
Critical Block Scheduling: a Thread-Level Parallelizing
Mechanism for a Heterogeneous Chip Multiprocessor

Architecture

Slo-Li Chu

Department of Information and Computer Engineering,
Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C.

slchu@cycu.edu.tw

Abstract. Processor-in-Memory (PIM) architectures are developed for high-
performance computing by integrating processing units with memory blocks
into a single chip to reduce the performance gap between the processor and the
memory. The PIM architecture combines heterogeneous processors in a single
system. These processors are characterized by their computation and memory-
access capabilities. Therefore, a novel mechanism must be developed to
identify their capabilities and dispatch the appropriate tasks to these
heterogeneous processing elements. Accordingly, this paper presents a novel
parallelizing mechanism, called Critical Block Scheduling to fully utilize all of
the heterogeneous processors in the PIM architecture. Integrated with our
thread-level parallelizing system, Octans, this mechanism decomposes the
original program into blocks, produces corresponding dependence graph,
creates a feasible execution schedule, and generates corresponding threads for
the host and memory processors. The proposed Critical Block Scheduling not
only can parallelize programs for PIM architectures but also can apply on other
Multi-Processor System-on-Chip (MPSoC) and Chip Multiprocessor (CMP)
architectures which consist of multiple heterogeneous processors. The
experimental results of real benchmarks are also discussed.

Keywords: Chip Multiprocessor (CMP), Processor-in-Memory, Critical Block
Scheduling, Octans.

1 Introduction

In current high-performance computer architectures, the processors run many times
faster than the computer's main memory. This performance gap is often referred to as
the Memory Wall. This gap can be reduced using the System-on-a-Chip or Chip
Multiprocessor [18] strategies, which integrates the various processors and memory
on a single chip. The rapid growth in silicon fabrication density has made this strategy
possible. Accordingly, many researchers have addressed integrating computing
logic/processing units and high density DRAM on a single die
[9][11][12][14][15][17][18]. Such architectures are also called Processor-in-Memory
(PIM), or Intelligent RAM (IRAM).

Integrating DRAM and computing elements on a single chip generates PIM
architecture with several desirable characteristics. First, the processors are
heterogeneous for their purpose. Second, instead of traditional off-chip
communication, the on-chip communication between processor-to-processor and
processor-to-memory are very wide and fast. Third, eliminating off-chip drivers
reduces the power consumption and latency [17].

This class of architectures constitutes a hierarchical hybrid multiprocessor
environment by the host (main) processor and the memory processors. The host
processor is more powerful but has a deep cache hierarchy and higher latency when
accessing memory. In contrast, memory processors are normally less powerful but
have a lower latency in memory access. The main problems addressed here concern
the method for dispatching suitable tasks to these different processors according to
their characteristics to reduce execution times, and the method for partitioning the
original program to execute simultaneously on these heterogeneous processor
combinations.

Since the mechanisms of partitioning and scheduling for heterogeneous multi-
computers are classical NP-Hard problems, many researches propose their
mechanisms for distributed-memory parallel computers. Opportunistic Load
Balancing algorithm assigns each task, in arbitrary order, to the next available
machine, regardless of the task's expected execution time on that machine [2]. Min-
min algorithm minimizes the completion time for each task is computed for all
machines. The newly mapped task is removed, and the process repeated until all tasks
are mapped [2]. These methods are focus on how to reduce the communication cost of
the parallel program. However, in PIM architecture, the communication cost is not the
most significant factor of overall performance. Hence we veer to thread-level
parallelizing mechanisms. Cintr et. al. [6] present a architectural support thread-level
parallelization framework, which can obtain more potential parallelism by their
speculative thread-level parallelizing mechanism with hardware support, especially
for the modified CC-NUMA architecture. Arora et. al. [3], Zhou et al. [21], and
Agrawal et. al. [1] propose their mechanisms to dynamically schedule the threads in
the thread queue to reduce memory access cost and improve cache locality. These
mechanisms improve the capabilities of thread scheduler of the targeted operating
system, but can not apply on parallelizing compiler for static scheduling. Llosa, et. al.
[13] propose a software pipelining mechanism, called Swing Modulo Scheduling
(SMS), to partition iteration spaces of loops according to their dependence graph.
This algorithm provides iteration-based mechanism that can improve the potential
parallelism of the loops and reduce the usage of registers. It is also adopted in GNU
Compiler Collection (GCC) Version 4.0. However SMS focuses on scheduling
iterations of given loops but not restructure whole program. It isn’t suitable for
parallelizing program and generating corresponding threads for different
heterogeneous processors. Therefore we have to consider other mid-grained approach
instead of traditional fine-grained mechanism based on iteration analysis.

From the aspect of compilation for PIM architectures, previous approaches [8] [10]
concentrate on instruction-level parallelization and loop vectorization to increase
speedup, rather than on the figure out the capability difference between the host and
memory processors. However, such approaches do not exploit the real advantages of
PIM architectures. Accordingly we design a thread-level parallelization system,

Octans, which integrates statement splitting, weight evaluation and a scheduling
mechanism. The original PSS scheduling [5] mechanism focuses on a simplified
configuration of PIM architecture that only consists one-P.Host and one-P.Mem
processors. Since PSS scheduling can not deal with multiple P.Mem processors and
fully utilizes all heterogeneous computing resources, we design a new mechanism,
Critical Block Scheduling, to generate a superior execution schedule to fully utilize all
heterogeneous processors in the PIM architecture. A weight evaluation mechanism is
established to collect characteristics of varied and estimate a precise execution time
then generate a normalized value, called weight. The Octans system can automatically
analyze the sequential program, partition program into several blocks, determine the
weights of each block, produce a good executing schedule, and finally generate
parallel threads for execution on the host and memory processors accordingly.

The rest of this paper is organized as follows: Section 2 introduces the PIM
architecture. Section 3 describes our Octans system and the Critical Block Scheduling
algorithms. Section 4 presents experimental results. Conclusions are finally drawn in
Section 5.

2 The Processor-in-Memory Architecture

Fig. 1 depicts the organization of the PIM architecture evaluated in this study. It
contains an off-the-shelf processor, P.Host, and four PIM chips. The PIM chip
integrates one memory processor, P.Mem, with 64 Mbytes of DRAM. The techniques
presented in this paper are suitable for the configuration of one P.Host and multiple
P.Mems, and can be extended to support multiple P.Hosts.

Table 1 lists the main architectural parameters of the PIM architecture. P.Host is a
six-issue superscalar processor that allows out-of-order execution and runs at
800MHz, while P.Mem is a two-issue superscalar processor with in-order capability
and runs at 400MHz. There is a two-level cache in P.Host and a one-level cache in
P.Mem. P.Mem has lower memory access latency than P.Host since the former is
integrated with DRAM. Thus, computation-bound codes are more suitable for running
on the P.Host, while memory-bound codes are preferably running on the P.Mem to
increase efficiency.

The PIM chip is designed to replace regular DRAMs in current computer systems,
and conform to a memory standard that involves additional power and ground signals
to support on-chip processing. One such standard is Rambus [7], so the PIM chip is
designed with a Rambus-compatible interface. The private interconnection network of
the PIM chips is also provided.

3 The Octans System

Most current parallelizing compilers focus on the transformation of loops to execute
all or some iterations concurrently, in a so-called iteration-based approach. This
approach is suited to homogeneous and tightly coupled multi-processor systems.
However, it has an obvious disadvantage for heterogeneous multi-processor platforms
because iterations have similar behavior but the capabilities of heterogeneous
processors are diverse. Therefore, a different approach is adopted here, using the

Table 1. Parameters of the PIM architecture.

P.Host P.Mem Bus & Memory
Working Freq: 800 MHz Working Freq: 400 MHz Bus Freq: 100 MHz
Dynamic issue Width: 6 Static issue Width: 2 P.Host Mem RT: 262. 5 ns
Integer unit num: 6 Integer unit num: 2 P.Mem Mem RT: 50. 5 ns
Floating unit num: 4 Floating unit num: 2 Bus Width: 16 B
FLC_Type: WT FLC_Type: WT Mem_Data_Transfer: 16
FLC_Size: 32 KB FLC_Size: 16 KB Mem_Row_Width: 4K
FLC_Line: 64 B FLC_Line: 32 B
SLC_Type: WB SLC: N/A
SLC_Size: 256 KB
SLC_Line: 64 B
Replace policy: LRU
Branch penalty: 4 Branch penalty: 2
P.Host_Mem_Delay: 88 P.Mem_Mem_Delay: 17

* FLC stands for the first level cache, SLC for the second level cache, BR for branch, RT for round-trip latency
from the processor to the memory, and RB for row buffer.

Host
Processor

Core

L1 Cache

P.Host

Rambus
(Memory Bus)

Memory
Processor

Core

L1 Cache

DRAM
Cells

Memory
Processor

Core

L1 Cache

DRAM
Cells

Memory
Processor

Core

L1 Cache

DRAM
Cells

P.Mem

PIM Chip

Memory
Processor

Core

L1 Cache

DRAM
Cells

L2 Cache

Inter-Chip
Interconnection

Network
Fig. 1. Organization of the PIM architecture.

statements in a loop as a basic analysis unit, called statement-based approach, to
develop the Octans system.

Octans is an automatic parallelizing compiler, which partitions and schedules an
original program to exploit the specialties of the host and the memory processor. At
first, the source program is split into blocks of statements according to dependence
relations [5]. Then, the Weighted Partition Dependence Graph (WPG) is generated,
and the weight of each block is evaluated. Finally, the blocks are dispatched to either
the host or the memory processors, according to which processor is more suitable for
executing the block. The major difference between Octans and other parallelizing
systems is that it uses a statement rather than an iteration as the basic unit of analysis.
This approach can fully exploit the characteristics of statements in a program and
dispatch the most suitable tasks to the host and the memory processors. Fig. 2
illustrates the organization of the Octans system.

3.1 Statement Splitting and WPG Construction

Statement Splitting splits the dependence graph by Node Partitioning as introduced in
[5]. WPG Construction constructs the Weighted Partition Dependence Graph (WPG),
to be used in the subsequent stages of Weight Evaluation, Wavefront Generation and
Schedule Determination.

The definitions relevant to Statement Splitting are introduced as below.
Definition 1 (Loop Notation)

A loop is denoted by L = (i1 , i2 , …. in)(s1 , s2 , …. sk), where ij, 1≤j≤n, is a loop
index, and sk, 1≤k≤d, is a body statement which may be an assignment statement or
another loop. ■

Threads
for P. Mem

Block Execution Order Analysis

Block Weight Evaluation

Code Generator

Weight
Table

Threads
for P. Host

Source
Program

Dependence
Analysis

Statement
Splitting

WPG Graph
Generation

Statement Splitting
Dependence

Analysis
Statement
Splitting

WPG Graph
Generation

Statement Splitting

Pair-Selection
Scheduling

(for 1-P.Host 1-P.Mem)

Critical Block
Scheduling

(for 1-P.Host n-P.Mem

User
Constraints

Fig. 2. The sequence of compiling stages in Octans.

Definition 2 (Node Partition ∏)

For a given loop L on the dependence graph G, we define a node partition Π for the
statements set { s1 , s2 , …. sd} in such a way that sk and sl, 1≤k≤d, 1≤l≤d, k≠ l , are
in the same block (cell) πi of the partition Π if and only if sk ∆ sl and sl ∆ sk where ∆
is an indirect data dependence relation.

On the partition Π={π1,π2 ,…,πn}, we define partial ordering relations α, α^,
and αo as follows.

For i ≠ j:
1) πi α πj iff there exist sk ∈ πi and sl ∈ πj such that sk δ sl , where δ is the true

dependence relation .
2) πi α^πj iff there exist sk ∈ πi and sl ∈ πj such that sk δ^ sl, where δ^ is the anti

dependence relation.
3) πi α

oπj iff there exist sk ∈ πi and sl ∈ πj such that sk δo sl, where δo is the
output dependence relation. ■

Based on the definition, the statements form a block (cell) πi in the partition Π if

and only if there is a directed dependence cycle among the statements. Two blocks
have a true/anti/output dependence if and only if two statements, one in each block,
exist a true/anti/output dependence.

Definition 3 (Weighted Partition Dependence Graph)

Given a node partition Π defined in Definition 2, we define a weighted partition
dependence graph WPG(B,E) as follows with B denoting the set of nodes and E
denoting the set of edges. For each πi∈Π, there is a corresponding node bi (Ii , Si ,
Wi , Oi) ∈ B, where Ii denotes the set of loop indices in block πi; Si represents the
set of statements in block πi; Wi is the weight of block πi in the form of Wi (PH,PM)
with PH and PM being the weights (i.e., the expected execution time) for the
P.Host and P.Mem, respectively; and Oi is the execution order for block πi. There is
an edge eij∈E from bi to bj if bi and bj have dependence relations α, α^, and αo
defined in Definition 1. These dependence relations are respectively denoted by

, → →anti
, and → O . ■

Based on these three definitions, we propose a Statement Splitting algorithm

(Algorithm 1) to partition the loops:

Algorithm 1. (Statement Splitting Algorithm)
Given a loop L = (i1, i2, …. in) (s1, s2, …. sd)
Step 1: Construct dependence Graph G by analyzing subscript expressions and index

pattern by using Polaris [4].
Step 2: Establish a node partition Π on G as defined in Definition 2. If there are large

blocks caused by control dependence relations, convert control dependence into
data dependence first [5], and then partition the dependence graph.

Step 3: On the partition Π, establish a weighted partition dependence graph WPG(B,E)
defined in Definition 3.

3.2 Weight Evaluation

Two approaches to evaluating weight can be taken. One is to predict the execution
time of programs by profiling the dominant parts. The other considers the operations
in a statement and estimates the program execution time by looking up an operation
weight table [20]. The former method called code profiling may be more accurate, but
the predicted result cannot be reused; the latter called code analysis can determine
statements for suitable processors but the estimated program execution time is not
sufficiently accurate. Hence, the Self-Patch Weight Evaluation scheme was designed
to combine the benefits of both approaches. It integrates these two approaches
together by analyzing code and searching weight table first to estimate the weight of a
block. If the block contains unknown operations, the patch (profiling) mechanism is
then activated to evaluate the weights of unknown operations. The obtained operation
weights are added into the weight table for next look-up. For a detailed description of
this scheme, please refer to [5]

3.3 The Critical Block Scheduling Mechanism

Here we propose the Critical Block Scheduling mechanism to achieve an optimal
schedule for utilizing all of the memory processors in PIM architecture. At first, the
redundancy and synchronization between processors are critical factors that affect the
performance of task scheduling for multiprocessor platforms. A critical block
mechanism is used to minimize the frequency of synchronization. Then the WPG is
then partitioned into several Sections according to the critical blocks and the
dependence relations between these nodes. In a Section, the blocks are partitioned
into several Inner Wavefronts in the following stages. Finally, the execution schedule
for all P.Host and P.Mems is obtained. If the number of occupied memory processors
exceeds the maximum number of processors in the PIM configuration, then the
execution schedule will be modified accordingly. Algorithm 2 presents the main steps
of this scheduling mechanism.

Algorithm 2. (Critical Block Scheduling Algorithm)

[Input]

WPG=(P,E): original weighted partition dependence graph after weight is determined.
[Output]

An critical block execution schedule CPS, where CPS = {CPS1, CPS2, …,CPSi}. CPSi
={CPi, IWFi} where CPi = {Processor(ba)} where processor is PH or PM . IWFi
={PH(ba), PM1(bb), PM2(bc),…} means that in Inner Wavefront i, PH(ba) means that
block ba will be assigned to P.Host, PM1(bb) means that blocks bb will be assigned to
P.Mem1, PM2(bc) means that blocks bc will be assigned to P.Mem2.

[Intermediate]
W: a working set of nodes ready to be visited.
EO_temp: a working set for execution order scheduling.
iwf_temp: a working set for Inner Wavefront scheduling.
max_EO: the maximum number of execution order.
min_pred_O(bi): the minimum execution order for all bi’s predecessor blocks.
max_pred_O(bi):the maximum execution order for all bi’s predecessor blocks.

min_succ_RO(bi):the minimum execution order for all bi’s successor blocks.
max_succ_RO(bi):the maximum execution order for all bi’s successor blocks.
PHW(bi): the weight of bi for P.Host.
PMW(bi): the weight of bi for P.Mem.
Ranku(bi): the trace up value of bi used for finding CP
Rankd(bi): the trace down value of bi used for finding CP

[Method]
Step 1: For each block of the WPG, initializes the execution order, obtains the weights of

P.Host and P.Mem by using the weight evaluation mechanism.
Step 2: Travel down all blocks of the WPG to determine its rankd which is the maximal

rankd of the parent blocks, add itself P.Mem weight and increase its execution
order according to the maximal execution order of its parent blocks.

Step 3: Travel up all block to determine the ranku by current block’s P.Mem weight plus
the max of children block’s ranku.

Step 4: Travel all block find out the critical block that ranku + rankd equal to the rankd of
the starting block, and then append the block into CP_temp and its order into
CP_O.

Step 5: In CP_temp, when a critical block’s PHW is less than PMW, assign it to PH,
otherwise assign it to PM1. Append the block into CPk, where k is CP_O of the
block.

Step 6: Split all block to subset by CP_O, the subset doesn’t include the critical block, and
then perform each subset by follow step.
6.1 Split subset to new subset iwf_temp by order number.
6.2 Check the PH_Used and PM1_Used between CP_O for each iwf_temp.
6.3 Sort iwf_temp in decreasing order by the PMW.
6.4 If the PH_Used of iwf_temp is false then find the minimal PHW block to set

PH tag.
6.5 Other block of iwf_temp set PMk and append to IWFi.

Step 7: Append CPi and IWFi to CPSi set, and then append all CPSi to CPS set to generate
the execution schedule.

Step 8: Perform each IWFi by follow steps to modify the execution schedule to fit the
limitation of PM number.
8.1 Sort IWF in decreasing order by the block’s weight.
8.2 If the PH_Used of IWF is false then find the minimal load of PH + PHW and

set it to PH and add the PMW of block to PH load.
8.3 Find the PM with minimal load then reassign the block to it.
8.4 Repeat Step 8.3 until all blocks of IWF is done.

The algorithm includes eight major steps. In Step 1, the algorithm initiate the

necessary variables and determine the P.Host and P.Mem weights of each blocks
determined by the weight evaluation mechanism.

This algorithm figures out the critical nodes to partition WPG into Sections, so the
critical blocks must be determined. Then the attributes, randu and rankd, of block bi in
WPG are defined by the following equations.

))((max)()(
)(jubsuccbiiu brankbPMWbrank

ij ∈
+=

)}()({max)(

)(jjdbpredbid bPMWbrankbrank
ij

+=
∈

Here, succ(bi) and pred(bi) represent all of the successors and predecessors of bi,
respectively.

The critical block is defined as the following equation.

A block bi is critical block, if and only if randu(bi) + rankd(bi) = randu(bs), where bs

is the start block of the WPG, and bi is called the critical block.

According to the above definitions, the critical block can be determined by Step 2

to Step 4. Step 2 determines the rankd and the execution order of each block. In Fig.3
the randu of b1 is zero and PWM(b1) is 2, that we can determine the rankd of b2…b6
are 2. The execution order O is the max execution order O increase. By this way we
can determine the rankd and the execution order of each block. Step 3 determines the
randu of each block. The randu determine by the max rankd of child block add the
PWM of current block. Then, the algorithm determines which blocks are critical
blocks in Step 4. In Fig.3 we can find the rankd +randu of {b2,b15,b21,b29} equal to
the randu of b1, those block are the critical block. In order to split block set, we need
to save the information of critical block for step 6.

I=
{ N ,M }

S =
{s1}

W =
{1 , 2}

O = 1 rank u
= 11 8

rank d
=0

b 1

I=
{ N ,M }

S =
{ s2 }

W =
{5 1 ,6 9}

O = 2 rank u
= 116

rank d
= 2

b 2

I=
{ N ,M }

S =
{ s2}

W =
{ 16 ,12}

O = 2 rank u
= 89

rank d
= 2

b 3

I=
{ N ,M }

S =
{ s4 }

W =
{1 9 ,1 3}

O = 2 rank u
= 90

rank d
= 2

b 4

I=
{ N ,M }

S =
{s5}

W =
{ 18 ,12 }

O =2 ran k u
= 8 8

ran k d
= 2

b 5

I=
{ N ,M }

S =
{ s6}

W =
{ 20 ,15}

O = 2 rank u
=8 5

rank d
= 2

b 6

I=
{ N ,M }

S =
{s10 }

W =
{13 ,10 }

O =4 ran k u
= 57

rank d
= 34

b 10

I=
{ N ,M }

S =
{s11 }

W =
{15 ,11 }

O = 4 ran k u
= 58

ran k d
= 34

b 1 1

I=
{ N ,M }

S =
{ s12}

W =
{13 ,8}

O = 4 rank u
= 55

rank d
= 37

b 1 2

I=
{ N ,M }

S =
{s13 }

W =
{ 12 ,8}

O = 4 ran k u
= 55

rank d
= 28

b 1 3

I=
{ N ,M }

S =
{s1 4}

W =
{1 6 ,1 2}

O = 4 rank u
= 59

rank d
= 28

b 1 4

I=
{ N ,M }

S =
{s7}

W =
{ 27 ,19}

O = 3 rank u
= 77

rank d
= 15

b 7

I=
{ N ,M }

S =
{ s8}

W =
{3 1 ,21}

O = 3 rank u
= 76

rank d
= 15

b 8

I=
{ N ,M }

S =
{ s9 }

W =
{1 6 ,1 1}

O = 3 rank u
= 70

rank d
= 17

b 9

I=
{ N ,M }

S =
{ s15 }

W =
{ 3 ,5}

O = 5 ran k u
= 47

rank d
= 71

b 1 5

I=
{ N ,M }

S =
{ s16}

W =
{ 18 ,13}

O = 6 rank u
= 38

rank d
= 76

b1 6

I=
{ N ,M }

S =
{ s17 }

W =
{ 11 ,12 }

O = 6 rank u
= 37

rank d
= 76

b1 7

I =
{ N ,M }

S =
{s18}

W =
{19 ,14 }

O = 6 rank u
= 41

rank d
=7 6

b18

I=
{ N ,M }

S =
{ s19 }

W =
{ 16 ,13 }

O = 6 rank u
= 37

rank d
= 76

b 1 9

I =
{ N ,M }

S =
{s20}

W =
{ 17 ,12 }

O = 6 rank u
= 36

rank d
=7 6

b 2 0 I=
{ N ,M }

S =
{s2 1}

W =
{6 8 ,4 1}

O = 6 rank u
= 42

rank d
= 76

b 2 1

I=
{ N ,M }

S =
{ s22}

W =
{7 ,11 }

O = 7 rank u
= 25

rank d
= 89

b2 2

I=
{ N ,M }

S =
{ s23 }

W =
{1 4 ,10}

O = 7 rank u
= 27

rank d
= 90

b 2 3

I=
{ N ,M }

S =
{s24 }

W =
{ 13 ,8}

O = 7 rank u
= 24

rank d
= 89

b 2 4

I=
{ N ,M }

S =
{ s25}

W =
{ 19 ,13}

O = 8 rank u
= 14

rank d
= 10 2

b2 5

I=
{ N ,M }

S =
{s26 }

W =
{ 1 4 ,1 6}

O = 8 rank u
= 17

rank d
= 100

b 26

I=
{ N ,M }

S =
{ s27 }

W =
{ 21 ,15 }

O =8 ran k u
= 1 6

ran k d
= 97

b 2 7

I=
{ N ,M }

S =
{ s28}

W =
{ 23 ,15}

O = 8 rank u
= 16

rank d
= 97

b 2 8

I=
{ N ,M }

S =
{ s29 }

W =
{ 1 ,1}

O = 9 rank u
=1

rank d
= 11 7

b 2 9

Fig. 3. WPG of a synthetic example.

Fig. 3 illustrates the WPG of the synthetic program, which is processing in stages
stated above. In this WPG, the colored blocks are critical blocks.

When the critical blocks are determined in Step 5, it partition all blocks in the WPG
into several Sections. Fig. 4 illustrates the result of the given WPG, which is
partitioned into five Sections, Section1:{b1}, Section 2: {b2, b3, b4, b5, b6, b7, b8,
b9, b10, b11, b12, b13, b14}, Section 3:{b15}, Section 4: {b16, b17, b18, b19, b20,
b21, b22, b23, b24, b25, b26, b27, b28} and Section 5:{b29}. The execution order of
Sections is governed by their dependence relations. After the critical blocks are
identified, the remaining blocks are partitioned into several Inner Wavefronts
according to the order of execution and the dependence relations. In Fig. 4, Section 2
of the WPG is used to explain how blocks are scheduled in a Section. Since b2 is the
critical block in Section 2, Step 5 is firstly used to schedule b2 to reduce the waiting
and synchronization frequencies. The remaining blocks are partitioned into three
wavefronts according to the Oi of each block, by calling Step 6. Finally, iw1={b3, b4,
b5, b6}, iw2={b7, b8, b9}, iw3={b10, b11, b12, b13} are determined.

CPS = {CPS1 , CPS2 , CPS3 , CPS4 , CPS5}

={{CP1 , IWF1}, {CP2 , IWF2}, {CP3 , IWF3}, {CP4 , IWF4}, {CP5 ,
IWF5}}

CPS1 : /*Section 1*/

CP1={PH(b1)},
 IWF1={φ }

CPS2 : /*Section 2*/
CP2={PH(b2)},
IWF2={iwf1, iwf2, iwf3} ={{PM1(b3), PM2(b4), PM3(b5), PM4(b6)}, {PM1(b7),

PM2(b8), PM3(b9)}, {PM1(b10), PM2(b11), PM3(b12), PM4(b13),
PM5(b14)}}

Section 2={b2,b3,b4,b5,b6,b7,b8,b9,,b10,b11,b12,b13}
Critical block ={b2}

iw1={b3,b4,b5,b6}

iw2={b7,b8,b9}

iw3={b10,b11,b12,b13,b14}

I=
{N,M}

S=
{s2}

W=
{51,69}

O=2 ranku
=116

rankd
=2

b2

I=
{N,M}

S=
{s2}

W=
{16,12}

O=2 ranku
=89

rankd
=2

b3

I=
{N,M}

S=
{s4}

W=
{19,13}

O=2 ranku
=90

rankd
=2

b4

I=
{N,M}

S=
{s5}

W=
{18,12}

O=2 ranku
=88

rankd
=2

b5

I=
{N,M}

S=
{s6}

W=
{20,15}

O=2 ranku

=85
rankd

=2

b6

I=
{N,M}

S=
{s10}

W=
{13,10}

O=4 ranku
=57

rankd
=34

b10

I=
{N,M}

S=
{s11}

W=
{15,11}

O=4 ranku
=58

rankd
=34

b11

I=
{N,M}

S=
{s12}

W=
{13,8}

O=4 ranku
=55

rankd
=37

b12

I=
{N,M}

S=
{s13}

W=
{12,8}

O=4 ranku

=55
rankd

=28

b13

I=
{N,M}

S=
{s14}

W=
{16,12}

O=4 ranku

=59
rankd

=28

b14

I=
{N,M}

S=
{s7}

W=
{27,19}

O=3 ranku

=77
rankd

=15

b7

I=
{N,M}

S=
{s8}

W=
{31,21}

O=3 ranku

=76
rankd

=15

b8

I=
{N,M}

S=
{s9}

W=
{16,11}

O=3 ranku

=70
rankd

=17

b9

Fig. 4. Scheduled WPG of Section 2.

CPS3 : /*Section 3*/
CP3={PH(b15)},
IWF3={φ }

CPS4 : /*Section 4*/
CP4={PM1(b21)},
IWF2={iwf1, iwf2, iwf3} ={{PH(b16), PM1(b17), PM2(b18), PM3(b19),

PM4(b20)}, {PH(b22), PM1(b23), PM2(b24)}, {PH(b25), PM1(b26),
PM2(b27), PM3(b28)}}

CPS5 : /*Section 5*/

CP5={b29}, IWF5={φ }

Fig. 3. Output of the Critical Block scheduling algorithm.

In Step 7, the execution schedule is generated as shown in Fig. 6. Fig. 5 shows the
graph-mode of the execution schedule. The shaded blocks represent the execution
latency. The blank blocks indicate that the processor is waiting for other processors to
synchronize. The bold and dotted lines determine the point of synchronization of
Section and Inner Wavefront respectively.

time

1
.
.
.

10
.
.
.

20
.
.
.

30
.
.
.

40
.
.
.

50
.
.
.

60
.
.
.

70
.
.
.

80
.
.
.

90
.
.
.

PH PM1 PM2 PM3 PM4 PM5

b1

b2

b3 b4 b5 b6

b7 b8

b9

b10 b11
b12 b13

b14

b15

b21

b29

b17 b16 b18 b19 b20

b22
b23 b24

b25b26 b27 b28

Fig. 4. Graphical execution schedule of the given example.

Sometimes, the execution schedule may occupy more processors than are present in
the architectural configuration. Therefore, Step 8 modifies the execution schedule as
necessary. The sub-step of Step 8 is finding the minimal load processor and place the
comport block. If PH is idle, find the maximal PHW block to fill it. Then using a loop
to find minimal load processor to fill it and plus the PMW of block to its load. Redo
this loop until all block fit in processor.

5 Experimental Results

The code generated by our Octans system is targeted on our PIM simulator that is
derived from the FlexRAM simulator developed by the IA-COMA Lab. at UIUC [11]
based on MINT simulator [14]. Table 1 lists the major architectural parameters. In
this experiment, the configuration of one P.Host with many P.Mem processors is
modeled to reflect the benefits of the multiple memory processors.

This experiment utilizes multiple P.Mem processors in the PIM architecture to
improve performance. The evaluated applications include five benchmarks: cg is from
the serial version of NAS; swim is from SPEC95; strsm is from BLAS3; TISI is from
Perfect Benchmark, and fft is from [16].

Table 2 and Fig. 7 summarize the experimental results. “Standard” denotes that the
application is executed in P.Host alone. This experiment concerns a general situation
of a uniprocessor system, and is used to compare speedup. "1H-1M” implies that the
application is transformed and scheduled by our previous Pair-Selection Scheduling
(PSS) [5] for the one-P.Host and one-P.Mem configuration of the PIM architecture.
“1H-nM” implies that the application is transformed and scheduled by Critical Block
Scheduling mechanism for the one P.Host and many P.Mem configuration of the PIM
architecture.

Table 2 and Fig. 7 indicate that swim and cg have quite a good speedup when the
Critical Block Scheduling mechanism is employed because these programs contain
many memory references and few dependence relations. Therefore, the parallelism
and memory access performance can be improved by using more memory processors.
Applying the 1H-1M scheduling mechanism can also yield improvements. strsm
exhibits an extremely high parallelism but a rather few memory access, so the Critical
Block Scheduling mechanism is more suitably adopted than the 1H-1M scheduling
mechanism. TISI cannot generate speedup when the 1H-1M scheduling mechanism is
applied, since it is a typical CPU bounded program, and involves many dependencies.
The Critical Block Scheduling mechanism can be suitably used to increase speedup.
Finally, in fft, the program is somewhat computation-intensive and sequential, and
therefore only a little speedup can be improved after the 1H-1M scheduling
mechanism is applied. However, an additional overhead is generated when the
Critical Block Scheduling mechanism is applied. Accordingly, 1H-1M and Critical
Block Scheduling mechanisms are suitable for different situations. Choosing the 1H-
1M or Critical Block Scheduling mechanism more heuristically in the scheduling
stage of the Octans system will improve performance.

6 Conclusions

This study proposes a new scheduling mechanism, called Critical Block Scheduling,
with Octans system for a new class of high-performance SoC architectures,
Processor-in-Memory, which consists of a host processor and many memory
processors. The Octans system partitions source code into blocks by statement
splitting; estimates the weight (execution time) of each block, and then schedules each
block to the most suitable processor for execution. Five real benchmarks, swim, TISI,
strsm, cg, and fft were experimentally considered to evaluate the effects of the Critical
Block Scheduling. In the experiment, the performance was improved by a factor of up
to 4.38 while using up to six P.Mems and one P.Host. The authors believe that the

Table 2. Execution cycles of five benchmarks.
Speedup Bench

mark
Standard 1H-1M 1H-nM 1H-1M 1H-nM n (Occupied

P.Mem)

swim 228289321 116669760 52168027 1.96 4.38 6

cg 91111840 51230772 32124287 1.78 2.84 4

TISI 133644087 173503404 91098174 0.77 1.47 2

fft 117998621 101841407 110399171 1.16 1.07 2

strsm 201133647 139990872 53711479 1.44 3.74 5

0.000E+00

5.000E+07

1.000E+08

1.500E+08

2.000E+08

sw
im

 (S
tan

dar
d)

sw
im

 (1
-P.M

em
)

sw
im

 (n
-P.M

em
)

cg
(Stan

dar
d)

cg
(1-

P.M
em

)

cg
(n-

P.M
em

)

TISI (S
tan

dar
d)

TISI (1
-P.M

em
)

TISI (n
-P.M

em
)

fft
(Stan

dar
d)

fft
(1-

P.M
em

)

fft
(n-

P.M
em

)

strs
m (S

tan
dar

d)

str
sm

 (1
-P.M

em
)

strs
m (n

-P.M
em

)

miscs
memory
sync
useful

Fig. 7. Execution times of five benchmarks obtained by Standard, 1H-1M and 1H-nM.

techniques proposed here can be extended to run on DIVA, EXECUBE, FlexRAM,
and other high-performance MPSoC/CMP architectures by slightly modifying the
code generator of the Octans system.

Acknowledgement

This work is supported in part by the National Science Council of Republic of China,
Taiwan under Grant NSC 96-2221-E-033 -019-

References

[1] Agrawal, K., He, Y., Hsu, W-J., Leiserson, C.: Shared Memory Parallelism: Adaptive
Scheduling with Parallelism Feedback. In Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Mar. (2006).

[2] Armstrong, R., Hensgen, D., and Kidd, T.: The Relative Performance of Various, Mapping
Algorithms is Independent of Sizable Variances in Run-Time Predictions. In Proceedings
of 7th IEEE Heterogeneous Computing Workshop, Mar. (1998), 79-87.

[3] Arora, N., Blumofe, R., Plaxton, C.: Thread Scheduling for Multiprogrammed
Multiprocessors. In Proceedings of the Tenth Annual ACM Symposium on Parallel
Algorithms and Architectures, Jun. (1998).

[4] Blume,W., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Petersen, P.,
Pottenger, B., Rauchwerger, L., Tu, P., Weatherford, S.: Effective Automatic
Parallelization with Polaris. International Journal of Parallel Programming, May, (1995).

[5] Chu, S. L.: PSS: a Novel Statement Scheduling Mechanism for a High-performance SoC
Architecture. In Proceedings of Tenth International Conference on Parallel and Distributed
Systems, Jul. (2004). pp. 690-697.

[6] Cintra, M., Torrellas, J: Eliminating Squashes Through Learning Cross-Thread Violations
in Speculative Parallelization for Multiprocessors. In Proceedings of 2002 Eighth
International Symposium on High-Performance Computer Architecture, Feb. (2002), 43-
54.

[7] Crisp, R.: Direct Rambus Technology: the New Main Memory Standard. In Proceedings
of IEEE Micro, Nov., (1997), pp. 18-28.

[8] Hall, M., Anderson, J., Amarasinghe, S., Murphy, B., Liao, S., Bugnion, E., Lam, M.:
Maximizing Multiprocessor Performance with the SUIF Compiler. IEEE Computer Dec.,
(1996).

[9] Hall, M., Kogge, P., Koller, J., Diniz, P., Chame, J., Draper, J., LaCoss, J., Granacki, J.,
Brockman, J., Srivastava, A., Athas, W., Freeh, V., Shin, J., Park, J.: Mapping Irregular
Applications to DIVA, a PIM-Based Data-Intensive Architecture. In Proceedings of 1999
Conference on Supercomputing, Jan., (1999).

[10] Judd, D., and Yelick, K.: Exploiting On-Chip Memory Bandwidth in the VIRAM
Compiler. In proceedings of 2nd Workshop on Intelligent Memory Systems, Cambridge,
MA, Nov. 12, (2000).

[11] Kang, Y., Huang, W., Yoo, S., Keen, D., Ge, Z., Lam, V., Pattnaik, P., and Torrellas, J.:
FlexRAM: Toward an Advanced Intelligent Memory System. In Proceedings of
International Conference on Computer Design (ICCD), Austin, Texas, Oct. (1999).

[12] Landis, D., Roth, L., Hulina, P., Coraor, L., Deno, S.: Evaluation of Computing in
Memory Architectures for Digital Image Processing Applications. In Proceedings of
International Conference on Computer Design, (1999), pp. 146-151.

[13] Llosa, J.; Gonzalez, A.; Ayguade, E.; Valero, M.: Swing Module Scheduling: a Lifetime-
Sensitive Approach. In Proceedings of the 1996 Conference on Parallel Architectures and
Compilation Techniques, Oct. (1996), 80-86.

[14] Oskin, M., Chong, F. T., and Sherwood, T.: Active Page: A Computation Model for
Intelligent Memory. Computer Architecture. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, (1998), pp. 192-203.

[15] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Tomas,
R., and Yelick, K.: A Case for Intelligent DRAM. IEEE Micro, Mar./Apr., (1997), pp. 33-
44.

[16] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes
in Fortran 77. Cambridge University Press, (1992).

[17] Snip, A. K., Elliott, D.G., Margala, M., Durdle, N. G.: Using Computational RAM for
Volume Rendering. In Proceedings of 13th Annual IEEE International Conference on
ASIC/SOC, (2000), pp. 253 –257

[18] Swanson, S., Michelson, K., Schwerin, A. and Oskin, M.: WaveScalar. MICRO-36, Dec.
(2003).

[19] Veenstra, J., and Fowler, R.: MINT: A Front End for Efficient Simulation of Shared-
Memory Multiprocessors. In Proceedings of MAS-COTS’94, Jan. (1994), 201-207

[20] Wang, K. Y.: Precise Compile-Time Performance Prediction for Superscalar-Based
Computers, In Proceedings of ACM SIGPLAN '94 Conference on Programming Language
Design and Implementation, (1994), pp. 73-84

[21] Zhou, Y., Wang, L., Clark, D., Li, K.: Thread Scheduling for Out-of-Core Applications
with Memory Server on Multicomputers; In Proceedings of the Sixth Workshop on I/O in
Parallel and Distributed Systems, May (1999).

