
MATmarks: A Shared Memory Environment for MATLAB

Programming

George Almasi, Calin Cascaval, and David A. Padua

Department of Computer Science

University of Illinois at Urbana-Champaign

fgalmasi,cascaval,paduag@cs.uiuc.edu

Abstract

MATmarks is an extension of the MATLAB

tool that enables shared memory programming on

a network of workstations by adding a small set of

commands. In this paper, we present a high-level

overview of the MATmarks system, the commands

we added to MATLAB, and the performance gains

we achieved as a result.

1. MATmarks Overview

In this paper1, we describe MATmarks, a shared
memory extension to the popular MATLAB [5]
matrix manipulation language and environment.
MATmarks provides a means by which the user can
run several MATLAB interpreters in one session ex-
ecuting parallel codes following the SPMD (Single
Program Multiple Data) programming model [2].

The MATLAB package itself is not modi�ed in
any way. The MATmarkssystem de�nes a small
number of new primitives to manage parallelism
and works behind the scenes to maintain the illusion
that some MATLAB variables are shared (i.e. par-
ticipating MATLAB processes see the same value).

SPMD behavior is achieved by the MATmarks

GUI which, in e�ect, is a front-end that boot-
straps the subordinated MATLAB processes and
distributes user input appropriately to each process.

MATmarks is based on the TreadMarks [1] vir-
tual distributed shared memory system. Tread-
Marks provides a shared memory view for pro-
cesses running on a network of workstations.
MATmarksextends this behavior to MATLAB. Un-
like TreadMarks, which requires shared memory re-
gions to be declared at compile time, MATmarks

1This work was supported by the National Science Foun-

dation under grant ACI-9870687.

allows sharing of MATLAB variables to occur dy-
namically.

TreadMarks (and hence MATmarks) uses data
replication to implement the illusion of shared mem-
ory. Unlike most hardware-based shared mem-
ory systems, TreadMarks is not sequentially con-
sistent [4]. Instead, it implements a lazy release

consistency model [3] in order to minimize the num-
ber of messages exchanged through the network. In
practice, this means that good care must be taken
not to allow data races in the programs because un-
expected behavior will certainly result. Data races
can be avoided using the synchronization primitives
provided by MATmarks.

2. MATmarks Primitives

To keep the system simple, we tried to keep the
number of extension primitives as small as possible.
They fall into the following categories:

� Initialization and termination. Initialization
starts several separate MATLAB interpreters
and connects the underlying TreadMarks lay-
ers of each process.

� Process synchronization and process identi�-
cation. These are basically TreadMarks [1]
commands mirrored in MATmarks that enable
SPMD programming.

� Declaration of shared variables. The
MMK Share command, when executed by
an interpreter, initializes a variable to be
shared; if any interpreter in the MATmarks

process group changes the value of a shared
variable, the changed value will be propagated,
at the appropriate synchronization points, to
all interpreters that have declared it shared.



The following example exposes the behavior of
MMK Share:

* interp 1 * * interp 2 *

>MMK Share ('a', 45); >MMK Share ('a', 45);

>a = 1001; >

>MMK Barrier; >MMK Barrier;

>a >a

a = 1001 a = 1001

Here, two interpreters share the value of the vari-
able a. When the variable is �rst initialized, the
variable in each interpreter contains the value given
in the initialization statement (the second argument
of MMK Share). The value of a is synchronized at the
�rst lock or barrier, conforming to the lazy release
consistency model implemented by TreadMarks.

3. Experimental Results

All �ve of our benchmarks are parallel versions
of simple MATLAB programs. Each of them is 100
lines or less in length. We executed the benchmarks
on an array of UltraSparc machines.

Our �rst two benchmarks, MM and MM2, are
respectively the \normal" (FORTRAN-style, with
loops) and vectorized (MATLAB, or FORTRAN-90
style) versions of matrix multiplication. We used
the MM and MM2 benchmarks to gauge the e�ect
of system load on the performance of MATmarks.
Synchronization between processes is minimal.

Our next two benchmarks, JACOBI and JACO-
BIOPT, implement the Jacobi relaxation method to
solve a two-dimensional elliptic PDE. JACOBI is a
fairly naive implementation, and synchronizes the
main work array in every iteration. JACOBIOPT
attempts to reduce synchronization traÆc by ex-
changing only the boundary regions between pro-
cessors. Thus, the number of bytes per message
decreases, but the number of messages remains the
same.

The last benchmark, SIEVE, is a parallelized im-
plementation of Eratosthenes' sieve for computing
primes. This benchmark is designed to showcase
the ease of executing irregular loops in parallel with
MATmarks.

All benchmarks show approximately linear
speedups; the matrix multiplication algorithms and
SIEVE show close to ideal speedups, whereas both
JACOBI algorithms show 50% eÆciency.

4. Conclusions and Future Directions

MATmarks is simple, portable, and reliable. It
o�ers faster execution on a network of workstations

1 2 3 4 5 6 7 8
0
2
4
6
8

10

Processors

S
pe

ed
up

s SIEVE

1 2 3 4 5 6 7 8
0
2
4
6
8

10

S
pe

ed
up

s MM

1 2 3 4 5 6 7 8
0
2
4
6
8

10

S
pe

ed
up

s MM2

1 2 3 4 5 6 7 8
0
2
4
6
8

10

S
pe

ed
up

s JACOBI

1 2 3 4 5 6 7 8
0
2
4
6
8

10

Processors

S
pe

ed
up

s JACOBIOPT

Figure 1. Parallel speedup curves for the
five benchmarks on up to 8 processors

while preserving the advantage of an interactive en-
vironment. The changes to the MATLAB environ-
ment are minimal.

Performance results show that linear speedup can
be achieved on a moderate number of workstations.
While transforming a serial program into a shared
memory parallel one is much easier than writing
a message-based parallel program, for good perfor-
mance one needs to be more careful coding a parallel
algorithm. More research is needed to pin down the
factors that limit parallel speedups.

The full MATmarks paper is available at
http://polaris.cs.uiuc.edu/matmarks.

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel. Tread-
marks: Shared Memory Computing on Networks of
Workstations. IEEE Computer, 29(2):18{28, Febru-
ary 1996.

[2] F. Darema, D. A. George, V. A. Norton, and G. F.
P�ster. A single-program-multiple-data computa-
tional model for epex/fortran. Parallel Computing,
7(1):11{24, April 1988.

[3] P. Keleher. Lazy Release Consistency for Distributed
Shared Memory. PhD thesis, Department of Com-
puter Science, Rice University, December 1994.

[4] L. Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess pro-
grams. IEEE Transactions on Computers, C-
28(9):241{248, September 1979.

[5] Mathworks Inc. homepage. www.mathworks.com.

2


