Figure 7.11: Example of a triangular loop with an induction variable

The instrumented version of the program follows in Figure 7.12. Notice the proliferation
of the calls to the support routines to update the shadow structures. Each operation in the
original program must be individually simulated by the support routines to catch any sequence
of operations that might de�ne an induction variable.

After we have instrumented the program and created an executable by compiling and linking
with the support library, we are ready to execute the program. Listed in Table 7.5 are the results
produced by the support routines.

In this example we have identi�ed line 9 as the de�nition of an additive induction variable
(Ax). The output also reports the obvious fact that line 6 de�nes a constant value. Lines 10
and 13 are of mode TOP because we are indexing into an array with a variant expression. The
use of the loop variant expression check removes reductions from consideration while allowing
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PROGRAM TCOPY

REAL A, B

INTEGER I, J, K, N

INTEGER C$I, C$J, C$K, C$N, C$A, C$B, N$N, N$Z, C$TCOPY

INTEGER S$S1, S$S2, S$S3, S$S4, S$S5, S$S6, S$S7

INTEGER S$S8, S$S9, S$S12

PARAMETER (N=100)

DIMENSION A(N, N), C$A(N, N), B(N*N), C$B(N*N)

COMMON /N$NBLOCK/ N$N, N$Z

CALL AB$PENTRY('TCOPY',S$S1,C$TCOPY)

K = 0

CALL AB$STMT('TCOPY:7',S$S2,1,S$S1,C$K,'C$')

CALL AB$LENTRY('TCOPY:8',S$S3,1,S$S2,C$I,'CCCAA$')

CALL AB$CONTROL('TCOPY:8',S$S8,1,S$S3,'$')

DO I = 1, N, 1

CALL AB$IENTRY('TCOPY:8')

CALL AB$LENTRY('TCOPY:9',S$S4,1,S$S3,C$J,'C CAA$',C$I)

CALL AB$CONTROL('TCOPY:9',S$S7,1,S$S4,'$')

DO J = 1, I, 1

CALL AB$IENTRY('TCOPY:9')

K = K+1

CALL AB$STMT('TCOPY:10',S$S5,1,S$S4,C$K,' C+$',C$K)

B(K) = A(I,J)

CALL AB$STMT('TCOPY:11',S$S6,2,S$S4,S$S5,C$B(K),' @ @@ $',C$K

C$I,C$J,C$A(I,J))

CALL AB$IEXIT('TCOPY:9',S$S7,3,S$S7,S$S4,S$S6)

ENDDO

CALL AB$LEXIT('TCOPY:9',S$S4,2,S$S7,S$S4)

CALL AB$IEXIT('TCOPY:8',S$S8,3,S$S8,S$S4,S$S3)

ENDDO

CALL AB$LEXIT('TCOPY:8',S$S3,2,S$S8,S$S3)

PRINT *, B(K)

CALL AB$OUTPUT('TCOPY:14',0,S$S9,1,S$S3,' @ $',C$K,C$B(K))

CALL AB$PEXIT('TCOPY',C$TCOPY,1,S$S9)

STOP

END

Figure 7.12: Instrumented code of triangular loopnest
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Stmt Record Variable Original Serial Parallel New New Parallel

Tag Type Type Speedup Time Time Speedup Time

TCOPY <none> 1.5 15151 10102 1893.9 8

TCOPY:6 STMT CST

TCOPY:7 LOOP <none> 1.5 15150 10101 2164.3 7

TCOPY:8 LOOP <none> 1.0 15150 15150 30.4 499

TCOPY:9 STMT Ax

TCOPY:10 STMT TOP

TCOPY:13 STMT TOP

Table 7.5: Results from induct variable evaluation of TCOPY

inductions on array elements to be considered. As expected from this example, the inherent
parallelism of the algorithm changes from 1.5 in the presence of the induction variable to 1893.9
after the a�ects of the induction variable are removed.

7.3.4 Inductions on Array Elements

The dynamic induction evaluation routines can �nd additional opportunities that other static
methods may not �nd. The �rst example uses an array element as an induction variable. Given
the loop fragment shown in Figure 7.13, we have a simple induction calculation using an array
element as the induction variable.

DO I = 1, N

A(K) = A(K) + 3

: : :

ENDDO

Figure 7.13: Induction on an array element

Since the subscript to the array is a loop invariant value, we can treat the array element in
the same way we treat a scalar variable for the purposes of induction variable recognition. We
can transform this by eliminating the induction of the array element A(K) as shown in the code
fragment in Figure 7.14.

7.3.5 Interprocedural Induction Variables

Since the technique tracks the dynamic call graph of the program's execution, we are not limited
to intraprocedural induction variable recognition. In the example shown in Figure 7.15, we have
a calculation de�ning an induction on the variable K in the routine SUB. This induction is not
statically visible from an intraprocedural analysis of the main routine.

If we recognize that the prior pair of routines de�ne an interprocedural induction variable,
then we can eliminate the induction by re-writing the code as shown in Figure 7.16. This is
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AK0 = A(K)

DO I = 1, N

A(K) = AK0 + I*3

: : :

ENDDO

Figure 7.14: Removal of an induction on an array element

PROGRAM TEST

COMMON K

DO I = 1, N

CALL SUB(I)

: : :

ENDDO

END

SUBROUTINE SUB(I)

COMMON K

K = K + 2

: : :
ENDDO

END

Figure 7.15: Interprocedural example of an induction variable

only one possible way of eliminating the induction. In addition to removing the induction it
may also be required to remove output-dependences by localization of variables and forward
substitution before the parallelism in the outer loop can be exploited.

PROGRAM TEST

COMMON K

K0 = K

DO I = 1, N

CALL SUB(I,K0)

: : :
ENDDO

END

SUBROUTINE SUB(I,K0)

COMMON K

K = K0 + 2*I

: : :
ENDDO

RETURN

END

Figure 7.16: Example removal of an interprocedural induction variable

7.3.6 Correctness of the Upper Bound

The results generated by the method presented in this chapter would be more concrete if
we could show that they represent a guaranteed upper bound on the improvement due to the
recognition of induction variables. If we assume that only variables in the states Ax, Mx, MAx, and
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AMx are induction variables, then we do not have a guaranteed upper bound on the improvement
in the parallelism for removing the induction variables.

Fortunately, by choosing an alternative set of states, we can show that the technique always
simulates the e�ects of removing all induction variables. The assumption made to assure cor-
rectness of the bounds is that at least one statement de�ning the induction variable must be
executed on every iteration. Additionally it is assumed that the only operations allowed in the
induction calculation are addition, subtraction, multiplication, and division. Other operations
could be considered by augmenting the transition lattices with the requisite states.

The states A1, Ax, M1, Mx, MAx, AMx will be classi�ed as induction variables. This classi�cation
means that whenever we compute the shadow expressions involving variables in these states we
ignore the timestamp for these variables. If we ignore a timestamp, we can substitute the value
0 for the timestamp since for any timestamp t, max(0; t) = t.

The �rst observation we make is that the classi�cation of the variables does not matter
during the �rst iteration of any loop. We enforce lexicographical ordering of the statements,
and the structured control dependences from DO loops and IF statements. Every statement
in a loop iteration is dependent on the previous statement in the iteration and on the loop
header. Thus, the timestamp of either the loop header or the previously executed statement
will dominate the timestamp of any induction variables used by a statement in the �rst iteration
of a loop.

For a variable to be classi�ed as an additive induction variable it must be incremented by
the same value in every iteration of the loop. Since it must be incremented in every iteration,
it must also be incremented in the �rst iteration. If we assume the �rst increment looks like
K=K+1, then we know that during the �rst iteration the state of K on the righthand side must
be LIV since this is the �rst de�nition of K in the loop body. For K to be an induction variable,
we must add a loop invariant value. This loop invariant value will either be in state CST or
LIV. From Table 7.2 we see that the meet of these states generates the state A1 which we
have classi�ed as an induction variable. A similar argument holds for multiplicative induction
variables.

At the end of the �rst iteration we must have executed the statement that de�nes the
induction variable. From the previous paragraph we have shown that this is su�cient to classify
the variable as an induction. Since we have de�ned it to be illegal for a variable to move down
in the lattice, the variable must remain an induction variable for every subsequent iteration. If
the state of the variable ever reaches TOP, then we have erroneously represented the variable
for a few iterations, but we have erred on the side that guarantees an upper bound.

7.4 Experimental Results from the Perfect Benchmarks

The techniques described in Sections 7.2 and 7.3 are only useful when applied to a program
and the results produced are observed.

Table 7.6 shows the results of applying these techniques to a selection of the Perfect Bench-
marks programs. In Table 7.6 the �rst column lists the name and abbreviation for the program.
The second column shows the base loop-level speedup for the program. The third and fourth
columns show the serial execution time and the parallel execution time when all operations are
considered part of the critical path. The �fth column is the speedup obtained by ignoring de-
pendences caused by the presence of induction variables. The last column shows the execution
time when the e�ects of induction variables are ignored.

97



Original Program Induction Variables Removed

Loop-Level Serial Parallel Loop-Level New Parallel

PROGRAM Speedup Execution Time Speedup Time

adm(AP) 45.5 881953965 19376214 46.0 19174249

arc2d(SR) 336.0 3111626215 9260772 336.0 9260772

bdna(NA) 139.5 1486171820 10653112 139.5 10653104

dyfesm(SD) 17.8 490791996 27545569 17.8 27544641

flo52q(TF) 206.9 1137847045 5500562 206.9 5500562

mdg(LW) 5.3 3702617624 695104451 5.8 635430792

ocean(OC) 272.1 3662121314 13459093 387.8 9442602

qcd2(LG) 1.8 511357356 277166352 2.2 237825002

track(MT) 40.6 119833481 2949194 43.3 2765112

trfd(TI) 87.9 637768445 7256699 808.1 789253

Table 7.6: Average parallelism: with and without induction constraints

Several observations can be made from this table. Of all the programs considered by this
experiment, only two program (ocean(OC) and trfd(TI)) have a signi�cant change in the
speedup when ignoring the e�ects of induction variables. In [EHLP91], it was noted that for
the same two programs, induction variable elimination was required to parallelize these codes.
The program flo52q(TF) has no change between columns two and �ve, which is surprising
since it is able to recognize several additive induction variables.

7.5 Conclusion

The advent of techniques capable of measuring the inherent parallelism in sequential programs
has provoked the need for more advanced analysis. In particular, the existing techniques can
only disregard the e�ects of output- and anti- dependences when calculating the critical path
length. We propose a method of identifying and accounting for the impact of induction variables
during the calculation of the critical path.

We have shown in this chapter that it is possible to measure the e�ect of induction variables
on critical path parallelism. Generally, it is not as signi�cant as previously believed. Only two
of the programs exhibited a noticeable improvement when the e�ects of induction variables
were removed.
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Chapter 8

STATIC DEPENDENCE

ANALYSIS

8.1 Introduction

Data dependence analysis is the most important step in the automatic detection and exploita-
tion of implicit parallelism. Currently, parallelizing compilers are used on all commercial parallel
computers and many sequential computers (for increasing cache performance). The data de-
pendence information allows the compiler to restructure the code to take the most advantage
of the machine.

As discussed in detail in Chapter 2, the goal of data dependence analysis is to determine
whether or not a system of equations has an integer solution inside a given region of ZZn. One of
the �rst techniques used, answered the dependence question accurately [Tow76]. However, this
method was too expensive to use in any practical compiler. For this reason, faster but approx-
imated techniques have been developed that will sometimes assume the existence of a solution
to the system of equations when no solution actually exists. The use of approximate techniques
that sometimes have conservatively to assume dependence will not lead to an incorrect parallel
program, but could preclude some optimizations.

Approximate dependence techniques, especially those developed by Utpal Banerjee in his
Ph.D. thesis [Ban79] have been widely adopted. In the last few years, a renewed interest in the
subject of dependence analysis has arisen, and techniques that are in some cases more accurate
than Banerjee's have been developed [LYZ89, KKP90].

Despite the importance of dependence analysis, there is little experimental analysis of the
accuracy of these approximate techniques. Such analysis could be useful to guide research
and also help compiler writers decide what approach to take and the risks involved. In this
chapter, we present an experimental analysis of some approximation techniques including the
GCD method and three variants of Banerjee's test [Ban88]. To evaluate the accuracy of these
methods for linear subscripts, we compare them against two exact methods, based on integer-
programming algorithms.

Initially we had chosen to use only one integer-programming based dependence algorithm,
the Branch-and-Bound method based on the simplex algorithm. However, the Omega Test
[Pug91] has become available and, in order to use the most powerful dependence test that is
widely available, we have chosen to include this test.
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In addition to the published variations of Banerjee's inequalities, for rectangular and trape-
zoidal iteration spaces, we have extended the implementation to handle unknown upper and
lower bounds correctly. The Banerjee in�nity test was developed after some preliminary re-
sults from the experiments in this chapter. We later found that J. R. Allen [All83] describes
a method that works in a similar manner. We believe it is important to include this variation
as a separate dependence analysis test to determine empirically the necessity of knowing the
loops bounds.

We feel that a major contribution of our study is to show the e�ectiveness of a naive version of
the standard implementation of Banerjee's inequalities. It was found that the existing versions
of Banerjee's inequalities could not be applied in over 70% of the loops because the upper bound
was unknown. Another guiding piece of information was that the lower bound and stride were
unknown in less than 12% of the loops tested. Given this high disparity between the occurrences
of unknown information in the loop bounds, it is natural to study a dependence test that can
use but does not require the loop's bounds.

8.2 Description of the Experiments

To evaluate the dependence tests described in Chapter 2, we used the Perfect Benchmarks
[CKPK90], which are a collection of thirteen Fortran programs that represent the applications
most frequently run on parallel and vector computers. To be consistent with the other exper-
iments in this thesis, we will omit the program spice(CS) from this experiment. Thus, we
are using a total of twelve programs. All the programs in this experiment were processed via
KAP/Concurrent (which was also used by all the other experiments in this thesis) before the
static dependence analysis is performed. The use of KAP/Concurrent removes induction vari-
ables and performs some source level scalar optimization. The number of potential dependences
is larger than in the original code owing to two of the transformations performed by KAP. The
KAP preprocessor unrolls and distributes loops to increase performance.

As mentioned above, we will be omitting the program spice(CS) from this experiment. One
obvious change with this omission will be a marked decrease in the number of array references
found in subscripts. The program spice(CS) is almost statically unanalyzable today owing to
the presence of indirect addressing.

Two experiments were run corresponding to two di�erent sequences of dependence tests.
In both cases, the dependence tests were applied to each potential dependence in the order
speci�ed by the sequence. The results of these experiments are shown in Tables 8.3 and 8.4
where we also list the dependence test sequence used in each case in the order they were applied.

All the data dependence tests used in the experiments are de�ned in detail in Chapter 2.
For the purposes of this chapter, we can assume that Banerjee's tests (rectangular iteration
space, trapezoidal iteration space, and in�nite or unbound iteration space) and the integer-
programming tests were applied once for each direction vector of the potential dependences.
The constant and the GCD tests were also applied once for each potential dependence.

To be able to compare the di�erent measures, the units of all counts kept in this experiment
are the \number of feasible direction vectors"; this statement is clari�ed below. An accumulator
is associated with each dependence test. It is incremented each time the corresponding test is
the �rst to detect independence. The accumulators associated with Banerjee's tests and the
integer-programming tests are incremented by one each time the corresponding test breaks a
potential dependence for a given direction vector. The constant and GCD test accumulators
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are incremented by the number of feasible direction vectors for the potential dependence since
these two tests apply to all direction vectors. Notice that, counting in this way, the weight of
each potential dependence grows with its level of nesting.

In each experiment and before applying the sequence of tests, each potential dependence
is analyzed, the subscript expressions are simpli�ed, and any common loop invariant variables
are canceled from the subscripts. The potential dependence is passed to the sequence of tests
only if the coe�cients and constant terms of the subscript function are known at compile-time.
Otherwise, an accumulator for the unknown dependences is incremented by the number of
feasible directions of the potential dependence. In this way we keep a count of the potential
dependences that cannot be analyzed due to lack of compile-time information. We also keep a
count of all the potential dependences (one per direction vector) that are conclusively proven
dependent by either the constant test or the integer-programming tests.

The unanalyzable subscripts are divided into two categories based on the form of the sub-
scripts. The �rst category includes as unanalyzable, those subscripts that are linear in the
index variables of the loopnest (with constant coe�cients) but also may include symbolic addi-
tive terms that do not involve the index variables. We will refer to this category as \quasi-linear
dependent." All other unanalyzable subscripts are categorized as \unknown dependent."

Each of the two experiments consists of two parts. The �rst part (shown in the Original
Loop Bounds column of Tables 8.3 and 8.4) uses the loop limits as they appear in the source
program. In this case, the Banerjee rectangular and trapezoidal tests and the simplex-based
integer-programming test cannot be applied to all loops since they require that the loop limits
be known at compile-time.

For the second part of each experiment (shown in the Loop Bounds Assumed Constant col-
umn of Tables 8.3 and 8.4) we chose to force all loops to have limits computable at compile-time.
This variation is intended to show the maximum e�ect of unknown loop limits in dependence
analysis. Any lower bound of a loop that was not a linear function of the indices in the enclosing
loop nest was de�ned to be 1, and any upper limit that was also not a linear function of the
indices in the loop nest was set to the constant 40. The stride or step of the loop was de�ned
to be 1 if it was not an integer constant. For example, in the following loop, the upper limit of
the iteration space, IP(K), will be replaced by the constant 40.

DO I = 1, IP(K)

A(I) = A(I) + 1

ENDDO

The total number of potential dependences will decrease when we force the loop limits to be
compile time constants. As in this example, there exist a few cases in the Perfect Benchmarks
where the loop limits are an expression involving array elements. The dependences that are
being ignored in the second part of each experiment are those that arise from dependences
because of the loop limits.

The choice of 40 as the upper bound is arbitrary and was chosen for historical reasons to
maintain consistency with earlier experiments such as [SLY90]. A condition for the chosen
upper bound is that it should not signi�cantly change the set of dependences present in the
program. Therefore a reasonable criterion is that the upper limit should be larger than the
maximal dependence distance present in a loop. We feel that the value 40 satis�es this criteria
for the programs being examined. The experiment in Chapter 10 indicates that the most
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Benchmark Lower Bound Upper Bound Step

adm(AP) 5.0% 97.7% 0.0%

arc2d(SR) 77.6% 95.1% 0.0%

bdna(NA) 4.2% 62.7% 0.0%

dyfesm(SD) 0.9% 73.6% 0.0%

flo52q(TF) 2.2% 89.2% 1.6%

mdg(LW) 3.8% 66.0% 3.8%

mg3d(SM) 14.2% 100.0% 36.1%

ocean(OC) 3.7% 93.4% 6.6%

qcd2(LG) 7.0% 66.9% 0.0%

spec77(WS) 2.6% 22.1% 0.0%

track(MT) 7.7% 42.9% 0.0%

trfd(TI) 4.1% 64.9% 0.0%

TOTAL 11.9% 71.0% 3.2%

Table 8.1: Percentage of statically unknown loop bounds

common dependence distance is 1. Thus almost any choice for the upper bounds should give
comparable results.

The loops in the Perfect Benchmarks range widely in the information available to a re-
structuring compiler. Table 8.1 shows the distribution of symbolic loops bounds after all the
standard optimizations have been completed (constant propagation, induction variable elimi-
nation, and dead-code elimination). We observe from this table that the information about
the upper and lower bounds of the iteration space as well as the stride vary from program
to program in the Perfect Benchmarks. Also, when averaged over the entire collection, it is
signi�cant to note that at compile-time the stride is almost always known, the upper bound is
almost never known, and the lower bound is known most of the time.

8.2.1 Classi�cation of Unanalyzable Potential Dependences

One way to improve data dependence information is by being able to apply the dependence
tests to a larger percentage of the potential dependences. Classifying the reason a potential
dependence is unanalyzable by the techniques discussed in this chapter is useful in determining
where further e�ort may prove bene�cial.

There are two reasons for a potential dependence to be unanalyzable. One reason is that a
subscript is nonlinear. It is rare in these programs to �nd a subscript that is truly nonlinear.
FFT algorithms are the main source of these subscripts. The FFT algorithm uses subscripts
that are based on powers of 2.

Unknown information is the second reason that a subscript is unanalyzable. The unknown
value may be a coe�cient of the loop indices, a additive constant, or an array element used for
indirect addressing.

Table 8.2, which records the totals for the types of unanalyzable potential dependences,
created by examining all the unknown dependence arcs and partitioning them by the type of
the coe�cient sets. In each of these sets, the classi�cation precedence was the sequence fArray,
Loop Variant Scalar, Loop Invariant Scalar, Constantg. If two or more di�erent classi�cation
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Coefficient Type

Numeric Loop Invariant Loop Variant Array

Constant Type Constant Scalar Scalar

Numeric Constant --- 1709 103 477

Loop Invariant Scalar 367 3599 141 ---

Loop Variant Scalar 3204 2517 105 ---

Array 3736 91 --- ---

Table 8.2: Classi�cation of unanalyzable subscripts

types were present in the same part of the subscript pair, the one with the higher precedence
was chosen.

Each of the groups created by �rst examining the coe�cients was also divided into four
categories based on the type of components in the constant term. The same precedence sequence
was used in this second partitioning of the unknown dependences. The constant term was
de�ned to be any additive term not containing an index variable from the current loop nest.

Examining Table 8.2, we see that the most common reason a potential dependence is unan-
alyzable is the presence of an array reference in the subscript. The use of subscripted subscripts
is a di�cult problem in dependence analysis; it is comparable to using pointers to reference an
element. The second most common source are unknown coe�cients of the loop indices that are
loop invariant. In this case, without knowing the sign or the magnitude of the coe�cient, even
though it is constant we are unable to use any of the dependence tests. Following closely, the
third most common source of unknown coe�cients is loop variant additive values. Here all the
coe�cients of the loop indices are compile-time constants. But a value, possibly an undetected
induction variable, is added into the subscript.

All the categories can be reduced by having more information about the subscripts. Inter-
procedural analysis is one method of collecting more information about the calculations that
go into the variables involved in a subscript expression.

The problem of subscripted subscripts is the most challenging but may be resolved through
user assertions such as declaring that the subscripting array is an injective map. The second
most prevalent category, invariant variables, may be solved by doing more complex analysis to
propagate the relationships between invariant variables. Techniques such as improved induction
variable recognition may help to reduce the number of variant variables and thus the size of
the third category.

8.3 Experimental Results

The results in this chapter can only represent the programs chosen for these experiments. The
generality of these results is tied directly to the extent to which these programs are represen-
tative of the programs one wants to analyze.

Several important conclusions can be derived from Tables 8.3 and 8.4. The �rst conclusion
is the unexpected e�ectiveness of the in�nity test. Consider the Original Loop Bounds column
in Table 8.3 where the loop limits are processed as they appear in the source program. In this
column we observe that when the in�nity test is applied after the rectangular and trapezoidal
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tests, it breaks potential dependences in over 6% of the cases, more than the two other tests
combined. In Table 8.4, it is shown that when the in�nity test is applied before the other two
tests, it breaks dependences in over 9% of the cases, and the application of the rectangular
and trapezoidal tests contribute nothing extra. This dependence sequence illustrates that none
of the dependences requires information about the upper loop bound, and that none of the
potential dependences removed by Banerjee's inequalities truly require the use of a trapezoidal
dependence test.

A second important conclusion is that after all the traditional tests have been applied, less
than 1.0% of the analyzable cases are detected as independent by the integer-programming
methods. The integer-programming based methods are the most accurate dependence tests
known that can be used when the loop limits are a�ne functions of the loop indices.

In cases where the loop limits are not known, we can determine an upper bound of what can
be achieved by any other conceivable method by looking at the Loop Bounds Assumed Constant
column. Clearly, all the potential dependences that are broken in the Original Loop Bounds
column should also be broken in the Loop Bounds Assumed Constant column. Therefore, the
additional number of dependences broken in the assumed bounds column is an upper bound of
what can be achieved by any other new dependence analysis method, which has a subset of the
capabilities of the integer-programming method and requires information about the loop limits.
The amount is 2471 potential dependences, which is 0.6% of the total potential dependences.
We conclude, for this selection of programs, that after the �rst �ve tests are applied, any new
method could only detect independence in approximately 6453 or 1.5% of the analyzable cases.

The distribution of the potential dependences among the categories of proved dependent,
assumed dependent, and proved independent shows no di�erence when we assume values for the
loop limits. The change between the columns of Tables 8.3 show that for almost all dependences
proven dependent when we assume loop limits, the same number of dependences were proven
dependent by the Omega Test when no assumptions were made. This observation is signi�cant
in showing that the symbolic properties of the Omega Test were su�cient to handle unknown
loop limits.

At the end of Section 8.2.1 we listed some possible improvements to a parallelizing compiler
that might decrease the number of dependences. We can use Tables 8.2 and 8.3 to estimate
the upper bound on these improvements. Adding interprocedural analysis would potentially
eliminate the loop variant and invariant variables along with the unknown loop bounds for a
maximum improvement of 11745 potential dependences or 2.7%. Improved induction variable
support might eliminate all loop variant variables for a maximum of 6070 potential depen-
dences or 1.4%. The use of user declarations to eliminate problems resulting from subscripted
subscripts would lead to a maximum of 4304 potential dependences or 1.0%.

8.4 Conclusion

The statistical summary of dependence information may not relate to the speed-up that is ob-
tained for a program. A single dependence may be responsible for prohibiting the parallelization
of a loop. But we believe that statistical information is useful for determining areas in which
to concentrate further research. In Chapter 9 we will extend the evaluation of data dependence
analysis into the dynamic domain by considering the e�ects of the dependence analysis on the
parallelism exploited in a program.
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Original Loop Bounds
Loop Bounds Assumed Constant

Type Count Percent Count Percent Difference

Proved Dependent

Constant Test 116616 (26.7%) 116616 (26.7%) (0.0%)

Integer Programming 1553 (0.4%) 30697 (7.0%) (6.6%)

Omega Test 70770 (16.2%) 39684 (9.1%) (-7.1%)

Total Proved Dependent 188939 (43.3%) 186997 (42.9%) (-0.4%)

Assumed Dependent

Unknown Dependent 8796 (2.0%) 8232 (1.9%) (-0.1%)

Quasi-Linear Dependent 7253 (1.7%) 7283 (1.7%) (0.0%)

Proved Independent

Constant Test 150716 (34.5%) 150716 (34.5%) (0.1%)

Greatest Common Divisor 34645 (7.9%) 34675 (7.9%) (0.0%)

Banerjee Rectangular 13320 (3.1%) 42778 (9.8%) (6.7%)

Banerjee Trapezoidal 15 (0.1%) 3406 (0.8%) (0.7%)

Banerjee Infinity 28567 (6.5%) 15 (0.1%) (-6.4%)

Integer Programming 92 (0.1%) 1491 (0.3%) (0.2%)

Omega Test 3982 (0.9%) 727 (0.2%) (-0.7%)

Total Proved Independent 231337 (53.0%) 233808 (53.6%) (0.6%)

Total 436325 436320

Table 8.3: Dependence results for the Perfect Benchmarks
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Original Loop Bounds
Loop Bounds Assumed Constant

Type Count Percent Count Percent Difference

Proved Dependent

Constant Test 116616 (26.7%) 116616 (26.7%) (0.0%)

Omega Test 72323 (16.6%) 70381 (16.1%) (-0.5%)

Integer Programming 0 (0.0%) 0 (0.0%) (0.0%)

Total Proved Dependent 188939 (43.4%) 186997 (42.9%) (-0.4%)

Assumed Dependent

Unknown Dependent 8796 (2.0%) 8232 (1.9%) (-0.1%)

Quasi-Linear Dependent 7253 (1.7%) 7283 (1.7%) (0.0%)

Proved Independent

Constant Test 150716 (34.5%) 157016 (34.5%) (0.0%)

Greatest Common Divisor 34645 (7.9%) 34675 (7.9%) (0.0%)

Banerjee Infinity 41902 (9.6%) 44901 (10.3%) (0.7%)

Banerjee Rectangular 0 (0.0%) 0 (0.0%) (0.0%)

Banerjee Trapezoidal 0 (0.0%) 1234 (0.3%) (0.3%)

Omega Test 4074 (0.9%) 2282 (0.5%) (-0.4%)

Integer Programming 0 (0.0%) 0 (0.0%) (0.0%)

Total Proved Independent 231337 (53.0%) 233808 (53.6%) (0.6%)

Total 436325 436320

Table 8.4: Switch the Banerjee In�nity and Banerjee Rectangular Tests, and the Omega
Test and Integer Programming Tests.
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In [SLY90] a statistical study using a di�erent set of Fortran routines collected by the original
Parafrase e�ort was reported. However, many of the results obtained di�erent conclusions. We
have shown the estimation of the importance of coupled subscripts in previous work is not
present for nonsymbolic subscripts in the Perfect Benchmarks. It is possible that the coupled
subscripts do exist; however, more advanced analysis, such as symbolic dependence tests, must
be done to uncover those terms.

It has also been shown that the in�nity test seems to be a practical variation that comple-
ments the Banerjee rectangular and trapezoidal tests. The main advantage of the in�nity test
is that it has semi-symbolic properties. These properties allow it to be applied in cases where
a full symbolic implementation of the standard Banerjee inequalities might be too expensive.

Finally, the performance of the Omega Test indicates that only a small number of potential
dependences require the power of the Omega Test. Most of the applicability of this test is in
proving the dependence of potential arcs that would otherwise be assumed dependent.
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Chapter 9

DYNAMIC DEPENDENCE

EVALUATION

9.1 Introduction

A frequent topic of discussion concerning parallelizing compilers is the e�ectiveness of data
dependence tests. Several recent studies have been published on this topic, all of which count
the number of times that a test determines independence as a measure of the success of the test.
It is commonly accepted that static evaluation is not su�cient, and additional measurements
should be taken to assess accurately the performance of data dependence calculations.

To quote Maydan et al. [MHL91]:

\In a loop with a thousand independent pairs, being inexact in just one test could
have a devastating e�ect on the amount of parallelism discovered. Ideally, one would
like a standard model to measure the parallelism found. Then one could say how
much faster a program ran due to exact data dependence. Unfortunately no such
system yet exists."

We propose a system whereby it is possible to measure comparatively the di�erences in
e�ectiveness of a set of dependence tests. The basis for comparison is the amount of implicit
parallelism extracted through the application of the dependence tests. Also, we endeavor to
de�ne quantitatively or absolutely the e�ectiveness of the dependence test.

9.2 Overview of the Evaluation Method

The purpose of parallelizing compilers is to transform a program's parallelism, whether implicit
or explicit, into a form that is directly executable on a parallel machine. Due to the wide
variety of parallel machines available and the varying resource constraints, it is impractical
to study the entire parallelizing compiler in depth without limiting our results to a particular
parallel machine. Therefore, we have decided that these variations among the di�erent parallel
architectures must be factored out to get a better idea of how well the compiler understands
the program.

On a single machine and using a single program, it is easy to determine which of two
compilers is more e�ective; by creating an executable program with each compiler, running the
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programs, and recording the execution times. The compiler that produces the fastest program
is obviously the better compiler. However, using a real parallel machine introduces several
problems. It is di�cult to isolate the e�ects of the architecture from the understanding and
transformation of the program. It may also be that resource constraints mask any di�erences
in parallelism.

9.2.1 The Ideal Parallel Machine

De�ning an ideal parallel machine is a natural way to eliminate the variations in performance
caused by the di�erences among existing parallel machines. If we make the assumption that
the dependence analysis required of a parallelizing compiler is identical for our ideal parallel
machine and for existing parallel machines then by our assumption we are examining the same
dependence analysis problem in both cases. Therefore, all the characteristics of the dependence
tests are evident when the target is an ideal parallel machine.

Our ideal parallel machine consists of an unlimited number of processing elements. Each
processing element has unit time access to a common shared memory. We assume no con-

icts among the processors for memory access. For the purposes of this experiment we restrict
parallel activity by only allowing statements in di�erent iterations of the same loop nest to
execute concurrently. Except for the resource constraints we ignore on memory, memory ac-
cess, and parallelism, our ideal parallel machine serves as a generic model of available parallel
architectures.

The experiments described in this chapter were conducted using the Delta program manip-
ulation system [Pad89] which is described in Chapter 3. Delta is a collection of SETL functions
that implement a toolkit of the functions required to perform analysis, instrumentation, and
parallelization of Fortran programs. We used the Perfect Benchmarks [Per89] as the source
for the Fortran code used in this experiment. As with the experiments in the other chapters
of this thesis, all Fortran codes were preprocessed by KAP/Concurrent before being used for
this experiment. The experiment determines the number of times each data dependence test is
used statically, as well as the impact of each data dependence test on the execution time of the
program on the ideal parallel machine.

We measure the e�ectiveness of our experiments in several ways. First we use the standard
method of static analysis. The static results give the �rst approximation of the e�ectiveness
of the data dependence tests. Examining the number of dependences resolved by each data
dependence test shows how often that test was required. The number of potential dependences
that were statically unanalyzable indicates the work that is still left to produce a ideal depen-
dence test. The second measure of e�ectiveness is the comparison of the dynamic results for
each type of dependence test to the optimal dynamic measurement. The comparison of the
dynamic results shows how much parallelism is lost as the result of an imperfect dependence
test.

9.3 Data Dependence

The purpose of the experiments described in this chapter is to use the di�erence between
conservative static dependence analysis and run-time reality to evaluate the e�ectiveness of the
former. Given two statements, S1 and S2, we say that S2 is data dependent on S1 if control
can 
ow from S1 to S2, both statements access a common memory location, and at least one
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statement writes to the shared location. Chapter 2 provides the background and details of
static dependence analysis. For the purposes of this experiment we will be concerned only
with 
ow-dependences, which means we examine only the case where S1 must write a memory
location that S2 reads. The restriction to 
ow-dependences allows us to focus our attention
on the transportation of data rather than the e�ects of memory management, which can be
attenuated by compiler transformations such as renaming or expansion.

For scalar variables in Fortran 77, even taking equivalences into account, these is no ambi-
guity or uncertainty at compile time about whether two variable references refer to the same
memory location. For array variables, it can be di�cult to determine when two subscripted
array references refer to the same element of an array.

To de�ne dependence, consider the loopnest in Figure 9.1.

DO i1 = L1, U1
DO i2 = L2(i1), U2(i1)

: : :

DO in = Ln(i1; : : : ; in�1), Un(i1; : : : ; in�1)
S1 : X(f1(i1; : : : ; in); : : : ; fm(i1; : : : ; in)) = : : :

S1 : : : := X(g1(i1; : : : ; in); : : : ; gm(i1; : : : ; in))
ENDDO

: : :
ENDDO

ENDDO

Figure 9.1: Loop nest

To determine if a 
ow dependence exists from statement S1 to S2 we need to solve the
following problem. Let ~{ = (i1; : : : ; in) and ~| = (j1; : : : ; jn) be two integer n-vectors where
Lk(: : :) � ik; jk � Uk(: : :) for all k in [1 : : :n]. We refer to the vectors ~{ and ~|, which are
composed of the index variables, as elements of the iteration space of the loopnest. A 
ow-
dependence exists from S1 to S2 if ~{ is lexicographically less than or equal to ~| and the system
of equations derived from the array subscripts, fk(~{) = gk(~|) for all k in [1 : : :m] is satis�ed. All
the data dependence tests in this section require that, after invariant variable cancellation, both
fk(~{) and gk(~|) be linear functions of the index variables. If we cannot apply the dependence
tests to the subscripts, then conservatively we assume dependence.

Suppose we are determining if a dependence exists from statement S1 with ~{ = (i1; : : : ; in)
to S2 with ~| = (j1; : : : ; jn). The direction vector for this potential data dependence is ~d =
(d1; : : : ; dn) de�ned by the equation:

dk =

8><
>:
< if ik < jk
= if ik = jk
> if ik > jk

(9.1)

Given a loopnest of depth n containing statements S1 and S2, we de�ne the set of potential
direction vectors to be all direction vectors where ~i is lexicographically less than ~j. Since we
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have three choices for each component, the set of potential direction vectors has at most 3n

elements.
The universe of potential data dependence arcs is de�ned to be the cross-product of all

subscript pairs referring to the same array with all potential direction vectors. This way of
counting potential dependences is slightly di�erent from the approaches taken by other re-
searchers [GKT91, MHL91], but we feel that it is important to be able to de�ne the universe
of potential dependences in such a way that it is possible to partition the universe into non-
overlapping subsets. The main di�erence is the ability to classify a subscript pair to belong in
multiple subsets depending on the e�ects of each direction vector associated with the subscript
pair. The importance of the direction vector, ~d, will be explained in Section 9.4.4 as a way of
determining which loop in the loopnest is a�ected by a dependence.

Many tests have been proposed to solve the dependence analysis problem. We have chosen
four data dependence tests as representative of the spectrum of tests that are currently described
in the literature. The two simplest of these tests are the constant test and the generalized
GCD test. Neither of these two tests uses the loop bounds or discriminates between direction
vectors. We use two complex tests that include the e�ects of loop bounds and direction vectors:
a variation on Banerjee's inequalities described in Chapter 2, that has been extended to handle
unknown lower and upper bounds, and the Omega test [Pug91], which represents the integer-
programming based dependence tests that are currently the most accurate data dependence
tests available.

9.3.1 Examples of Data Dependence from Programs

Before one can understand the evaluation of data dependence techniques, it may be bene�cial to
examine dependence structures and subscripts that occur in real programs. Studying situations
that existing tests can handle gives insight into the boundary between the analyzable and the
unanalyzable cases.

The Perfect Benchmarks used in this experiment have provided several examples where
the more powerful dependence tests proved useful. The program dyfesm(SD) contains several
prominent examples of the need for symbolic analysis, analysis of triangular loops, localizable
variables, and coupled subscripts. The subroutine CHOFAC contains the loop nest shown in
Figure 9.2. After the application of the techniques listed above, it should be obvious that loop
35 can be classi�ed as doall.

This example is included to illustrate that not all subscripting patterns are really that
di�cult. The existing techniques used by parallelizing compilers can detect independence for
the loop in Figure 9.2.

Another example occurs in the program dyfesm(SD) from the Perfect Benchmarks suite.
In subroutine CORRECT, the loop nest of Figure 9.3 is a classic example showing the need
for symbolic relations in the data dependence tests. As is apparent from this loop, constant
propagation and symbolic dependence analysis are required to establish the relationship between
the subscripts. These techniques are not new, but we wish to emphasize the importance of
including them in compilers.

The array T is assigned in four statements and used in four other statements. After forward
propagation, we have subscripts of the form:
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DO 40 I=2,N

SUM=0.0

DO 20 L=1,I-1

SUM=SUM+A(L,I)*A(L,I)*A(L,L)

20 CONTINUE

A(I,I)=A(I,I)-SUM

IF (A(I,I).EQ.0.) RETURN

DI=1./A(I,I)

DO 35 J2=I+1,N

SUM2=0.0

DO 30 L1=1,I-1

SUM2=SUM2+A(L1,I)*A(L1,J2)*A(L1,L1)

30 CONTINUE

A(I,J2)=DI*(A(I,J2)-SUM2)

35 CONTINUE

40 CONTINUE

Figure 9.2: Example loop from the routine CHOFAC in dyfesm(SD)

� IQ1=IQN+I

� IQ2=IQN+I+NSP

� IQ3=IQN+I+2*NSP

� IQ4=IQN+I+3*NSP

Canceling the loop invariant term (IQN) gives subscripts of the form: IQk=I+(k � 1)*NSP
for k in [1 : : :4]. Since 1 � I � NSP, it is impossible for any instance of the subscripts from
di�erent iterations to overlap.

9.4 Critical Path Parallelism

Any program can be viewed as a directed graph where the nodes represent operations and the
arcs represent execution constraints required to execute the program correctly. Typical arcs are
control-
ow arcs, which describe conditional execution, and data-
ow arcs, which re
ect the
requirement that no operation can proceed until all operands are available. By convention, the
digraph is augmented with a start node joining all entry points of the program, and a stop
node joining all exit points.

The critical path computation, detailed in Chapter 4, dynamically determines the length
of the longest path joining the start and stop nodes during a program's execution. The ratio
of the number of operations executed to the length of the critical path provides a notion of
average parallelism or speedup with respect to sequential execution.

The experiments presented in this chapter consider only the e�ects of 
ow-dependences on
the parallelism in a program. We consider output- and anti- dependences to be primarily an
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DO 350 I=1,NSP

IQ1=IQN+I

Q1=T(IQ1)

IQ2=IQ1+NSP

Q2=T(IQ2)

IQ3=IQ2+NSP

Q3=T(IQ3)

IQ4=IQ3+NSP

Q4=T(IQ4)

QNORM=SQRT(Q1*Q1+Q2*Q2+Q3*Q3+Q4*Q4)

IF(QNORM.NE.0.D0) QNORM=1.D0/QNORM

T(IQ1)=QNORM*Q1

T(IQ2)=QNORM*Q2

T(IQ3)=QNORM*Q3

T(IQ4)=QNORM*Q4

350 CONTINUE

Figure 9.3: Loopnest extracted from CORRECT

unintended consequence when a sequential language speci�es a potentially parallel computation.
The e�ect of ignoring anti- and output- dependences is similar to the e�ect obtained by localizing
variables, renaming variables, or performing either scalar or array expansion.

The exceptions are the cases where the only activity of an algorithm is to compute an
output-dependence. It is possible to construct such examples, but we believe they have little
practical value. For example: Initialize an array by overwriting previous values as shown in
Figure 9.4.

DO I = 1, N

DO J = 1, N

A(I*J) = I

ENDDO

ENDDO

Figure 9.4: Loop that computes an output dependence

This example illustrates that it is possible to create a computation that has no explicit

ow-dependences. A question inspired by this example is: Does there exist an algorithm whose
critical path is constrained by anti- or output- dependences that does not have a corresponding
algorithm where the critical path is constrained by 
ow-dependences? For the example pre-
sented here, we would require that the state of the array A after the loopnest be identical for
the original and the new algorithm.
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9.4.1 Types of Parallelism

The basic de�nition of critical path parallelism assumes a granularity corresponding to the
smallest atomic operation [Kum88, Che89]. As we increase the size of the granularity of our
computations, we decrease the available parallelism. Increasing the granularity to the state-
ment level simulates a form of macro data
ow computation where the operations are n-valued
expressions instead of primitive operators, as in the traditional data
ow model.

Existing general purpose parallel machines do not provide the low-cost synchronization
hardware needed to execute either the data
ow or macro data
ow paradigms. The parallelism
granularity needs to be increased to match the e�ciency of the available synchronization facil-
ities.

A logical reason to choose loop-level granularity is that sequential languages use looping
constructs as a multiplicative factor in computational complexity whereas, textual replication
(i.e., macro-data
ow) is additive to the complexity. Thus one would expect the major compu-
tations contained in a program to be concentrated inside a looping construct. This observation
is well known and is re
ected by available parallelizing compilers that concentrate on loop
transformation and extracting loop-level parallelism.

Loop-level parallelism can be modeled in the framework of critical path parallelism. The
change required is to place additional constraints into the data
ow graph. In Chapter 4, we
introduced the analog of a program counter (PC) into the data
ow graph which allows code to
be selectively serialized. Traditionally the PC has enforced sequential execution by introducing
a 
ow-dependence (PC = PC + 1) between operations. Introducing arti�cial dependence arcs
that connect adjacent statements into the data
ow graph is a step toward enforcement of the
loop-level parallelism paradigm.

The two predominant forms of loop level parallelism are the doall and doacross loops. The
introduction of arti�cial dependence arcs, simulating the program counter, and the removal of
backward control dependence arcs in loops, allow simulation of both the doall and doacross

parallelism forms by preserving any implicit data dependences that may exist between loop
iterations.

9.4.2 Dynamic Dependence Evaluation

The program instrumentation described in this chapter is done intraprocedurally by an exten-
sion of the method in Chapter 4. The execution of the instrumented code propagates the data
and control dependence information across routine boundaries at call sites to compute the inter-
procedural results. Thus we are able to calculate the e�ects of interprocedural analysis without
actually doing the static analysis and discovering methods of implementing the interprocedural
parallelism.

In the ideal parallel machine used to evaluate dependence tests dynamically, we only en-
force 
ow-dependence edges present in the original program. The rationale for this choice is
that output- and anti- dependence relate to arti�cial storage dependences and can be removed
through program restructuring. Including the e�ects of output- and anti- dependences arti�-
cially reduces the available parallelism owing to the semantics of Fortran.

We will de�ne a program transformation T such that when T is applied to a program p we
obtain a program p0 (e.g., p0 = T (p)). The program p0 has the property that executing program
p0 produces the same results as program p, and additionally produces the length of the critical
path (T1) through the 
ow-dependence graph of program p and the number of operations (T1)
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executed by program p. The 
ow-dependence graph is computed at run-time and is therefore
completely accurate for the given input data.

The 
ow-dependence graph is calculated by following the data as they pass from one state-
ment to another. We associate a shadow variable with each original program variable; the
shadow variable holds the availability time of the value contained in the program variable. For
each statement in the program the availability times of the output variables are a function of
the availability times for the input variables. Usually the function is the maximum of the times
for the input variables plus a constant to account for the time to execute the statement.

If we assume an unlimited number of processing elements with no memory con
icts and
ignore memory-related dependences (our ideal machine), the time to execute the program in
parallel (T1) is equal to the length of the critical path. The number of operations executed is
equal to the sequential execution time (T1) assuming a sequential machine would take one time
step to execute each operation. The ratio (S1 = T1=T1) gives the speedup from program p
executing on the ideal parallel machine.

9.4.3 Instrumentation for Dependence Evaluation

The method chosen for this experiment is to do a source-to-source transformation of the input
program. This transformation introduces calls to an instrumentation library which does the
recordkeeping necessary to determine if a statically indeterminant dependence is degrading the
performance of the program.

If we have the subroutine in Figure 9.5 to instrument, we need to calculate when statements
can execute based on the availability of the operands (
ow-dependences) and the control de-
pendences. We also need to accumulate the number of operations being executed to estimate
the sequential execution time.

Line#
1 S1 : PROGRAM TEST

2 REAL A

3 INTEGER I, N, C

4 PARAMETER (N=100)

5 DIMENSION A(N)

6 DATA C /1/

7 S2 : DO I = 1, N, 1

8 S3 : A(C*I) = A(C*I)+1

9 S4 : ENDDO

10 S5 : END

Figure 9.5: Sample program with unanalyzed subscript

The output from the instrumented code is listed in Figure 9.6. The important line to notice
is the line that is tagged with the symbol <D>. This line indicates that at line number 8 in
the �le which contains the routine TEST, the di�erence between the static and the dynamic
dependence analysis is signi�cant.
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---- SUMMARY: Critical Path Analysis Speedup ----

TEST ( 1.0 1.0) 400 400 400

TEST:7 1.0x ( 1.0 1.0) 400 400 400

<D> TEST:8 19800

Figure 9.6: Output from sample program with unanalyzed subscript

In the instrumented code (shown in Figure 9.7) we have the common block N$NBLOCK con-
taining the variable N$N to communicate the accumulated operation count between calls to the
subroutines. The control dependences and the serializing assumptions of loop-level parallelism
are simulated using variables of the form S$n. Finally, the 
ow-dependences are calculated
using shadow variables of the form C$X to hold the availability time of the value in variable X.

In summary, we have described a method where one is able to simulate the parallel execution
of a sequential program on our ideal parallel machine. Our ideal machine exploits the following
features.

� Scalar expansion, renaming, and array expansion are simulated by the removal of output-
and anti- dependences.

� The doall and doacross parallel scheduling methods are used across procedure bound-
aries (unless instructed otherwise).

� Perfect data dependence calculation (e�ectively comparing the machine addresses at run-
time to determine dependence).

As with any heuristic/experimental approach, a few limitations must be considered. Our
method does not consider the e�ects of statement reordering. If a dependence cycle exists
that covers the entire loop body, the loop will appear to be serialized even though statement
reordering would be able to minimize the dependence cycle and expose additional parallelism.

Certain programming paradigms negatively in
uence the recognition of inherent parallelism.
The recurrences introduced, by inductively calculating a sequence, serialize otherwise parallel
code. Similarly, naive reductions such as maximization or summation, arti�cially limit the
parallelism that might be extracted from an application. A su�ciently powerful restructuring
compiler may be able to remove induction variables and replace reduction calculations with more
e�cient algorithms. Our current approach to these limitations is to use an existing parallelizing
compiler to statically analyze the source code and remove as many of these problems as possible.
This approach does not totally eliminate the e�ects of improper algorithm choice, but does help
to minimize the e�ect. We are planning to investigate the e�ects of inductions and reductions
with techniques similar to those used to compute the critical path length.

9.4.4 Constrained Execution

In addition to the instrumentation required for the critical path parallelism calculations, the
program is instrumented by the addition of statements that enforce the set of potential 
ow-
dependence arcs that the compiler was unable to prove independent during static analysis. The
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S1 : PROGRAM TEST

REAL A

INTEGER C, N, I

INTEGER S$S1, S$S2, S$S3, S$S4, T$0, N$N, N$Z

INTEGER C$A, C$C, C$I, C$TEST, TA1$S3, TB1$S3

PARAMETER (N=100)

DIMENSION A(N), C$A(N)

COMMON /N$NBLOCK/ N$N, N$Z

DATA C /1/

CALL MODULE$ENTRY('TEST',N$N,C$TEST)

S$S1 = C$TEST

S$S2 = C$TEST

C$C = C$TEST

TB1$S3 = N$Z

C$I = S$S1

S$S4 = C$I

CALL CP$ENTRY('TEST:7',N$N,C$I)

S2 : DO I = 1, N, 1

S$S2 = C$I

TA1$S3 = TB1$S3

S3 : A(C*I) = A(C*I)+1

N$N = N$N+4

T$0 = MAX(S$S2,C$A(I*C),C$C,C$I)

CALL CP$DEPEND('TEST:8',MAX(TA1$S3-T$0,N$Z))

C$A(I*C) = MAX(TA1$S3,T$0)+4

C$TEST = MAX(C$TEST,C$A(C*I))

S$S3 = C$A(C*I)

TB1$S3 = MAX(TB1$S3,S$S3)

S$S4 = MAX(S$S2,S$S3,S$S4)

S4 : ENDDO

C$I = MAX(C$I,S$S4)

CALL CP$EXIT('TEST:7',N$N,C$I)

S$S2 = MAX(S$S2,S$S4)

C$TEST = MAX(S$S2,C$TEST,C$I,C$C)

CALL MODULE$EXIT('TEST',N$N,C$TEST)

S5 : END

Figure 9.7: Instrumented sample program with unanalyzed subscript
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additional statements introduce arti�cial constraints into the program's data
ow graph. The
e�ect of these arti�cial arcs is to serialize the loop with respect to the statements involved in
the dependence.

As an example, consider a simpler yet incorrect method. We start with the simple loop, in
Figure 9.8, with arbitrary functions f1 and f2.

DO i1 = L1; U1
S1 : X(f1(i1)) = X(f2(i1))+1

ENDDO

Figure 9.8: Initial loop

We want to introduce a variable (X0) and a function (g1) into the program such that the
combined static 
ow-dependence arcs for statements S1 and S01 are identical. The di�erence
occurs during the execution of the program. Statement S01 forces the loop to be serialized, even
though it may not have been dynamically serialized because of statement S1. In Figure 9.9,
we are assuming statements S1 and S01 are executed as one combined statement. With this
assumption, the total execution time for the loop is the same as the conservative execution
time for the previous loop. The di�erence is that more resources are needed to deal with the
shadow computations.

DO i1 = L1; U1
S1 : X(f1(i1)) = X(f2(i1))
S01 : X0 = g1(X

0)+1
ENDDO

Figure 9.9: First instrumented loop

As should be obvious to the reader, this simple technique using scalar variables does not
generalize to loopnests of depths greater than one.

An interesting problem can be posed. Given a program, p, and its dependence graph,
D(p), create a new program p0 on the same statement and control-
ow structure, such that
the combined 
ow-dependence graph D(p) [ D(p0) is equal to D(p). The program p0 has the
additional property that all 
ow-dependence arcs in D(p0) are provably dependent during static
analysis and therefore are guaranteed to be enforced during the execution of the program.

We did not �nd a practical solution to this problem, so we found a suitable heuristic. Given
a direction vector ~d for a dependence arc, the level l of the dependence is the �rst non-equal
component of ~d. We reasoned that the e�ect of a dependence at level l in a loopnest is to
serialize the source of the dependence arc with respect to the sink across level l of the loopnest.
The dependence indicates a potential ordering con
ict when two iterations from level l of the
loopnest are concurrently executed. By serializing the loop at this level, we eliminate this
dependence as a potential problem. We recognized that an arbitrary loop in a loopnest can
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be serialized by breaking the arti�cial dependence arc into two components and forcing the
execution of the loopnest to connect the components at the proper time.

The loopnest in Figure 9.10 will be used to illustrate how an arbitrary loop at level k in the
loopnest may be serialized.

S1 : DO i1 = L1; U1
: : :

S2 : DO in = Ln; Un
S3 : X(f1(i1; : : : ; in)) = X(f2(i1; : : : ; in))+1
S4 : ENDDO

: : :
S5 : ENDDO

Figure 9.10: Second loop nest

In this example let k = 1 be the level of the loop in the loopnest to serialize. First create
two new shadow variables $XAk (source) and $XBk (sink). Before the DO statement at level k,
clear the source of the arti�cial arc. After the DO statement, copy from the source component of
the arti�cial arc to the sink component. When the sink is referenced, add the shadow variable
(sink) to the dependences list. When the source is computed, assign the source of the arti�cial
dependence arc to be equal to the shadow variable of the associated program variable. Figure
9.11 shows the �nal form of the instrumented code that allows serialization at any level.

$XA1 = 0
S1 : DO i1 = L1; U1

$XB1 = $XA1
: : :

S2 : DO in = Ln; Un
S3 : X(f1(i1; : : : ; in)) = X(f2(i1; : : : ; in))+1

$X(f1(i1; : : : ; in)) = MAX($XB1; : : :)
$XA1 = $X(f(i1; : : : ; in))

S4 : ENDDO

: : :
S5 : ENDDO

Figure 9.11: Instrumented version of the second loop

The important features of this instrumentation method are:

� The sink of the arti�cial 
ow-dependence arc is updated only when the iteration boundary
of the loop being serialized is crossed.

� The source of the arti�cial 
ow-dependence arc is assigned whenever the source of the
dependence is executed.
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� On entry to the loop being serialized, the arti�cial 
ow-dependence arc is cleared to
eliminate any serializing e�ects from previous invocations of the loop.

9.4.5 Serialization Caused by Variable Dependence Distance

It should be noted that the implicit parallelism recognized by the critical path analysis may
come from unusual sources. The results from the program dyfesm(SD) pointed to the interesting
loop in Figure 9.12.

DO 53 I=2,N

SUM = 0.0

DO 51 L=1,I-1

SUM = SUM + A(L,I)*B(L)

51 CONTINUE

B(I) = B(I) - SUM

53 CONTINUE

Figure 9.12: Example loop from dyfesm(SD)

In this loopnest from the subroutine CHOSOL, the 
ow-dependence is statically determined
correctly. The dependence in question is a 
ow-dependence from B(I) in loop 53 to B(L) in
the next occurrence of loop 51.

The results indicated that this loop was being arti�cially slowed down by the conservative
assumption of a dependence. Here however, the conservative assumption is not the existence of
the dependence arc, it is the dependence distance. Our instrumentation method for serializing
loops assumes that all dependence arcs are unit length. Here we have a dependence distance
that is variable and increasing on each iteration. By pipelining the computation of successive
calculations of the inner dot product, we are able to achieve at least partial parallelism.

9.5 Static Results

Practically all dependence analysis evaluations have been static, with potential dependences
classi�ed as dependent, independent, or statically indeterminant [GKT91, MHL91]. Chapter 8
also describes such an experiment. The criterion for the success of a dependence test has been
the number of potential dependences it has been able to identify as dependent or independent.

As we discussed in Section 9.4, we are interested only in the 
ow-dependences for this exper-
iment. Our own counts, presented in Table 9.1, consider each potential direction vector of the

ow-dependences separately. Even though other researchers count dependences in a di�erent
way, we believe our way of counting is more likely to re
ect the numbers from the dynamic
analysis than just counting each potential dependence, since we are e�ectively weighting each
dependence arc by the loopnest depth.

The information presented in Tables 9.1 and 9.2 use the following column identi�ers.
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CST: Constant Test.
GCD: Generalized GCD Test.
BAN: Banerjee's Inequalities.
OMT: Omega Test.
UNK: Dependence was not statically determined.

Table 9.1 is divided into three sections. The �rst section lists the number of potential

ow-dependence arcs that were proved independent and subdivides the total by the test that
proved independence. The second section shows the number of potential 
ow-dependences that
were either proved dependent by the Constant or Omega test, or were assumed dependent
because they could not be analyzed (UNK column). The last section shows the total number of
potential 
ow-dependences in each program. Table 9.2 presents the information in Table 9.1 in
percentage form.

Static dependence counts are only able to show the relative merits among a class of sim-
ilar dependence tests. Also, such counts are not directly related to the e�ectiveness of the
dependence tests in enabling the compiler to express the parallelism inherent in the program.

Many static dependence experiments reported in the literature present the number of po-
tential dependences that they have been able to remove. The experiments have failed to report
the number of dependences they are unable to handle owing either to subscript complexity
or unknown information. We report the count (UNK) for subscripts that our tool was unable
to statically analyze. But even this additional information is not su�cient to understand the
program fully. As an example of the e�ect of imperfect data dependence analysis that will
be detected at run-time but not re
ected by our static measurements, consider the e�ect of
run-time constraints on the dependence analysis as shown in Figure 9.13.

DO I = 1, N

IF (I .NE. 5) THEN

A(I) = A(5) + 1

ENDIF

ENDDO

Figure 9.13: Example loop that requires additional information

If the dependence test does not consider the additional constraints to the problem, it will
incorrectly (conservatively) determine dependence. This inaccuracy may have a large impact on
the parallelism exploited by the program, but will not be re
ected by our static measurements.
It is possible to statically handle these cases in a wide variety of circumstances. But what
about more complex situations? How do you determine when such advanced static analysis is
worthwhile? The solution is to do a dynamic evaluation of the static data dependence tests to
determine how much parallelism is lost by the conservative data dependence tests.

An important limitation should be noted for the static dependence results presented in this
section. Our simulation results re
ect only the 
ow-dependence arcs from the original program
for the given input dataset. In addition to this limitation, we have not enabled the induction
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Independent Dependent All

PROGRAM CST GCD BAN OMT Total CST OMT UNK Total Total

adm(AP) 0 82 490 6 578 2 373 60 435 1013

arc2d(SR) 1526 5069 1204 57 7856 153 726 18 897 8753

bdna(NA) 0 0 241 12 253 0 276 150 426 679

dyfesm(SD) 296 26 698 26 1046 89 584 60 733 1779

flo52q(TF) 114 958 1009 54 2135 0 199 11 210 2345

mdg(LW) 60 0 866 4 930 92 1867 726 2685 3615

mg3d(SM) 2 165 4409 32 4608 1827 61 3016 4904 9512

ocean(OC) 0 0 473 191 664 46 284 557 887 1551

qcd2(LG) 53536 294 2022 0 55852 37200 13125 0 50325 106117

spec77(WS) 35 0 1565 30 1630 16 1168 263 1447 3077

track(MT) 238 3 133 0 374 56 184 12 252 626

trfd(TI) 0 0 1011 627 1638 8 689 74 771 2409

Total 55807 6597 14121 1039 77564 39489 19536 4947 63972 141536

Table 9.1: Breakdown of dependence results for each program

Independent (%) Dependent (%)

PROGRAM CST GCD BAN OMT Total CST OMT UNK Total

adm(AP) 0.0 8.1 48.4 0.6 57.1 0.2 36.8 5.9 42.9

arc2d(SR) 17.4 57.9 13.8 0.7 89.8 1.7 8.3 0.2 10.2

bdna(NA) 0.0 0.0 35.5 1.8 37.3 0.0 40.6 22.1 62.7

dyfesm(SD) 16.6 1.5 39.2 1.5 58.8 5.0 32.8 3.4 41.2

flo52q(TF) 4.9 40.9 43.0 2.3 91.0 0.0 8.5 0.5 9.0

mdg(LW) 1.7 0.0 24.0 0.1 25.7 2.5 51.6 20.1 74.3

mg3d(SM) 0.0 1.7 46.4 0.3 48.4 19.2 0.6 31.7 51.6

ocean(OC) 0.0 0.0 30.5 12.3 42.8 3.0 18.3 35.9 57.2

qcd2(LG) 50.4 0.3 1.9 0.0 52.6 35.1 12.4 0.0 47.4

spec77(WS) 1.1 0.0 50.9 1.0 53.0 0.5 38.0 8.5 47.0

track(MT) 38.0 0.5 21.2 0.0 59.7 8.9 29.4 1.9 40.3

trfd(TI) 0.0 0.0 42.0 26.0 68.0 0.3 28.6 3.1 32.0

Total 39.4 4.7 10.0 0.7 54.8 27.9 13.8 3.5 45.2

Table 9.2: Breakdown of dependence result percentages for each program
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variable recognition phases of our analysis (during our dependence analysis). On average, only
3.5% of the potential 
ow-dependences are unanalyzable. Thus, even though induction variable
recognition is important to understanding a program, it would have a minor impact on these
static results.

9.6 E�ectiveness of Data Dependence Tests

One must ask the question: Are the existing dependence tests su�cient, and if they are not,
where must further e�ort be expended? A number of papers such as [MHL91, GKT91, Pug91]
show that each of the many di�erent alternative tests are capable of solving a number of data
dependence problems. For evaluation purposes we want to use a ideal dependence test. This
ideal test should be able to determine dependence or independence for all possible subscripts.
It must be able to say exactly on each reference to an array, what set of de�nitions could have
contributed to the value placed in this location.

Unfortunately this ideal dependence test does not exist. The closest we have been able
to come is through dynamic analysis of the program, as discussed in the previous section.
Dynamic analysis has its own limitations since it is only able to record what occurred during
that particular execution of the program with the dataset used, even though it is possible to
increase the coverage by supplying datasets that exercise the range of possibilities that the
program may take.

Tables 9.3 and 9.4 list the results of the dynamic analysis. The �rst two columns in each
table are obtained from Chapter 4. The �rst column is the optimal parallelism present in each
program. Optimal parallelism is de�ned in terms of the critical path length when assuming loop-
level parallelism, as discussed in Section 9.4. The second column is the measured performance
of the KAP/Concurrent restructuring compiler on our ideal machine. The performance of KAP
is expected to be slightly lower than any of the other comparable measurements since it does
both static dependence analysis and static mapping of the parallelism.

The last three columns in Table 9.3 list the average interprocedural parallelism, which is
computed in the same way as the optimal parallelism except that certain restrictions are applied.
The restrictions are based on the potential 
ow-dependences that are not proven independent
by the data dependence tests listed in the heading for the column. Table 9.4 reports the e�ects
of intraprocedural parallelism for each of the three types of dependence tests.

9.7 Observations from the Perfect Benchmarks

The purpose of running an experiment is to learn something new about the subject being stud-
ied. The major observations of running our analyses on the Perfect Benchmarks are presented
next.

The average parallelism, as measured against the Omega test and Banerjee's inequalities for
Tables 9.3 and 9.4, show no meaningful di�erence. The conclusion is that in this experiment, the
additional capabilities of the Omega test were not bene�cial in extracting additional parallelism
from the programs.

The static results from Table 9.2 help to illustrate the reason for this conclusion. In the
absence of the Omega test, any potential 
ow-dependences that were not broken by a less
complex test would be counted as statically unanalyzable (UNK) and assumed to be dependent.
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Optimal KAP-Obtained Omega Test Banerjee

PROGRAM Loop-Level Loop-Level CST & GCD CST & GCD CST & GCD

adm(AP) 45.5 3.0 8.38 8.38 2.77

arc2d(SR) 336.0 66.3 330.81 330.81 3.10

bdna(NA) 139.5 1.3 73.36 72.55 2.38

dyfesm(SD) 17.9 3.9 10.51 10.49 3.61

flo52q(TF) 206.9 76.7 206.36 206.36 2.66

mdg(LW) 5.3 1.4 5.22 5.22 5.12

mg3d(SM) 1.3 1.2 1.25 1.25 1.14

ocean(OC) 272.4 1.3 2.40 2.40 2.03

qcd2(LG) 2.4 1.2 2.27 2.27 2.15

spec77(WS) 13.8 1.1 13.52 13.52 13.20

track(MT) 38.7 1.1 32.90 32.90 1.74

trfd(TI) 87.9 10.3 58.02 58.02 2.89

Table 9.3: Average interprocedural parallelism: constrained by static dependence analysis

Optimal KAP-Obtained Omega Test Banerjee

PROGRAM Loop-Level Loop-Level CST & GCD CST & GCD CST & GCD

adm(AP) 45.5 3.0 3.00 3.00 1.89

arc2d(SR) 336.0 66.3 252.52 252.52 2.18

bdna(NA) 139.5 1.3 73.35 72.55 2.38

dyfesm(SD) 17.9 3.9 5.31 5.30 1.13

flo52q(TF) 206.9 76.7 206.16 206.15 2.66

mdg(LW) 5.3 1.4 4.61 4.61 3.50

mg3d(SM) 1.3 1.2 1.18 1.18 1.08

ocean(OC) 272.4 1.3 2.40 2.40 2.03

qcd2(LG) 2.4 1.2 1.49 1.49 1.42

spec77(WS) 13.8 1.1 2.25 2.25 2.20

track(MT) 38.7 1.1 1.73 1.73 1.59

trfd(TI) 87.9 10.3 26.60 26.60 1.52

Table 9.4: Average intraprocedural parallelism: constrained by static dependence analysis

124



We can see from Table 9.2 that the e�ect of the Omega test was to move only 0.7% of
the potential dependences from the unknown column to the independent column, but to move
13.8% from the unknown column to the dependent column. A move from unknown to dependent
accomplished nothing in this experiment since all unknown potential 
ow-dependence arcs are
assumed dependent. In this experiment, none of the dependences in the 0.7% that moved to
the independent column had an important e�ect on the average parallelism.

One dependence cycle is su�cient to serialize an important loopnest. Thus, as long as the
number of dependences in the unknown column of Table 9.1 is non-zero, the potential exists
for improving parallelism through better dependence analysis.

9.7.1 Evaluation and Classi�cation

If the count of potential dependence arcs were su�cient to evaluate the e�ectiveness of data
dependence tests, we would expect the results of the static analysis in Tables 9.1 and 9.2 to
predict the results in Tables 9.3 or 9.4. However, this is not the case.

An examination of the count of unknown potential dependences shows where the compiler
must make conservative assumptions to ensure the correct execution of a program. The pro-
grams mg3d(SM) and mdg(LW) have high percentages of unknown dependences. But in Table 9.3,
we see a small loss of parallelism when we compare the optimal parallelism to the parallelism
exposed by either the Omega test or Banerjee's inequalities.

The program qcd2(LG) has no unknown 
ow-dependences, but we see from Table 9.3 that it
too has a small loss of parallelism when the optimal parallelism is compared with the parallelism
extracted by static analysis. Here are two di�erent static results but the same dynamic behavior.

The simplest data dependence tests do not predict the dynamic behavior either. In fact, the
program spec77(WS) has the largest average parallelism when restricted by only the results of
the constant and GCD tests. However, from Table 9.2, only 1.1% of the potential dependence
arcs were removed by these tests. For the same program, we see that Banerjee's inequalities
removed 50.9% of all dependences but only improved the average parallelism in Table 9.3 from
13.20 to 13.52.

9.7.2 Intraprocedural and Interprocedural Parallelism

We have shown that in some cases interprocedural parallelism is required for good performance
and in some cases it is not. What is important to note is not that these particular programs
have a certain behavior, but that the method used to determine whether a program may bene�t
from interprocedural parallelism is presented without actually needing to do the interprocedural
analysis.

The di�erence between Tables 9.3 and 9.4 shows the e�ects of interprocedural parallelism
on program execution. Normally the results calculated by the critical path analysis assume
that all subroutines are e�ectively inlined. Table 9.3 gives the results for this assumption.

However, if instead of inlining the subroutine at each call site we add arti�cial dependence
arcs connecting all CALL statements, we require that no two subroutine calls execute concur-
rently. Table 9.4 gives the results for this second assumption. This table shows what e�ect
intraprocedural parallelism alone has on the average parallelism present in a program. In both
tables we compute the dependence analysis intraprocedurally, but the interprocedural paral-
lelism that is reported in Table 9.3 is removed in Table 9.4.
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The programs can be divided into three categories, based on the in
uence of interprocedural
parallelism. The heavily in
uenced programs are de�ned to have a factor of approximately
two or more loss of parallelism. The programs in this category are adm(AP), dyfesm(SD),
spec77(WS), track(MT), and trfd(TI). We can also de�ne a category based on the programs
that have no signi�cant parallelism degradation. The programs in this second category are
bdna(NA), flo52q(TF), mdg(LW), md3g(SM), and ocean(OC). The third category contains the
rest of the programs. These remaining programs have a slight but not signi�cant degradation
from the lack of interprocedural parallelism. The programs in the last category are arc2d(SR)
and qcd2(LG).

9.7.3 Correlation with Interprocedural Parallelism

Sometimes the correlation between the static and dynamic evaluations is as expected. The three
best programs for average KAP parallelism are: flo52q(TF), arc2d(SR), and trfd(TI). These
three programs also have the largest percentages of independent arcs; all three programs have
greater than two-thirds of the potential 
ow-dependence arcs proven independent as shown in
Table 9.1.

A comparison of Tables 9.3 and 9.4 for the same three programs shows that they all have
a minimal loss of parallelism when serializing subroutine calls and eliminating interprocedural
parallelism. As one would expect, we can conclude that using a parallelizing compiler that does
not do interprocedural analysis only works e�ectively when the programs are easy to analyze
and do not require interprocedural parallelism.

Sometimes the correlation is not as encouraging. Several of the programs, track(MT),
spec77(WS), dyfesm(SD), and adm(AP), show a large loss of average parallelism when Tables
9.3 and 9.4 are compared. These four programs also correspond to instances where KAP was
unable to exploit automatically any meaningful parallelism.

9.7.4 Future Enhancements

One obvious enhancement is to increase the descriptive power of the ideal parallel machine to
be able to model existing parallel machines more closely. This would extend the applicability
of this method to cover not only the semantic analysis portion of a parallelizing compiler but
also the ability to predict the behavior of the mapping portion.

Another extension would be to include the e�ects of anti- and output- dependences on the
critical path. This extension has the potential to fully serialize the program, but also would be
able to pinpoint the exact location of the storage con
icts that need to be eliminated.

Inductions and reductions need to be considered. It is possible to recognize these constructs
using the same type of critical path analysis. The removal of an induction variable may cause
another dependence to be discovered. Thus, removing the induction variables will increase the
e�ectiveness of the static dependence tests, potentially increase the available baseline paral-
lelism, and, last but not least, may allow this instrumentation to discover the true nature of
the computation, independent of the means (such as an inductive sequence) used during the
calculation.

The current instrumentation assumes that every potential dependence arc that is not proven
independent is of distance one. It may be possible to alter the instrumentation to simulate the
e�ects of larger distances if they are known at compile-time.
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Since we serialize the statements in each iteration of a parallel loop, the order in which these
statements are executed impacts the performance of the loop. Statement reordering is one very
important technique for minimizing the size of the dependence cycles contained in a loop. It
may be possible to use the arti�cial dependence arcs that are added to the program to determine
where the impact of statement reordering would be most bene�cial. Another technique would
be to precondition the source code to minimize the size of the dependence cycles in all loops,
regardless of whether they are marked as serial or parallel.

Finally, other methods for serializing loop nests may be more e�ective. The imposition of a
two-part serialization arc is purely for the convenience of this study.

9.8 Conclusion

The data presented in this chapter describe a method where existing dependence analysis tech-
niques can be quantitatively measured. This method is similar to performing the actual parallel
compilation and execution on a parallel machine. However, our method attempts to isolate the
important features of a parallel architecture without being constrained by arti�cial limitations
such as cache/memory bandwidth or a limited number of processors.

We have shown that it is sometimes possible to relate the static dependence counts to
the speedup of an application on an ideal parallel machine. We have also shown that it is an
imprecise measure of the ability of the dependence analysis portion of the parallelizing compiler
to measure only static dependence counts.

The major result of this experiment shows that dynamically, the Omega test does not
improve the average parallelism over the parallelism exposed by Banerjee's inequalities. This
conclusion is contradictory to the accepted wisdom that more powerful data dependence tests
would help to extract more parallelism.

Another bene�t of this evaluation technique is the capability to locate exactly the places in
the source code that are causing di�culty for the compiler. These locations might be bene�-
cial as targets for hand transformations or as test cases to target further development of the
compiler.
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Chapter 10

DYNAMIC DEPENDENCE

ANALYSIS

10.1 Introduction

Data dependence analysis is used by parallelizing compilers to understand the structure of
the computation in a program. Static data dependence analysis tests are used to determine
the dependences that might be present in the source code. However, most static dependence
analysis techniques are limited to computing intraprocedural information and are also limited
to considering simple subscript expressions, usually a�ne functions with constant coe�cients.

Expanding the scope of the dependence analysis to consider interprocedural data depen-
dence arcs makes it possible to determine if loops that call other routines can be parallelized.
The technique presented in this chapter works interprocedurally and considers all subscripts
regardless of their complexity. As with any dynamic technique, the results are dependent on
the input dataset, which means that we will only discover dependences that are executed by
one run of the program. More dependences may potentially be present in the source code, but
cannot be discovered by this technique.

Parallelizing compilers require information about independent computations in order to
schedule the operations on multiple processors. The simplest method is to use a collection of
patterns or templates that describe independent computation. For example, if all the subscripts
of array elements have the form A(I) where I is the loop's index variable, then we are assured
that no cross-iteration data dependences can exist.

A more general method of determining data dependence is by means of data dependence
tests. Generically, the object is to solve a system of equations in integer values to determine if
two memory references may refer to the same memory location. Chapter 2 goes into the details
of the dependence analysis problem and static algorithms for calculating data dependence.

In static data dependence analysis, the problem is: given two array references

A(f1(i1; : : : ; in); : : : ; fm(i1; : : : ; in))

A(g1(j1; : : : ; jn); : : : ; gm(j1; : : : ; jn))

generate a set of equations whose solution will determine if the two array references ever refer-
ence the same memory location.
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The solution to the set of equations

f1(i1; : : : ; in) = g1(j1; : : : ; jn)

� � �

fm(i1; : : : ; in) = gm(j1; : : : ; jn))

corresponds to determining the equality of the subscript in each dimension of the array refer-
ences. The equations must be satis�ed simultaneously for legal values of i1 : : : in and j1 : : : jn.

The static dependence tests evaluated in Chapter 8 are designed either to exactly solve
the equations, or to give a conservative approximation. We wish in this chapter to explore a
dynamic solution to the dependence analysis problem. The dynamic solution may not use the
same formulation as the solution to the static problem. In particular, dynamically we can use
the de�nition of data dependence directly; that is, we can test the memory locations directly
to determine dependence.

The technique presented in this chapter has two uses. The �rst is to generate an inter-
procedural list of cross-iteration data dependences. The second is to record the dependence
distances that occur during the execution. Both uses have many applications. The output-
dependences show which variables need to be considered for possible localization or expansion
to enable the parallel execution of a loop. The 
ow-dependences pinpoint the locations that
serialize loops that must be removed to execute the loop concurrently. The absence of all
dependences is an indication that the loop may be a candidate for parallel execution. The record
of dependence distances can be used to evaluate the suitability of transformation techniques
which depend on large dependence distances for their e�ectiveness. If such distances exist, then
these techniques may have applicability to the program being studied. Also, the e�ectiveness of
the doacross loop depends on the amount of work in the loop and the length of the dependence
distances.

10.2 Overview of the Evaluation Method

Dynamic analysis has advantages over the traditionally used static methods. Since we have
the machine state available at the point of the variable reference, we can use this information
to resolve easily problems that might arise in the static analysis. For example, during static
analysis a di�cult problem is to determine if two array references refer to the same memory
location. This problem is trivial to determine at run-time. We have the virtual addresses of the
array elements, and a simple arithmetic comparison of the addresses determines the dependence
or independence of the two references.

Other di�culties that arise from routine boundaries, in a static analysis, are not problems
for dynamic analysis. The aliasing that can potentially occur during a subroutine invocation
are transparent to run-time observations.

10.2.1 Strategy for Dynamic Analysis

One problem that arises when we look at the dependence problem dynamically is that even
though it is trivial to determine if we have a dependence, it is nontrivial to determine if this
dependence will be troublesome.
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If we have the following code fragment:

S1 : DO I = 1, N

S2 : A(I) = I

S3 : B(I) = A(I) + I

S4 : ENDDO

We correctly observe that there exists a 
ow-dependence from S2 to S3, but this is not a
cross-iteration dependence and does not inhibit parallel execution.

However, in this slightly altered code fragment:

S1 : DO I = 1, N

S2 : A(I) = I

S3 : B(I) = A(I-1) + I

S4 : ENDDO

a cross-iteration data dependence does exist. Here the previous iteration of the loop sets the
value of A that is read in statement S3. Without any information other than the virtual addresses
of the array elements, we are unable to distinguish between these two cases.

In Chapter 4 we described a method of associating shadow variables with the programs
original variables. We place timestamps in these shadow variables that indicate, relative to the
start of the program's execution, when a particular value of a variable would be available. The
aliasing between the shadow variables allows the instrumentation to trivially determine when
two variables share the same timestamp. This method of storing timestamps is adequate for
parallelism estimation, but it is inadequate for determining cross-iteration dependences.

If the timestamps are not adequate, what would be su�cient? The critical information
required to determine when a cross-iteration dependence occurs is to determine when accesses
to a variable occur in di�erent loop iterations. A simple method could store the loop index in
the shadow of the array element. For the previous example, this is su�cient to determine if
two accesses are in di�erent iterations. Normalizing the loops index values into points in the
iteration space eliminates some minor problems with respect to non-unit strides.

However, using index values or a simple iteration space has limitations. If we have a multiply
nested loop, then we need to keep a vector of loop indices to determine our location in the
iteration space with respect to other loop instances. This additional information is linearly
proportional to the maximal loop nesting depth we wish to consider.

We can recast the vector of loop indices, or our position in the iteration space, by using an
alternative basis for recording the point in the iteration space. Linearizing the iteration space
allows one to pack a multi-dimensional iteration space into a linear representation. The process
of index space linearization can be extended to a global iteration numbering (GIN) scheme. In
this scheme each time a new loop iteration is started, we record a GIN for the iteration and
record the GIN for the �rst and current iterations of every active loop. To determine if two
references to a variable are from di�erent iterations, compare the GINs of the two references
and use this information to tell if the references occurred in the same iteration or that the
references form a cross-iteration dependence.
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10.2.2 Dependence Distances

The dependence distance of an arc, in a singly nested loop, can be calculated by subtracting the
GINs for the endpoints of the arc. For multiply nested loops this method no longer is correct.
The GIN of successive iterations of outer loops are not consecutive. Thus, we need to record
the GIN if we wish to determine dependence distances. To be fully accurate we need one record
for each loop iteration. As an approximation to recording the GINs of every iteration, we will
only record the GINs for the last k iterations. Searching through this FIFO bu�er still allows
one to determine precisely distances less than k, and to also determine if a dependence distance
greater than k occurred.

Let's examine the following loop nest:

S1 : DO I = 1, 3

S2 : DO J = 1, 3

S3 : A(f1(I,J)) = � � � A(f2(I,J)) � � �
S4 : ENDDO

S5 : ENDDO

(1,{) (1,1) (1,2) (1,3)
1 2 3 4

(2,{) (2,1) (2,2) (2,3)
5 6 7 8

(3,{) (3,1) (3,2) (3,3)
9 10 11 12

Table 10.1: Global iteration numbering

In Table 10.1, the e�ects of GIN are shown. Notice the column that has entries of the form
(n, {). The \{" signi�es that the J or inner loop, is not active at this time. To illustrate the
usage of the GIN scheme consider three situations. First, assume we have the array A written
in iteration (2,2) and read in iteration (2,3). The �rst iteration corresponds to a GIN of 7 and
the second to a GIN of 8.

At the time of the second access we have a loop state of:

Loop Start Current FIFO

I 1 5 1
J 6 8 7,6

From this loop state information we can determine that the �rst access at GIN=7 occurred
while the current instance of loop J was executing but in a previous iteration. Examining the
FIFO bu�er of previous iterations, we see that the last iteration has the same GIN and thus
we can conclude that the dependence distance is 1.

For the second example, consider the iterations (1,1) and (3,3). From Table 10.1 we have
GINs of 2 and 12.
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Loop Start Current FIFO

I 1 9 5,1
J 10 12 11,10

From the loop state table we see that the �rst reference did not occur in the current loop
(2 < 10), but it did occur in the outer loop (1 � 2 � 9). Since we know that the I loop is the
�rst common loop that is still active, we check the FIFO �eld of the table and see that we need
to look back two entries in the FIFO bu�er to �nd a GIN that is smaller or equal to the GIN of
the �rst reference. Thus, we have determined that a cross-iteration dependence occurred with
respect to the outer loop with a dependence distance of 2.

Finally, modify the example to have two statements in the loop body, and consider the case
where the GIN for both references were identical. Here we are assured that a cross-iteration
dependence did not occur, or in other words, the dependence distance is zero.

10.3 Uses of the Dynamic Dependence Analysis Method

Experimental techniques can potentially generate vast amounts of data. It may be preferable
to show the detailed results by a collection of short examples that display the properties of the
technique instead of applying the technique to a large dataset.

In all the examples, only 
ow- and output-dependences are reported. The method used
during the dynamic analysis records information only about writes to a variable, not about
reads. The global iteration number (GIN) of the last write is su�cient to discover an output-
dependence at the next write or a 
ow-dependence at the next read. To calculate the same
information about input- or anti-dependences, the GIN of the last read would need to be
recorded. This is possible but outside the scope of this experiment.

Figures 10.1 to 10.3 show an example program and its results. This example was designed to
show the recognition of 
ow-dependences with various dependence distances. Figure 10.2 shows
the report generated by running the instrumented program in Figure 10.3. We can interpret
the results as follows:

� Each loop in the program is listed in alphabetical order via a tag that is composed of the
routine name and the line number in the �le. For example 'EX1:4' refers to line 4 in the
�le that contains the routine EX1.

� After the loop tag is a bracket enclosed list of information. The item S=1 means that
during one execution of the loop at least one cross-iteration dependence was discovered.
The item P=1 means that during one execution of the loop no cross-iteration dependences
were found.

� Additional tags are: ONE to denote a one trip loop, and ZERO to denote a zero trip loop.
These tags are important since by de�nition, zero and one trip loops cannot have any
cross-iteration dependences and will therefore be classi�ed as parallel.

� Following the loop tag are a collection of lines starting either with a <F> or <O>. These
markers signify 
ow- and output-dependences respectively. The next item on the line is
the tag of the sink for the dependence. Again, the form of the tag is routine:line.
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Line#
1 PROGRAM EX1

2 PARAMETER (N = 10)

3 DIMENSION A(N)

4 DO I = 1, N

5 A(I) = I

6 ENDDO

7 DO I = 3, N

8 A(I) = A(I-2)

9 ENDDO

10 DO I = 4, N

11 A(I) = A(I-3)

12 ENDDO

13 END

Figure 10.1: Example one

----- SUMMARY: Dynamic Dependence Relation Recognition -----

EX1:4 [ P=1 ]

EX1:7 [ S=1 ]

<F> EX1:8 A(I-2) #2:6

EX1:10 [ S=1 ]

<F> EX1:11 A(I-3) #3:4

Figure 10.2: Example one results
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PROGRAM EX1

REAL A

INTEGER C$A, C$EX1, I, C$I, N$Z, N, N$N

PARAMETER (N=10)

DIMENSION A(N), C$A(N)

COMMON /N$NBLOCK/ N$N, N$Z

CALL PROC$ENTRY('EX1')

CALL DO$ENTRY('EX1:5',C$I,0)

DO I = 1, N, 1

CALL DO$NEXT('EX1:5')

A(I) = I

CALL DO$STMT('EX1:6',C$A(I),1,C$I,'A(I)!I')

ENDDO

CALL DO$EXIT('EX1:5')

CALL DO$ENTRY('EX1:9',C$I,0)

DO I = 3, N, 1

CALL DO$NEXT('EX1:9')

A(I) = A(I-2)

CALL DO$STMT('EX1:10',C$A(I),2,C$A(I-2),C$I,'A(I)!A(I-2)!I')

ENDDO

CALL DO$EXIT('EX1:9')

CALL DO$ENTRY('EX1:13',C$I,0)

DO I = 4, N, 1

CALL DO$NEXT('EX1:13')

A(I) = A(I-3)

CALL DO$STMT('EX1:14',C$A(I),2,C$A(I-3),C$I,'A(I)!A(I-3)!I')

ENDDO

CALL DO$EXIT('EX1:13')

CALL PROC$EXIT('EX1')

STOP

END

Figure 10.3: Example one instrumented
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� Following the tag for the dependence are a list of variables and array references that
are involved in a dependence. The last section of the line displays the dependence dis-
tances summarized for all instances of the statement. The form of the summary is #dis-
tance:count. For example #2:6 means that the leading term of the distance vector was
equal to two a total of six times. Since the distances are recorded using a sliding win-
dow FIFO bu�er, any distance greater than the maximum bu�er size will be reported as
>max:count.

From Figure 10.2 we can see that the �rst loop was executed once with no dependences.
The second loop reports cross-iteration dependences of distance 2 and the third loop reports
cross-iteration dependences of distance 3.

Figure 10.4 shows a simple example that reports not only the 
ow-dependences, but the
output-dependences as well. It is interesting to see that by interchanging to two loop (or
renaming the subscripts), we can show that either the inner or the outer loop is parallel. It
is important to note that the dependence counts of 90 illustrate that the �rst iteration of the
inner loop does not depend on other computation in the loopnest.

Figures 10.6 and 10.7 show that subroutine boundaries pose no additional problem in deter-
mining the dependences that occur during a program's execution. We have the same results as
in Figure 10.5 with the alteration that the speci�c location of the dependence sink has changed
to line 17, and the local name of the variable that causes the dependence is now X.

We can also show in Figure 10.8 that aliasing of variables does not cause a problem. We
again have the same results as in Figures 10.5 and 10.7 with the alteration that the 
ow- and
output- dependences are not attributed to di�erent local variables. Currently we have no means
of reporting that X, Y were dynamically aliased to A(I) and A(J).

We can combine the previous examples into a composite program. In Figure 10.10, we have
a 
ow- dependence of distance two in the outer loop of the �rst loopnest. In the same loopnest
we have an output-dependence of distance one in the inner loop. By switching the index used
in the subscripts, we interchange the types of the dependences reported for the two loops in
the second loopnest.
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Line#
1 PROGRAM EX2

2 PARAMETER (N = 10)

3 DIMENSION A(N)

4 DO I = 1, N

5 DO J = 1, N

6 A(I) = A(I) + 1

7 ENDDO

8 ENDDO

9 DO I = 1, N

10 DO J = 1, N

11 A(J) = A(J) + 1

12 ENDDO

13 ENDDO

14 END

Figure 10.4: Example two

----- SUMMARY: Dynamic Dependence Relation Recognition -----

EX2:4 [ P=1 ]

EX2:5 [ S=10 ]

<F> EX2:6 A(I) #1:90

<O> EX2:6 A(I) #1:90

EX2:9 [ S=1 ]

<F> EX2:11 A(J) #1:90

<O> EX2:11 A(J) #1:90

EX2:10 [ P=10 ]

Figure 10.5: Example two results
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Line#
1 PROGRAM EX3

2 PARAMETER (N = 10)

3 DIMENSION A(N)

4 DO I = 1, N

5 DO J = 1, N

6 CALL F( A(I) )

7 ENDDO

8 ENDDO

9 DO I = 1, N

10 DO J = 1, N

11 CALL F( A(J) )

12 ENDDO

13 ENDDO

14 END

15

16 SUBROUTINE F( X )

17 X = X + 1

18 RETURN

19 END

Figure 10.6: Example three

----- SUMMARY: Dynamic Dependence Relation Recognition -----

EX3:4 [ P=1 ]

EX3:5 [ S=10 ]

<F> F:17 X #1:90

<O> F:17 X #1:90

EX3:9 [ S=1 ]

<F> F:17 X #1:90

<O> F:17 X #1:90

EX3:10 [ P=10 ]

Figure 10.7: Example three results
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Line#
1 PROGRAM EX4

2 PARAMETER (N = 10)

3 DIMENSION A(N)

4 DO I = 1, N

5 DO J = 1, N

6 CALL F( A(I), A(I) )

7 ENDDO

8 ENDDO

9 DO I = 1, N

10 DO J = 1, N

11 CALL F( A(J), A(J) )

12 ENDDO

13 ENDDO

14 END

15

16 SUBROUTINE F( X, Y )

17 X = Y + 1

18 RETURN

19 END

Figure 10.8: Example four

----- SUMMARY: Dynamic Dependence Relation Recognition -----

EX4:4 [ P=1 ]

EX4:5 [ S=10 ]

<F> F:17 Y #1:90

<O> F:17 X #1:90

EX4:9 [ S=1 ]

<F> F:17 Y #1:90

<O> F:17 X #1:90

EX4:10 [ P=10 ]

Figure 10.9: Example four results
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Line#
1 PROGRAM EX5

2 PARAMETER (N = 10)

3 DIMENSION A(N)

4 DO I = 3, N

5 DO J = 1, N

6 CALL F( A(I), A(I-2) )

7 ENDDO

8 ENDDO

9 DO I = 1, N

10 DO J = 3, N

11 CALL F( A(J), A(J-2) )

12 ENDDO

13 ENDDO

14 END

15

16 SUBROUTINE F( X, Y )

17 X = Y + 1

18 RETURN

19 END

Figure 10.10: Example �ve

----- SUMMARY: Dynamic Dependence Relation Recognition -----

EX5:4 [ S=1 ]

<F> F:17 Y #2:60

EX5:5 [ S=8 ]

<O> F:17 X #1:72

EX5:9 [ S=1 ]

<O> F:17 X #1:72

EX5:10 [ S=10 ]

<F> F:17 Y #2:60

Figure 10.11: Example �ve results
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10.4 Results from the Perfect Benchmarks

In addition to illustrating the results of this technique on small programs, the dynamic
dependence analysis tool was applied to a collection of programs from the Perfect Benchmarks
suite. The results are presented in Tables 10.2 to 10.13.

Tables 10.2 to 10.5 list the number of times dynamically that a 
ow- or output- dependence
that involved an array element respectively occurred during the program's execution

Tables 10.8 to 10.11 include scalars in the counts of dependences. This set of tables shows
an even larger bias toward distance one dependences. The reason should be obvious; if we
include scalars, then any cross-iteration dependence will have distance one unless it is covered
by an conditional statement.

From these tables we see that almost all dependence distances are either one or two. When
larger dependence distances appear, they usually do so because all larger distances also occur.
Dependence distances that are input data dependent are common. For example, a loop that
�nds the maximum value in an array may execute an arbitrarily large number of iterations
before it assigns an element to the maximum value.

10.5 Conclusion

Traditionally, data dependence analysis has been the realm of static analyses. We show that it is
possible to collect 
ow- and output-data dependences dynamically. We isolate the loop carried
dependences for each loop and also record the iteration distance spanned by the dependence.
This approach to dependence collection has several advantages: it works interprocedurally, has
no di�cultly with aliasing, and has no arti�cial limits with respect to loop nesting depth.

We have shown that with global iteration numbers (GIN) we can determine 
ow- and
output-dependences that occur during a program's execution. Additionally with the inclusion
of a FIFO bu�er of the GINs for the last k iterations of each loop we can determine the
dependence distance (up to a maximum of k) of the loop that carries the dependence.

The dynamic dependence recognition procedure provides an indication to the user of whether
any cross-iteration dependences existed during the program's execution. This information is
calculated interproceduraly and summarized for each DO loop in the program. The information
gained though dynamic dependence recognition can also be used to automatically guide the
parallelizing compiler by providing locations in the program to create multiversion loops. Since
the dynamic analysis can recognize parallel loops, the compiler can insert run-time checks into
the code to see if the particular relationship between the variables that allowed a loop to be
executed in parallel for the test run are generally true.

Finally, the data summarized for the Perfect Benchmarks indicates that almost all depen-
dences that occur dynamically during the program's execution refer to data that was written
in the previous iteration of the loop that carries the dependence. A consequence of this obser-
vation is that restructuring transformations that rely on large dependence distances may not
be applicable to this collection of programs.
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Code #1 #2 #3 #4

adm(AP) 49494854 0 0 0

arc2d(SR) 207300417 67070800 0 0

bdna(NA) 59255818 219315 173655 100575

dyfesm(SD) 109286250 1799958 1490807 1422337

flo52q(TF) 33563778 0 0 0

mdg(LW) 95667545 5011164 2860092 2145618

ocean(OC) 6822672 0 0 0

qcd2(LG) 14516959 2441216 195840 64512

track(MT) 15847034 49462 46769 45194

trfd(TI) 189224350 0 0 0

Table 10.2: Number of occurrences of each 
ow-dependence distance for array references,
distances #1 to #4

Code #5 #6 #7 #8 >8

adm(AP) 0 0 0 0 0

arc2d(SR) 0 0 0 0 0

bdna(NA) 74643 93471 71739 53679 888666

dyfesm(SD) 1369313 1285460 1217050 1148659 12267143

flo52q(TF) 0 0 0 0 0

mdg(LW) 1253718 705582 238815 120330 696042

ocean(OC) 0 0 0 0 0

qcd2(LG) 0 0 16128 0 755712

track(MT) 43868 43003 41980 40566 807669

trfd(TI) 0 0 0 0 0

Table 10.3: Number of occurrences of each 
ow-dependence distance for array references,
distances � #5

Code #1 #2 #3 #4 #5 #6 #7 #8 >8

adm(AP) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

arc2d(SR) 75.6% 24.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

bdna(NA) 97.2% 0.4% 0.3% 0.2% 0.1% 0.2% 0.1% 0.1% 1.5%

dyfesm(SD) 83.2% 1.4% 1.1% 1.1% 1.0% 1.0% 0.9% 0.9% 9.3%

flo52q(TF) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

mdg(LW) 88.0% 4.6% 2.6% 2.0% 1.2% 0.6% 0.2% 0.1% 0.6%

ocean(OC) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

qcd2(LG) 80.7% 13.6% 1.1% 0.4% 0.0% 0.0% 0.1% 0.0% 4.2%

track(MT) 93.4% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 4.8%

trfd(TI) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 10.4: Percentage of occurrences of each 
ow-dependence distance for array references
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Code #1 #2 #3 #4

adm(AP) 37721502 11197760 0 0

arc2d(SR) 178509573 0 0 0

bdna(NA) 83750657 402648 248700 140796

dyfesm(SD) 115543052 240762 76 300

flo52q(TF) 1668343 0 1 1

mdg(LW) 502402967 16714241 9824396 7000879

ocean(OC) 74526468 0 0 0

qcd2(LG) 53892821 704512 0 0

track(MT) 8599911 72730 23515 10100

trfd(TI) 195543420 0 0 0

Table 10.5: Number of occurrences of each output-dependence distance for array references,
distances #1 to #4

Code #5 #6 #7 #8 >8

adm(AP) 0 0 0 0 0

arc2d(SR) 0 0 0 0 0

bdna(NA) 100260 112524 79260 61572 920580

dyfesm(SD) 15448 16 8 0 0

flo52q(TF) 3 0 5 1 69

mdg(LW) 4564260 2745239 1054609 518887 2857284

ocean(OC) 0 0 0 0 0

qcd2(LG) 0 0 0 0 0

track(MT) 6894 6144 4665 3046 23497

trfd(TI) 0 0 0 0 0

Table 10.6: Number of occurrences of each output-dependence distance for array references,
distances � #5

Code #1 #2 #3 #4 #5 #6 #7 #8 >8

adm(AP) 77.1% 22.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

arc2d(SR) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

bdna(NA) 97.6% 0.5% 0.3% 0.2% 0.1% 0.1% 0.1% 0.1% 1.1%

dyfesm(SD) 99.8% 0.2% <0.1% <0.1% <0.1% <0.1% <0.1% 0.0% 0.0%

flo52q(TF) 100.0% 0.0% <0.1% <0.1% <0.1% 0.0% <0.1% <0.1% <0.1%

mdg(LW) 91.7% 3.1% 1.8% 1.3% 0.8% 0.5% 0.2% 0.1% 0.5%

ocean(OC) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

qcd2(LG) 98.7% 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

track(MT) 98.3% 0.8% 0.3% 0.1% 0.1% 0.1% 0.1% <0.1% 0.3%

trfd(TI) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 10.7: Percentage of occurrences of each output-dependence distance for array references
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Code #1 #2 #3 #4

adm(AP) 62149689 0 0 0

arc2d(SR) 209855158 67070800 0 0

bdna(NA) 67625525 236562 185323 108018

dyfesm(SD) 135233341 1800010 1490851 1422364

flo52q(TF) 34631739 1163 1160 1158

mdg(LW) 180147729 7033746 3402968 2421227

ocean(OC) 70286802 0 0 0

qcd2(LG) 16294790 2444288 195840 64512

track(MT) 16589223 53515 48219 45996

trfd(TI) 193140087 0 0 0

Table 10.8: Number of occurrences of each 
ow-dependence distance for all references, dis-
tances #1 to #4

Code #5 #6 #7 #8 >8

adm(AP) 0 0 0 0 0

arc2d(SR) 0 0 0 0 0

bdna(NA) 80734 100248 76902 58078 966374

dyfesm(SD) 1369341 1285481 1217063 1148663 12271107

flo52q(TF) 1154 1152 1151 990 17233

mdg(LW) 1344933 786307 256327 128708 742255

ocean(OC) 0 0 0 0 0

qcd2(LG) 0 0 16128 0 755712

track(MT) 44492 46544 52294 61635 1688710

trfd(TI) 0 0 0 0 0

Table 10.9: Number of occurrences of each 
ow-dependence distance for all references, dis-
tances � #5

Code #1 #2 #3 #4 #5 #6 #7 #8 >8

adm(AP) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

arc2d(SR) 75.8% 24.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

bdna(NA) 97.4% 0.3% 0.3% 0.2% 0.1% 0.1% 0.1% 0.1% 1.4%

dyfesm(SD) 86.0% 1.1% 0.9% 0.9% 0.9% 0.8% 0.8% 0.7% 7.8%

flo52q(TF) 99.9% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%

mdg(LW) 91.8% 3.6% 1.7% 1.2% 0.7% 0.4% 0.1% 0.1% 0.4%

ocean(OC) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

qcd2(LG) 82.4% 12.4% 1.0% 0.3% 0.0% 0.0% 0.1% 0.0% 3.8%

track(MT) 89.0% 0.3% 0.3% 0.2% 0.2% 0.2% 0.3% 0.3% 9.1%

trfd(TI) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 10.10: Percentage of occurrences of each 
ow-dependence distance for all references
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Code #1 #2 #3 #4

adm(AP) 157819812 11198011 9 21

arc2d(SR) 495979193 0 0 0

bdna(NA) 250432130 421275 260598 148239

dyfesm(SD) 150564026 240779 82 303

flo52q(TF) 44282543 9 7 13

mdg(LW) 613647362 20387302 11333672 7955313

ocean(OC) 479772792 68971 0 24340

qcd2(LG) 60823687 977920 0 0

track(MT) 19031958 214196 80653 59518

trfd(TI) 206570081 0 0 0

Table 10.11: Number of occurrences of each output-dependence distance for all references,
distances #1 to #4

Code #5 #6 #7 #8 >8

adm(AP) 12 36 21 0 2970

arc2d(SR) 0 0 0 0 0

bdna(NA) 106351 119301 84423 65971 998288

dyfesm(SD) 15451 16 8 0 0

flo52q(TF) 9 3 8 1 117

mdg(LW) 5096774 3085091 1171742 575780 3175448

ocean(OC) 0 0 0 0 1

qcd2(LG) 0 0 0 0 0

track(MT) 35336 40640 32810 16309 133057

trfd(TI) 0 0 0 0 0

Table 10.12: Number of occurrences of each output-dependence distance for all references,
distances � #5

Code #1 #2 #3 #4 #5 #6 #7 #8 >8

adm(AP) 93.4% 6.6% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%

arc2d(SR) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

bdna(NA) 99.1% 0.2% 0.1% 0.1% <0.1% <0.1% <0.1% <0.1% 0.4%

dyfesm(SD) 99.8% 0.2% <0.1% <0.1% <0.1% <0.1% <0.1% 0.0% 0.0%

flo52q(TF) 100.0% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%

mdg(LW) 92.1% 3.1% 1.7% 1.2% 0.8% 0.5% 0.2% 0.1% 0.5%

ocean(OC) 100.0% <0.1% 0.0% <0.1% 0.0% 0.0% 0.0% 0.0% <0.1%

qcd2(LG) 98.4% 1.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

track(MT) 96.9% 1.1% 0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.7%

trfd(TI) 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 10.13: Percentage of occurrences of each output-dependence distance for all references
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Chapter 11

CONCLUSIONS AND FUTURE

DIRECTIONS

11.1 General Observations

In the beginning there was a dream of unlimited performance through parallel processing. The
potential linear scalability of performance through the addition of processors is appealing. How-
ever, frustration sets in as the di�culty of determining the parallel structure of the computation
and of discovering what information is shared becomes apparent. Gradually, these problems
turn the dream into a nightmare.

To wake up from the nightmare, one needs the illumination that the tools and techniques
presented in this thesis provide. In the proper light, the information shared by components of
the program can be identi�ed and dealt with to make the parallelism explicit. It is hoped that
the techniques presented in this thesis allow a greater understanding of a program's parallel
structure to become available to the user and possibly to the compiler.

The experiments described in this thesis are all based on the idea that a program's parallel
structure is embedded in the computation performed by the program. By observing the compu-
tation, we can observe how information is shared by the statements. A snapshot taken during
one run of the program can shed light on at least one instance of the program's behavior. From
this snapshot, the information gained can expose the threads of execution to be independent
that might at �rst appear to be entangled.

The information generated by the tools described in the chapters of this thesis provide meth-
ods for generating additional information unavailable by other means. The information may
be about the maximal inherent parallelism for various parallel models such as loop, statement,
or operation granularity. It may be about inherent parallelism when only a limited number of
processors are available. The additional information may be about the e�ects of unrecognized
induction variables on the parallel execution of the program. The information may also de-
scribe the e�ectiveness of data dependence analysis both in static terms and as measured by
a program's parallel performance. It is possible the information may be just a report of the
presence of cross-iteration data dependences classi�ed by the number of iterations they span.
Or, the information provided about the program could be a prioritized list of locations where
the way computation is performed potentially degrades the performance of the program.
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11.1.1 Dynamic Evaluation and Analysis

Static analysis determines what a program is capable of doing. Dynamic analysis determines
what a program actually did. It is the subtle distinction between static and dynamic analysis
that makes it possible to use the latter to measure the e�ectiveness of the static analysis
methods.

The focus of this research has been on discovering ways in which dynamic analysis can be
applied to the tasks of increasing ones understanding of the behavior of programs and the e�ects
of parallelizing compilers. These two aspects are highly interrelated, and knowing the answer
to one of them can lead to the answer of the other.

As described in the introduction and shown in Figure 1.1, all tools �t into a framework
encompassing the di�erent forms of dynamic analysis. Each of the tools presented in this thesis
measure one part of the overall picture; it is hoped that when the results are integrated, there
will be a conclusion that will more closely represent the properties of the program.

In each chapter, we examined a solution to some portion of the problem. A summary of the
major results of each chapter will put the individual techniques into perspective.

The machine model used throughout this research was an ideal parallel machine assuming
an unlimited number of processors. Since no resource constraints are considered, we have
isolated the program from its environment. The aim of this isolation is to evaluate the program,
independent of any arti�cial constraints.

The �rst real component in this thesis is the Delta program manipulation system, described
in Chapter 3. The 
exibility of this environment allowed the rapid prototyping and exploration
of the concepts described in the experimental chapters. Without the availability of such a tool
it is unlikely that as comprehensive a collection of techniques could have been developed.

The experimental foundation of the dynamic analysis techniques and of the instrumentation
methods is described in Chapter 4. Here the critical path length is the dominant measure of
a program. Comparing the critical path length with the number of operations executed by
the program indicates the parallelism inherent in the program. Critical path analysis uses the
dynamic structure of the program to determine how well it might execute on a parallel machine.

The next innovation described is the notion of stress analysis. In Chapter 6, we analogize the
dependence structure of a program to the load bearing members in a building. Stress analysis
points out hotspots or points of high stress along the critical path, that is the points where the
dependences introduce a stress that degrades the program's performance.

After laying the foundation of the analysis, we move on to some calculations derived from
critical path analysis. We again look at the results from critical path analysis in the light of
limited processor resources. We describe how to collect the processor activity histogram and to
use this information to derive a speedup curve for varying numbers of processors. The curve is
de�ned by upper and lower bounds on the parallelism for a �xed number of processors. Chapter
5 shows that the bounds are tight and generate an accurate picture of the change in parallelism
when additional processors are used for a computation.

One of the program aspects not dealt with by the standard critical path analysis is the
removal of induction variables that is performed by parallelizing compilers. We introduce, in
Chapter 7, a method to recognize the existence of induction variables dynamically during a
program's execution and to simulate the e�ect of removing these variables. The results in
Chapter 7 indicate that, for the Perfect Benchmarks R
, only two of the codes will bene�t
substantially from the removal of the induction calculations. Through the manual optimization
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listed in [EHLP91], the technique of induction variable removal was cited as bene�cial to the
same two programs as found by our technique.

Next we digress again to provide some background on the static e�ectiveness of data de-
pendence tests. Another view of a program is through the eyes of a parallelizing compiler. In
Chapter 8, we give a pro�le of the static dependence results for the Perfect Benchmarks. The
conclusion from this experiment is that for the Perfect Benchmarks, the addition of dependence
tests that are more powerful than Banerjee's inequalities had minimal impact. Most of the con-
tribution was in proving the dependence of potential dependence arcs that had been assumed
dependence without the advanced tests.

Static evaluation is not su�cient. The percentage of potential dependence arcs discovered
by static dependence analysis may not correlate with the parallelism. In Chapter 9, we use
a dynamic evaluation of the e�ectiveness of the static dependence tests to show that, for the
Perfect Benchmarks, the more complex dependence tests do not show any advantage when we
look at achieved parallelism. This result is not surprising in light of the static evaluation results
in Chapter 8. As a byproduct of determining the e�ectiveness of the data dependence analysis,
locations of statically unanalyzable dependences and an indication of their importance to the
parallel execution is generated. This list of dependences can be used by the users as locations
to rewrite the code, or as a list of test cases to be used by compiler writers to create the next
generation of static dependence analysis techniques.

Finally, we totally remove the static analysis of data dependence from the picture. In chapter
10, we present a method where the dynamic cross-iteration dependences that occur during the
program's execution are recorded and displayed at the end of the run. With each dependence
we also record the dependence distance of the loop that carried the dependence. The major
experimental conclusion from this experiment is that large constant dependence distances do
not occur with any frequency in the Perfect Benchmarks. Most dependence distances are of
distance one, with many also of distance two.

11.2 Observations on the Perfect Benchmarks

The Perfect Benchmarks can be divided into three categories based on the ability of a commer-
cially available parallelizer, KAP/Concurrent, to recognize and exploit the inherent parallelism.
This division of the programs may re
ect particular de�ciencies in the compiler or particular
characteristics of the programs.

11.2.1 Poor Performance by KAP/Concurrent

The collection of programs where KAP obtained the smallest amount of the inherent loop-level
parallelism is the largest category. Most of the programs in this category exhibit characteristics,
measured by the experiments in this thesis, that point out reasons why a compiler based on
intraprocedural static analysis is unable to exploit any inherent parallelism. A summary of the
results from each experiment will now be discussed with regard to each Perfect Benchmarks
program.

� adm(AP): From chapter 9 we observe that this program's performance degrades when
subroutine calls are serialized. Thus, the interprocedural analysis necessary to parallelism
loops that contain CALL statements should bene�t this program. It is also possible the
number of unanalyzable dependences contribute to its poor showing.
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� bdna(NA): The only characteristic that stands out for this program is a drop in perfor-
mance owing to static dependence analysis. Interprocedural analysis to detect indepen-
dent subroutine calls would not bene�t this program as no performance was lost when
the subroutine calls were serialized.

� ocean(OC): Almost all of the lost performance can be explained by the inability of static
dependence analysis to understand the subscripts in the program. Also, induction vari-
ables play a minor part in degrading the performance.

� spec77(WS): All parallelism seems to be interprocedural. With out this capability, KAP
does not even have a chance of performing well on this program. The dependence analysis
is relatively easy. A striking observation is that this program exhibits a large di�erence
between the operation-level and the loop-level parallelism measurements. More paral-
lelism might be extracted by �nding the statements that are degrading the performance
of the loop-level model.

� track(MT): A relatively easy data dependence problem. The drop in performance is
entirely owing to the inability of the compiler to recognize interprocedural opportunities
for parallelism.

11.2.2 Mediocre Performance by KAP/Concurrent

The next largest category in the Perfect Benchmarks are those for which KAP did a reasonable
job at �nding the parallelism that was present.

� dyfesm(SD): Two experiments displayed reasons why the performance of this program
were not as expected. The dependence analysis was not able to detect independence
in a few important cases. Also, the parallelism in loops with subroutine calls was not
recognized.

� mdg(LW): The experiments do not provide clear reasons why this program does not perform
well. A clue is the high number of dependences that are statically unanalyzable. Another
clue is the high discrepancy between the operation-level and the loop-level parallelism.

� qcd2(LG): This is another program where the experiments were not su�cient to deter-
mine why the performance is poor. The static dependence analysis was able to classify
all dependences. The loss when only allowing intraprocedural parallelism is signi�cant
but small. One characteristic of this program may be contributing to its low inherent
parallelism. The use of a user-coded random number generator introduces a dependence
cycle that must be honored.

� trfd(TI): The reason for the performance of this program is obvious. The lack of in-
duction variable elimination serialized the most important loops in the program. Also,
because of the unknown induction variables, the static dependence analysis assumed de-
pendence when it might have shown otherwise in the presence of better information.
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11.2.3 Good Performance by KAP/Concurrent

Unfortunately, as a measure of the �eld of parallelizing compilers, the group of programs where
KAP was able to exhibit good performance is the smallest of the categories. The main char-
acteristic binding these programs together is the lack of di�culties in the analyzing or the
implementation of the parallelism. The world would be a much nicer place if all programs were
similar to these two:

� arc2d(SR): All the experiments in this thesis show that no di�culties exist for this pro-
gram. It does not have any inductions that degrade performance. It does not have di�cult
dependences to compute. And �nally, it does not require interprocedural parallelism to
show good performance.

� flo52q(TF): This program is similar to arc2d(SR). All of the experiments indicate that
none of analysis that is considered di�cult must be performed.

11.3 Future Directions

As with most scienti�c endeavors, the experiments in this thesis raise as many questions and
challenges as they solve. The future directions of research that are indicated may prove just as
fruitful as the experiments so far performed.

All the experiments were performed assuming an ideal parallel machine. This machine
has unlimited memory, bandwidth, and processors. Changing the simulated machine to have
characteristics closer to a real machine would allow the numbers generated by experiments such
as these to have a more immediate relationship with reality.

Extending the simulation model to cope with anti-dependences, while increasing the over-
head, would allow for a truer representation of the program's structure. Ignoring these depen-
dences may be adequate for performance measurements. However, eventually the location of
these dependences must be discovered to eliminate them.

Methods of summarizing the parallelism on objects smaller than a program should be de-
veloped. Here, the average parallelism of a loop or routine should indicate the likelihood that
transformations in that routine would create explicit parallelism. The challenge is not only to
accurately determine the time interval where a routine is active, but also to correctly merge
multiple instantiations whether they overlap or are temporally disjoint.

It would be bene�cial to continue this line of research to discover more classes of static
analysis that can also be performed dynamically. In this way the e�ectiveness of the static
techniques can be empirically measured against the inherent parallelism.
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