
Containers on the Parallelization of General-purpose Java Programs

Peng Wu� David Padua

Department of Computer Science
University of Illinois at Urbana-Champaign

fpengwu, paduag@cs.uiuc.edu

Abstract

Automatic parallelization of general-purpose programs
is still not possible in general in the presence of irregular
data structures and complex control-flows. One promising
strategy is tread-level data speculation (TLDS). Although
TLDS alleviates the need of proving independent computa-
tions statically, studies showed that applying TLDS blind-
ly to programs with limited speculative parallelism may
lead to performance degradation. Therefore, a positive ap-
proach is to combine TLDS with strong compiler analyses.
The compiler can provide a guideline of where to speculate
by ”lazily” detecting some dependences and leave depen-
dences that are more dynamic to be detected at runtime.
Furthermore, transformations can be applied to eliminate
some of the dependences detected by the compiler to en-
hance speculative parallelism in the program. This paper
proposes compiler techniques to implement this approach.
In particular, we focus on general-purpose Java programs
with extensive use ofcontainersthat refer to any general-
purpose aggregate data structures.

1 Introduction

For the ever-growing computing power to benefits most
users, it is crucial that parallelism is exploited not only in
numerical codes but also in most general-purpose applica-
tions. However, despite success in dense numerical com-
putations, automatic parallelization of general-purpose pro-
grams is still not possible in general in the presence of
irregular data structures and complex control-flows. One
promising strategy istread-level data speculation(TLD-
S) [10, 13, 4, 9, 12]. Under the TLDS model, a program
can be parallelized speculatively in the presence of poten-
tial dependences: dependences are detected at run-time up-
on which program states will be recovered and the program

�This work is supported in part by Army contract DABT63-95-C-0097;
Department of Energy contract B341494; the National Science Foundation
and the Defense Advanced Research Projects Agency under the OPAAL
iniative and grant , NSF DMS 98-7394; and, a Partnership Award from
IBM. This work is not necessarily representative of the positions or policies
of the Army or Government.

will be re-executed. Although TLDS alleviates the need
to prove independent computations statically, studies [4]
show that applying TLDS blindly to programs with limited
speculative parallelism may lead to performance degrada-
tion. Therefore, a positive approach is to combine TLDS
with strong compiler analyses. The compiler can provide a
guideline of where to speculate by ”lazily” detecting some
dependences and leave dependences that are more dynamic
to be detected at runtime. Furthermore, transformations can
be applied to eliminate some of the dependences detected
by the compiler to enhance speculative parallelism in the
program. This paper proposes compiler techniques to im-
plement this approach. In particular, we focus on general-
purpose Java programs with extensive use ofcontainersthat
refer to any general-purpose aggregate data structures.

Containers in general-purpose programs play a role simi-
lar to that of arrays in numerical programs. In this work, we
focus on three standard container classes commonly seen
in general-purpose Java programs:Vector, LinkedList and
Hashtable. Since it is very difficult for the compiler to ana-
lyze containers from the implementation, we encode seman-
tics of basic container operations into the compiler as if they
are primitive operations. The intuition is that most container
classes, despite their complicated implementations, exhibit
clean semantics at the level of program interface. By rais-
ing the level at which compiler analysis is conducted, we
can greatly enhance the analyzability of dynamic data struc-
tures in Java programs. In this paper, we propose several
analyses and transformation techniques for the containers
we studied.

The rest of the paper is structured as follows. Section
2 characterizes several important container patterns. Sec-
tions 3 and 4 present several container-based analyses and
transformation techniques. Experimental results are given
in Section 5. Section 6 discusses future work and gives a
conclusion.

2 Containers in Java Programs

The results reported in this paper are based on a study
of four Java applications:javac, javap, javadoc andjar from
JDK1.1.5. Javac is a Java compiler;javap is a Java byte-
code disassembler;javadoc is a html-document generator

for Java codes; andjar is a compression tool.
Although all four applications exhibit moderate a degree

of inherent parallelism at the algorithm level. At the im-
plementation level, we discovered various dependences in
all of the major loops. One major source of these depen-
dences is container operations. Three types of Java con-
tainer classes are used prevalently in the benchmark suit-
e: Vector, Hashtable, andLinkedList[8]. Vector implements
an extensible array;LinkedList implements a linked list;
Hashtable implements a hash-table. All these containers s-
tore object references. In this section, we will present a few
container patterns that frequently introduce dependences in
the benchmark suite. The discussion of container-induced
dependences in general is deferred to Section 3.

2.1 Iterator-based loop

Iterator-based loops are formed by enumerating the com-
ponents of a container through an iterator. Depending on the
iterator used, iterator-based loops may take different forms.
Figure 1 shows two typical iterator-based loops: the loop in
Figure 1.a uses an iterator of typeEnumeration, while the
loop in Figure 1.b uses an iterator of typeListIterator.

Vector v;
Enumeration e;
for(e = v.elements(); e.hasMoreElements();) {

o = e.nextElement();
...loop body...

}
(a) throughEnumeration

ListIterator it;
LinkedList l;
for(it = l.listIterator(0); it.hasNext();) {

o = l.next();
...loop body...

}

(b) throughListIterator

Figure 1: Iterator-base loops

In an iterator-based loop, the internal states of the iterator
used in the pattern are changed in each iteration (e.g., by
nextElement), and are read in the next iteration (e.g., by
hasMoreElements). These accesses cause loop-carried
dependences in iterator-based loops. Most major loops in
the benchmarks are iterator-based loops.

2.2 Unique update

Unique update is a pattern that adds a ”new” element
(i.e., one that has not been added before), into a vector or a
list. Figure 2 shows two unique update patterns. The pattern
shown in Figure 2.a uses vectors only. The pattern in Figure
2.b uses a hash-table to determine whether an element is
new in the vector or not. Since this hash-table is always

updated by an object that serves as both the key and the
value object, we refer to such a hash-table as a hash-set1. In
the unique update pattern, the read and write accesses to the
same container are the source of dependences.

if(!vector.contains(o)) {
vector.addElement(o);

}
(a) vector-based

if(!hashtable.contains(o)) {
hashtable.put(o,o);
vector.addElement(o);

}

(b) hashset-based

Figure 2: Unique updates

2.3 Put-Get

Put-Get is a hash-table pattern as shown in Figure 3.
A Put-Get first performs an ordinaryget on the hash-
table. If the entry is available, it returns immediately, other-
wise, a new entry is added into the hash-table and is re-
turned. The symbol table used injavac is implemented
as a hash-table accessed byPut-Get operations. Class-
essun.tools.java.Identifier andsun.tools.java.Type also im-
plementPut-Get operations to access their internal hash-
tables. Both classes are commonly used in the programs we
analyzed. In this pattern, dependences are introduced by the
get andput operations applied to the same hash-table.

Entry getEntry(String name){
Entry c = hashtable.get(name);
if (c == null) {

c = new Entry(name);
hashtable.put(name,c);

}
return c;

}

Figure 3: Put-Get

3 Detecting Container-induced Dependences

Due to potential aliases between Java references, the
dependence test necessary to determine whether a loop is
parallelizable requires general pointer disambiguation. Al-
though pointer analysis has been the subject of much re-
search [1, 5, 3, 6, 2, 14, 7] it still remains a difficult prob-
lem, especially when analyzing composite and recursively-
defined data structures. In this work, we target only depen-
dences introduced by container operations. We rely on a
TLDS system to detect other dependences at runtime.

1In Java API1.2,HashSet becomes a standard Java class.

We consider both index-based loops and iterator-based
loops in the dependence test. To give an example the
container-related dependences that may occur in a loop,
consider the loop shown below wherev is a vector;it is
an iterator; andfoo() is a method that has side-effects ono.

for(it = v.elements();
it.hasMoreElements();){
o = it.nextElement();
o.foo();

}

In this example, two potential dependences that are of par-
ticular interests: (i) the dependence introduced by opera-
tions on iteratorit as mentioned in section 2.1, or in general
dependences introduced by writing to and reading from the
same container (for good reasons, we consider the iterator
of a container as the internal state of the container); and
(ii) dependences that result from accessing the same ele-
ment of vectorv in different iterations and at least one of
the iteration writes to the element. We proposed a struc-
tural dependence test and an access analysis to detect these
dependences respectively. In many aspects, we feel that ac-
cess analysis for containers is analogue to the array-based
dependence test for arrays.

3.1 Structural dependence test

Conceptually a container can be viewed as a storage
media whose elements are stored in addressable ”cells”.
A container is usually implemented as a storage area that
holds references to Java objects, and other member vari-
ables that stores information such as the size of the con-
tainer. We definecontainer structural dependencesas de-
pendences that result from read and write accesses to the
same container[15]. There are three types structural of de-
pendences:

� If two operations write to the storage area of container
(i.e., eitheradd intoor remove froma container), there
is anupdate dependence(write-write). For instance,
an update dependence is introduced by applying two
addElement to one vector.

� An access dependence(read-read)2 occurs between
a read access and a write access to the iterator of
the container. For instance, there is an access de-
pendence between thenextElement and has-
MoreElements) applied to the same iterator.

� Given two container operations, if one reads from the
storage area while the other writes to the storage area
of a container, there is avalue dependence(read-write
or write-read). For instance, there is a value depen-
dence between operationsput andget applied to one
hash-table.

2It is considered as read-read because the dependence is usually intro-
duced by consecutive read accesses to the storage area of a container

We represent the dependences defined above as struc-
tural dependence edges in a dependence graph. In the anal-
ysis framework, container operations are considered prim-
itive and atomic by the compiler. We also build into the
compiler a knowledge-base of the static dependence rela-
tions between each pair of container operations, i.e., which
dependences are to be introduced if applying these opera-
tions to the same container. Figure 4 shows the static de-
pendence relations defined on some basic operations of a
vector and a hash-table. During the compilation, methods

Vector

addElement()

put()

get()

contains()

elementAt()

nextElement()

elementst()

Hashtable

hasMore()

access dependence
update dependence

value dependence

Figure 4: Static structure dependence relations

of classesVector, LinkedList, Hashtable, Enumeration, and
ListIterator are represented as atomic operations in the inter-
mediate representation (IR). Given a pair of container op-
erations applied to one container, the dependence test can
detect the dependence using its knowledge base of static de-
pendence relations. For example, Figure 5 shows the struc-
tural dependence edges among statementsT1, T2 andT3
of the following loop.

for (i = 0; i < n; i++) {
...

T1: if(!hashtable.contains(o)) {
T2: hashtable.put(o,o);
T3: vector.addElement(o);

}
}

value dependence
update dependence

T3: [addElement()]

T2: [put()]

T1: [contains()]

Figure 5: An example of the dependence graph

3.2 Access analysis

Access analysis summarizes accesses to the storage area
of a container. Such access information can be used later in
the dependence test to determine loop-carried dependences.

For instance, if two iterations access the same ”cell” of a
container and the referred object is modified in one of the
iterations, then there is a loop-carried dependence. Access
information can also be used to detect finer-grained value
dependence. Instead of treating the whole storage area of a
container as one unit, we consider each ”cell” as a separate
one in the dependence test. Therefore, we detect a value
dependence only if two computations read from and write
to the same ”cell” of a container.

Access analysis greatly depends on the addressing mod-
el of the container to be analyzed. Vector can be accessed
implicitly by iterators, or explicitly through indices using
the methodelementAt ; lists are addressed by iterators;
hash-tables are accessed by keys.

For index-based container accesses, the analysis can
summarize the access information using ranges of inte-
gers. For iterator-based container accesses, we translate an
iterator-base access to an index-based access. Each itera-
tor is associated with an index variable when it is bound
to a container. The index variable is initialized to the posi-
tion where the iterator initially points to. For instance, when
obtainning an iterator throughvector.elements() , an
access index initialized to zero will be associated with the
iterator. When an operation, such asnextElement , is
applied to the iterator, the access index will be decrement-
ed. After such translation, iterator-based accesses can be
summarized as ranges of integers as well. Since key-based
accesses are difficult to be summarized symbolically and
statically, we consider a runtime test most feasible for hash-
tables. At runtime, access analysis can be conducted by
recording keys used in the hash-table accesses in each iter-
ation. And later a runtime dependence test can determine
whether two iterations have accessed a hash-table using the
same key3

4 Structural Dependence Elimination

Frequent occurrences of structural dependences in
container-based programs become one of the major causes
of limited inherent parallelism in the programs we analyzed
in the study. Value dependences can be detected much more
precisely by resolving dependences at the level of each con-
tainer ”cell”. However, access and update dependences are
almost statically built into basic container usage patterns.

4.1 Access dependence

We handle access dependences introduced by iterator-
based loops. To parallelize such loops, each concurrent
thread owns a local container and a local iterator. Elements
of the container with which the iterator-based loop is asso-
ciated are distributed into local containers prior to parallel

3Hashtable compares two keys using theequals method of the key
object. The runtime test need to compare key objects using theirequals
method if necessary.

execution4. Elements can be distributed either cyclically or
by blocks. Then, each thread executes concurrently the loop
based on its local iterator and container.

Vector-induced access dependences can be handled in a
more efficient way. A vector can be accessed efficiently
based on indices using the methodelementAt . There-
fore, we can transform the iterator-based loop, such as the
one in Figure 1.a, into an index-based loop as shown below:

Vector v;
Enumeration e;
for(int i = 0; i < v.size; i++) {

o = v.elementAt(i);
...loop body...

}

4.2 Hashtable-induced update dependence

We handle hashtable-induced update dependences intro-
duced by two instances ofput applied to one hash-table.
Such dependences can be tolerated in parallelization if the
two put are commutable. According to traditional com-
mutativity analysis[11], two operations are commutable if
different execution orders of the operations always produce
the same memory states. This condition, however, is too
restrictive in our case because internal states of a hashtable
may be sensitive to the execution order ofput . We define
a much more relaxed commuting relation between twoput
operations.

Definition 4.1 Let � � � ; hi; � � � ; hj ; � � � ; hn be a sequence of
operations on a hash-table. Twoput operations,hi and
hj , arecommutable, if for all operationshl, wherei < l <

j, always produces the same results under either execution
order ofhi andhj .

The algorithm to determine whether twoput , hi and
hj , are commutable is shown in Figure 6. The algorithm
first tests whether operations betweenhi andhj in the se-
quence are sensitive to switchinghi andhj (lines 1 to 4). If
any tested operation value-depends on eitherhi or hj then
we can not switchhi andhj . Next it tests operations occur-
ring afterhj in the sequence (lines 7 to 13). Since aput
will overwrite the entry set by a previousput using the
same key, reordering twoput using the same key will af-
fect any subsequent operations that value-depend on them.
This is tested by lines 10 to 12. In addition, because opera-
tion elements (keys) produces an iterator to enumerate
the value (key) objects of the hash-table, re-orderingput
may affect the order in which value (key) objects are vis-
ited. We can not re-orderput when there areelements
or keys operations following eitherput . This condition
is tested by lines 8 to 9. Sinceput changes only internal
states of a hash-table, we regardput as producing no (ex-
ternal) results; therefore, only operations other thanput are
tested.

4This transformation is valid only if no element in the loop is added or
removed from the container.

Inputs: i, j, hi; � � � ; hj ; � � � ; hn

Output : whether hi and hj are commutable

1 // test operations between hi and hj

2 foreach hl 2(hi; hj) that is not put() do
3 if (hi ! hl | hl ! hj)
4 return false;
5
6 // test operations after hj

7 foreach hl 2(hj ; hn] that is not put() do
8 if (hl is elements() or keys())
9 return false;
10 if (hi ! hl | hj ! hl)
11 if ([hi; hj] use duplicate key)
12 return false;
13
14 return true;

Figure 6: Determine twoput commutable

Commutable operations can be gainfully exploited in
loop parallelization. In the example shown below, assuming
that the update dependence is the only loop-carried depen-
dence in the loop. Using the algorithm in Figure 6, we can
prove that any two instances ofput in the loop are com-
mutable. Therefore, theput in the loop can be re-ordered
and the loop is parallelizable (given thatput is synchro-
nized, which guarantees atomicity in the parallel execution).

for (i = 0; i < n; i++) {
...
hashtable.put(new Integer(i), obj);

}
hashtable.get(key1);

4.3 Vector-induced update dependence

Update dependences that occur when twoaddEle-
ment are applied to one vector may be eliminated by ex-
ploiting associativity. For instance, a sequence ofad-
dElement applied to a vector isassociable. Such a se-
quence is referred to asassociable updates. Parallelizing
associable updates is analogous to reduction parallelization
in that during the parallel execution, each thread updates
a local vector which will be merged after the loop. How-
ever, unlike reduction parallelization, scheduling schemes
play a factor in parallelizing associable updates. For self-
scheduling and cyclic-scheduling, the local vector will
record both the element updated and the iteration that is-
sues the update. While merging local vectors, an element
must be inserted after all the elements issued by previous
iterations are inserted.

Associativity can be exploited on unique updates like
those shown in Figure 2 as well. A sequence of unique
updates isassociableif the hash-table, if any, is com-
mutable. Such a sequence is calledassociable unique up-
dates. For the purpose of analysis, in the IR, we rep-

resent the code sequence that implements the unique up-
date pattern as a primitive and atomic operation,ad-
dUnique . For instance, the codes in Figures 2.a and 2.b
are represented asvector.addUnique(o) andvec-
tor.addUnique(o,hashtable) , respectively. We
parallelize associable unique updates only under block-
scheduling. During parallel execution, each thread conduct-
s addUnique on a local vector and a local hash-table, if
any. Then after the parallel execution, local vectors and lo-
cal hash-tables are merged uniquely.

5 Putting it All Together

5.1 Understanding Parallel Behavior

General-purpose programs exhibit much more dynamic
parallel behaviors than numerical codes. We classify depen-
dences in the program into dynamic dependences and static
dependences.

5.1.1 Dynamic Dependences

Dynamic dependences are dependences that depend either
on input sets, or on iterations (i.e., dependences may oc-
cur on some input set or in some iterations, but not others).
For instance, a loop that may throw catchable exceptions
contains control dependences (i.e., exception handling may
cause the loop an early-exit). Such dependences are dynam-
ic because they occur only in some iterations of a loop and
on some input sets. Dynamic dependences resulting from
potential exceptions are very common in Java loops. Of the
benchmarks we studied, another major source of dynamic
dependences is hashtable-induced value dependences, e.g.,
get andput an entry from/to a hash-table using the same
key. Such dependences are dynamic because most of the
keys used in the programs are strings taken from input data.
When reading from and writing to the same file, file I/O op-
erations introduce dependences as well. Such dependences
are dynamic since filenames used to open a file are taken
mostly from input data.

TLDS provides the opportunity to exploit parallelism on
loops with dynamic dependences. In fact, for the bench-
marks we studied, exceptjavac, most dynamic dependences
in the programs are not realized under normal input sets.
On the other hand, static dependence test models always
fell short in exploiting this type of parallelism.

5.1.2 Static Dependences

Static dependences usually do not depend on input sets nor
iterations. Programs with static dependences usually con-
tain very limited speculative parallelism. In our bench-
mark suite, sources of static dependences are update de-
pendences, access dependences, reduction variables, priva-
tizable objects, and I/Os that write to stand output. Table
1 summarizes container-induced static dependences for the

benchmarks we studied. We classify the source by the pat-
tern used whereI-loop stands for iterator-based loops and
unique stands for unique update.

Access Update
Program-loop %Tseq I-loop Put-Get Unique Other

javac-parse 24% X X X
javac-compile 40% X X X
javap-main 98% X X
javadoc-parse 31% X X X
javadoc-gen 54% X X X
jar-addFiles 75% X X

Table 1: Static structural dependences in major loops

Static analysis is crucial to effectively exploit parallelis-
m on the programs we analyzed. On one hand, some of the
static dependences can be eliminated by transformations to
levitate inherent parallelism in the program. Of the loop-
s in Table 1, all the update and access dependences can be
eliminated. On the other hand, the existence of static depen-
dences can serve as a guideline of where not to speculate.

5.2 Hand-parallelization

To measure the speculative parallelism that would be
exposed after eliminating static dependences, we hand-
parallelized the benchmark suite5. We applied the tech-
niques proposed in the paper by hand to transform static
update and access dependences. Iterator-based loops were
converted into index-based loops. Synchronizations were
added to commutableputGet operations and associable
addUnique operations. For associable operations, we al-
located local containers for each thread, and implemented
procedures to merge the local containers properly. We allow
I/Os that write to standard output to be out of order. We also
applied reduction parallelization and privatization by hand.
After these transformations, we consider a ”parallelizable”
loop as one that is free of static dependences (assuming ide-
al alias analysis) and free of dynamic dependences under
normal input sets.

5.3 Performance

Since we did not have a TLDS system for experiments,
we avoid dynamic dependences by carefully choosing the
input sets. Performances were measured on a SUN Enter-
prise 450 server with four UltraSPARC 167 nodes. All the
benchmarks ran under JDK1.2Beta. The measured perfor-
mance did not take into account the run-time overhead and
speculation penalty of a TLDS system. In fact, the exe-
cution of a Java program could be decomposed into: class
loading, class verification, just-in-time (JIT) compilation,

5For jar a recursive algorithm that expands directories is changed to
be non-recursive. We changed the output ofjavap so that disassemble
class-files are put into separate files in stead of standard output. Injavac,
the class loading/resolving algorithm was simplified and the inlining pass
and supports for inner classes were disabled

interpretation, and garbage collection. Source-level par-
allelization can only directly improve interpretation time.
During the experiments, we disabled JIT and class-file ver-
ification; runtime heap and stack were specified large e-
nough to guarantee that no garbage collection would occur;
and the JVM was ”warmed-up” by pre-loading all the nec-
essary classes. Eliminating these disturbing factors allowed
for the measured speedup to be a reasonable indicator of
the maximum speculative parallelism that can be exposed
by source-level parallelization.

As shown in Figure 7, for each benchmark, we mea-
sured the performance of major parallelizable loops and
the overall program under two, three, and four proces-
sors, respectively. The numbers above each bar show the
speedups. With realistic inputs, most parallel loops have
achieved more than 1.8 speedups out of 2 processors and
2.5 speedups out of 3 processors. However, speedups for
4 processors only ranged from 2.2 to 3.0. The major rea-
son that the speedups did not improve from 3 processors to
4 processors is because normal input sets under 4 proces-
sors suffered severe load imbalancing. Also, as shown in
Figure 7, the speedups of the overall programs ranged only
from 1.6 to 2.2 for 4 processors. Except forjavap, speedups
of overall programs were brought down because of the se-
quential loops6 in the programs.

6 Conclusion

Container-induced dependences contribute to a large
portion of static dependences occurring in general-purposed
programs. Such dependences greatly limit the inherent par-
allelism available in general-purpose programs, thereafter
the speculative parallelism exploitable by a TLDS system.
In this work, we studied three standard Java container class-
es: Vector, LinkedList, andHashtable. We proposed analy-
sis techniques to detect container-induced dependences and
transformation techniques to eliminate some static struc-
tural dependences.

References

[1] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. InProc. of the ACM SIGPLAN’90
conf. on Programming Language Design and Implementa-
tion, June 1990.

[2] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic
graph? a shape analysis for heap-directed pointers in c. In
Proc. of the 23rd ACM/SIGPLAN SIGACT Symp. on Princi-
ples of Programming Languages, January 1996.

[3] R. Ghiya and L. J. Hendren. Putting pointer analysis to
work. In 25th ACM Symp. on Principles of Programming
Languages, January 1998.

[4] L. Hammond, M. Willey, and K. Olukotun. Data specula-
tion support for a chip multiprocessor. InProceedings of

6In jar, the loop that outputs compressed files into one jar-file is inher-
ent sequential. Injavac and javadoc, the loop doing type checking is
also inherently sequential

0

100

200

300

400

500

600

parse

700

800

E
xe

cu
ti

on
 T

im
e

(m
s)

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc
1.9

2.8 2.7

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc

1.7
2.0 2.2

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc

1.4
1.6 1.6

Speedup of javac (javac Hanoi1-12)

javac

compile

0

500

1000

1500

2000

Speedup of javap (javap -c java.beans)

2500

3000

3500

4000

4500

E
xe

cu
ti

on
 T

im
e

(m
s)

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc

1.9

2.6 2.6

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc

1.9

2.6 2.6

main javap

0

2000

4000

6000

8000

10000

12000 javadoc

E
xe

cu
ti

on
 T

im
e

(m
s)

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc

1.9
2.5 2.5

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc

1.8
2.6 2.3

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc

1.6

2.0 2.0
parse

gen-doc

Speedup of javadoc (javadoc java.text)

0

1000

2000

3000

4000

addFile
5000

6000

7000

E
xe

cu
ti

on
 T

im
e

(m
s)

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc

2.0

3.0 3.0

1-
pr

oc

2-
pr

oc

3-
pr

oc

4-
pr

oc

1.7

2.2 2.2

Speedup of jar (jar cvf ./java-bench)
jar

Figure 7: Summary of the speedups

the Eighth ACM Conference on Architectural Support for
Programming Languages and Operating Systems, October
1998.

[5] L. J. Hendren and G. R. Gao. Designing programming lan-
guages for analyzability: A fresh look at pointer data struc-
tures. InProc. of International Conf. on Computer Lan-
guages, April 1992.

[6] J. Hummel, L. J. Hendren, and A. Nicolau. A general data
dependence test for dynamic, pointer-based data structures.
In Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 1994.

[7] J. Hummel, L. J. Hendren, and A. Nicolau. A language for
conveying the alising properties of dynamic, poiinter-based
data structures. InProc. of the 8th Inthernational Parallel
Processing Symposium, April 1994.

[8] S. Microsystem. Java platform 1.2 api specification.
http://www.javasoft.com/products/jdk/1.2/docs/.

[9] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. Lam,
and K. Olukotun. Software and hardware for exploiting
speculative parallelism with a multiprocessor. Technical Re-
port CSL-TR-97-715, Stanford University Computer Sys-
tems Lab, February 1997.

[10] L. Rauchwerger and D. Padua. The lrpd test: Run-time par-
allelization of loops with privatization and reduction paral-
lelization. InACM SIGPLAN’95 Conference on Program-
ming Languages Design and Implementation, June 1995.

[11] M. C. Rinard and P. C. Diniz. Commutativity analysis: A
new analysis technique for parallelizing compilers.ACM
Transactions on Programming Lanugages and Systems, 19,
November 1997.

[12] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
processors. InProceedings of the 22th International Sympo-
sium on Computer Architecture, July 1995.

[13] J. G. Steffan and T. C. Mowry. The potential for us-
ing thread-level data speculation to facilitate automatic par-
allelization. In Proceedings of the Fourth International
Symposium on High-Performance Computer Architecture,
February 1998.

[14] P. Wu, P. Feautrier, and D. Padua. Combness analysis: a
fresh approach for shape analysis. Technical report, Univer-
sity of Illinois, Urbana-Champaign, Computer Science, July
1999.

[15] P. Wu and D. Padua. Beyond arrays – a container-centric
approach for paralllelization of real-world symbolic appli-
cations. InProceedings of the 11th International Workshop
on Languages and Compilers for Parallel Computing, L-
CPC’98, 1998.

