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Abstract. Processor-in-Memory (PIM) architectures are developed for high-
performance computing by integrating processing units with memory blocks 
into a single chip to reduce the performance gap between the processor and the 
memory. The PIM architecture combines heterogeneous processors in a single 
system. These processors are characterized by their computation and memory-
access capabilities. Therefore, a novel mechanism must be developed to 
identify their capabilities and dispatch the appropriate tasks to these 
heterogeneous processing elements. Accordingly, this paper presents a novel 
parallelizing mechanism, called Critical Block Scheduling to fully utilize all of 
the heterogeneous processors in the PIM architecture. Integrated with our 
thread-level parallelizing system, Octans, this mechanism decomposes the 
original program into blocks, produces corresponding dependence graph, 
creates a feasible execution schedule, and generates corresponding threads for 
the host and memory processors. The proposed Critical Block Scheduling not 
only can parallelize programs for PIM architectures but also can apply on other 
Multi-Processor System-on-Chip (MPSoC) and Chip Multiprocessor (CMP) 
architectures which consist of multiple heterogeneous processors. The 
experimental results of real benchmarks are also discussed. 

Keywords: Chip Multiprocessor (CMP), Processor-in-Memory, Critical Block 
Scheduling, Octans. 

1   Introduction 

In current high-performance computer architectures, the processors run many times 
faster than the computer's main memory. This performance gap is often referred to as 
the Memory Wall. This gap can be reduced using the System-on-a-Chip or Chip 
Multiprocessor [18] strategies, which integrates the various processors and memory 
on a single chip. The rapid growth in silicon fabrication density has made this strategy 
possible. Accordingly, many researchers have addressed integrating computing 
logic/processing units and high density DRAM on a single die 
[9][11][12][14][15][17][18]. Such architectures are also called Processor-in-Memory 
(PIM), or Intelligent RAM (IRAM).  



Integrating DRAM and computing elements on a single chip generates PIM 
architecture with several desirable characteristics. First, the processors are 
heterogeneous for their purpose. Second, instead of traditional off-chip 
communication, the on-chip communication between processor-to-processor and 
processor-to-memory are very wide and fast. Third, eliminating off-chip drivers 
reduces the power consumption and latency [17]. 

This class of architectures constitutes a hierarchical hybrid multiprocessor 
environment by the host (main) processor and the memory processors. The host 
processor is more powerful but has a deep cache hierarchy and higher latency when 
accessing memory. In contrast, memory processors are normally less powerful but 
have a lower latency in memory access. The main problems addressed here concern 
the method for dispatching suitable tasks to these different processors according to 
their characteristics to reduce execution times, and the method for partitioning the 
original program to execute simultaneously on these heterogeneous processor 
combinations. 

Since the mechanisms of partitioning and scheduling for heterogeneous multi-
computers are classical NP-Hard problems, many researches propose their 
mechanisms for distributed-memory parallel computers. Opportunistic Load 
Balancing algorithm assigns each task, in arbitrary order, to the next available 
machine, regardless of the task's expected execution time on that machine [2]. Min-
min algorithm minimizes the completion time for each task is computed for all 
machines. The newly mapped task is removed, and the process repeated until all tasks 
are mapped [2]. These methods are focus on how to reduce the communication cost of 
the parallel program. However, in PIM architecture, the communication cost is not the 
most significant factor of overall performance. Hence we veer to thread-level 
parallelizing mechanisms. Cintr et. al. [6] present a architectural support thread-level 
parallelization framework, which can obtain more potential parallelism by their 
speculative thread-level parallelizing mechanism with hardware support, especially 
for the modified CC-NUMA architecture. Arora et. al. [3], Zhou et al. [21], and 
Agrawal et. al. [1] propose their mechanisms to dynamically schedule the threads in 
the thread queue to reduce memory access cost and improve cache locality. These 
mechanisms improve the capabilities of thread scheduler of the targeted operating 
system, but can not apply on parallelizing compiler for static scheduling. Llosa, et. al. 
[13] propose a software pipelining mechanism, called Swing Modulo Scheduling 
(SMS), to partition iteration spaces of loops according to their dependence graph. 
This algorithm provides iteration-based mechanism that can improve the potential 
parallelism of the loops and reduce the usage of registers. It is also adopted in GNU 
Compiler Collection (GCC) Version 4.0. However SMS focuses on scheduling 
iterations of given loops but not restructure whole program. It isn’t suitable for 
parallelizing program and generating corresponding threads for different 
heterogeneous processors. Therefore we have to consider other mid-grained approach 
instead of traditional fine-grained mechanism based on iteration analysis. 

From the aspect of compilation for PIM architectures, previous approaches [8] [10] 
concentrate on instruction-level parallelization and loop vectorization to increase 
speedup, rather than on the figure out the capability difference between the host and 
memory processors. However, such approaches do not exploit the real advantages of 
PIM architectures. Accordingly we design a thread-level parallelization system, 



  

Octans, which integrates statement splitting, weight evaluation and a scheduling 
mechanism. The original PSS scheduling [5] mechanism focuses on a simplified 
configuration of PIM architecture that only consists one-P.Host and one-P.Mem 
processors. Since PSS scheduling can not deal with multiple P.Mem processors and 
fully utilizes all heterogeneous computing resources, we design a new mechanism, 
Critical Block Scheduling, to generate a superior execution schedule to fully utilize all 
heterogeneous processors in the PIM architecture. A weight evaluation mechanism is 
established to collect characteristics of varied and estimate a precise execution time 
then generate a normalized value, called weight. The Octans system can automatically 
analyze the sequential program, partition program into several blocks, determine the 
weights of each block, produce a good executing schedule, and finally generate 
parallel threads for execution on the host and memory processors accordingly. 

The rest of this paper is organized as follows: Section 2 introduces the PIM 
architecture. Section 3 describes our Octans system and the Critical Block Scheduling 
algorithms. Section 4 presents experimental results. Conclusions are finally drawn in 
Section 5. 

2   The Processor-in-Memory Architecture 

Fig. 1 depicts the organization of the PIM architecture evaluated in this study. It 
contains an off-the-shelf processor, P.Host, and four PIM chips. The PIM chip 
integrates one memory processor, P.Mem, with 64 Mbytes of DRAM. The techniques 
presented in this paper are suitable for the configuration of one P.Host and multiple 
P.Mems, and can be extended to support multiple P.Hosts. 

Table 1 lists the main architectural parameters of the PIM architecture. P.Host is a 
six-issue superscalar processor that allows out-of-order execution and runs at 
800MHz, while P.Mem is a two-issue superscalar processor with in-order capability 
and runs at 400MHz. There is a two-level cache in P.Host and a one-level cache in 
P.Mem. P.Mem has lower memory access latency than P.Host since the former is 
integrated with DRAM. Thus, computation-bound codes are more suitable for running 
on the P.Host, while memory-bound codes are preferably running on the P.Mem to 
increase efficiency. 

The PIM chip is designed to replace regular DRAMs in current computer systems, 
and conform to a memory standard that involves additional power and ground signals 
to support on-chip processing. One such standard is Rambus [7], so the PIM chip is 
designed with a Rambus-compatible interface. The private interconnection network of 
the PIM chips is also provided. 

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3   The Octans System 

Most current parallelizing compilers focus on the transformation of loops to execute 
all or some iterations concurrently, in a so-called iteration-based approach. This 
approach is suited to homogeneous and tightly coupled multi-processor systems. 
However, it has an obvious disadvantage for heterogeneous multi-processor platforms 
because iterations have similar behavior but the capabilities of heterogeneous 
processors are diverse. Therefore, a different approach is adopted here, using the 

Table 1. Parameters of the PIM architecture.  

P.Host P.Mem Bus & Memory 
Working Freq: 800 MHz Working Freq: 400 MHz Bus Freq: 100 MHz 
Dynamic issue Width: 6 Static issue Width: 2 P.Host Mem RT: 262. 5 ns 
Integer unit num: 6 Integer unit num: 2 P.Mem Mem RT: 50. 5 ns 
Floating unit num: 4 Floating unit num: 2 Bus Width: 16 B 
FLC_Type: WT FLC_Type: WT Mem_Data_Transfer: 16 
FLC_Size: 32 KB FLC_Size: 16 KB Mem_Row_Width: 4K 
FLC_Line: 64 B FLC_Line: 32 B  
SLC_Type: WB SLC: N/A  
SLC_Size: 256 KB   
SLC_Line: 64 B   
Replace policy: LRU   
Branch penalty: 4 Branch penalty: 2  
P.Host_Mem_Delay: 88 P.Mem_Mem_Delay: 17   

* FLC stands for the first level cache, SLC for the second level cache, BR for branch, RT for round-trip latency 
from the processor to the memory, and RB for row buffer. 
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Fig. 1.  Organization of the PIM architecture.  



  

statements in a loop as a basic analysis unit, called statement-based approach, to 
develop the Octans system. 

Octans is an automatic parallelizing compiler, which partitions and schedules an 
original program to exploit the specialties of the host and the memory processor. At 
first, the source program is split into blocks of statements according to dependence 
relations [5]. Then, the Weighted Partition Dependence Graph (WPG) is generated, 
and the weight of each block is evaluated. Finally, the blocks are dispatched to either 
the host or the memory processors, according to which processor is more suitable for 
executing the block. The major difference between Octans and other parallelizing 
systems is that it uses a statement rather than an iteration as the basic unit of analysis. 
This approach can fully exploit the characteristics of statements in a program and 
dispatch the most suitable tasks to the host and the memory processors. Fig. 2 
illustrates the organization of the Octans system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1   Statement Splitting and WPG Construction 

Statement Splitting splits the dependence graph by Node Partitioning as introduced in 
[5]. WPG Construction constructs the Weighted Partition Dependence Graph (WPG), 
to be used in the subsequent stages of Weight Evaluation, Wavefront Generation and 
Schedule Determination. 

The definitions relevant to Statement Splitting are introduced as below. 
Definition 1 (Loop Notation) 

A loop is denoted by L = (i1 , i2 , …. in )( s1 , s2 , …. sk ), where ij, 1≤j≤n, is a loop 
index, and sk, 1≤k≤d, is a body statement which may be an assignment statement or 
another loop. ■ 
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Fig. 2. The sequence of compiling stages in Octans. 



 
Definition 2 (Node Partition ∏ )  

For a given loop L on the dependence graph G, we define a node partition Π for the 
statements set { s1 , s2 , …. sd} in such a way that sk and sl, 1≤k≤d, 1≤l≤d, k≠ l , are 
in the same block (cell) πi of the partition Π if and only if sk ∆ sl and sl ∆ sk where ∆ 
is an indirect data dependence relation.  

On the partition Π={π1,π2 ,…,πn}, we define partial ordering relations α, α^, 
and αo as follows.  

For i ≠ j:  
1) πi α πj  iff there exist sk ∈ πi and sl ∈ πj such that sk δ sl , where δ is the true 

dependence relation .  
2) πi α^πj iff there exist sk ∈ πi and sl ∈ πj such that sk δ^ sl, where δ^ is the anti 

dependence relation. 
3) πi α

oπj iff there exist sk ∈ πi and sl ∈ πj such that sk δo sl, where δo is the 
output dependence relation.                                                   ■ 

 
Based on the definition, the statements form a block (cell) πi in the partition Π if 

and only if there is a directed dependence cycle among the statements. Two blocks 
have a true/anti/output dependence if and only if two statements, one in each block, 
exist a true/anti/output dependence. 

 
Definition 3 (Weighted Partition Dependence Graph) 

Given a node partition Π defined in Definition 2, we define a weighted partition 
dependence graph WPG(B,E) as follows with B denoting the set of nodes and E 
denoting the set of edges. For each πi∈Π, there is a corresponding node bi (Ii , Si , 
Wi , Oi ) ∈ B, where Ii denotes the set of loop indices in block πi; Si represents the 
set of statements in block πi; Wi is the weight of block πi in the form of Wi (PH,PM) 
with PH and PM being the weights (i.e., the expected execution time) for the 
P.Host and P.Mem, respectively; and Oi is the execution order for block πi. There is 
an edge eij∈E from bi to bj if bi and bj have dependence relations α, α^, and αo 
defined in Definition 1. These dependence relations are respectively denoted by 

, →  →anti
, and → O .                                                 ■ 

 
Based on these three definitions, we propose a Statement Splitting algorithm 

(Algorithm 1) to partition the loops:  
 
Algorithm 1. (Statement Splitting Algorithm) 
Given a loop L = (i1, i2, …. in) ( s1, s2, …. sd)  
Step 1: Construct dependence Graph G by analyzing subscript expressions and index 

pattern by using Polaris [4]. 
Step 2: Establish a node partition Π on G as defined in Definition 2. If there are large 

blocks caused by control dependence relations, convert control dependence into 
data dependence first [5], and then partition the dependence graph. 

Step 3: On the partition Π, establish a weighted partition dependence graph WPG(B,E) 
defined in Definition 3. 



  

3.2   Weight Evaluation 

Two approaches to evaluating weight can be taken. One is to predict the execution 
time of programs by profiling the dominant parts. The other considers the operations 
in a statement and estimates the program execution time by looking up an operation 
weight table [20]. The former method called code profiling may be more accurate, but 
the predicted result cannot be reused; the latter called code analysis can determine 
statements for suitable processors but the estimated program execution time is not 
sufficiently accurate. Hence, the Self-Patch Weight Evaluation scheme was designed 
to combine the benefits of both approaches. It integrates these two approaches 
together by analyzing code and searching weight table first to estimate the weight of a 
block. If the block contains unknown operations, the patch (profiling) mechanism is 
then activated to evaluate the weights of unknown operations. The obtained operation 
weights are added into the weight table for next look-up. For a detailed description of 
this scheme, please refer to [5] 

3.3   The Critical Block Scheduling Mechanism 

Here we propose the Critical Block Scheduling mechanism to achieve an optimal 
schedule for utilizing all of the memory processors in PIM architecture. At first, the 
redundancy and synchronization between processors are critical factors that affect the 
performance of task scheduling for multiprocessor platforms. A critical block 
mechanism is used to minimize the frequency of synchronization. Then the WPG is 
then partitioned into several Sections according to the critical blocks and the 
dependence relations between these nodes. In a Section, the blocks are partitioned 
into several Inner Wavefronts in the following stages. Finally, the execution schedule 
for all P.Host and P.Mems is obtained. If the number of occupied memory processors 
exceeds the maximum number of processors in the PIM configuration, then the 
execution schedule will be modified accordingly. Algorithm 2 presents the main steps 
of this scheduling mechanism. 
 
Algorithm 2. (Critical Block Scheduling Algorithm)  

 
[Input] 

WPG=(P,E): original weighted partition dependence graph after weight is determined. 
[Output] 

An critical block execution schedule CPS, where CPS = {CPS1, CPS2, …,CPSi}. CPSi 
={CPi, IWFi} where CPi = {Processor(ba)} where processor is PH or PM . IWFi 
={PH(ba), PM1(bb), PM2(bc),…} means that in Inner Wavefront i, PH(ba) means that 
block ba will be assigned to P.Host, PM1(bb) means that blocks bb will be assigned to 
P.Mem1, PM2(bc) means that blocks bc will be assigned to P.Mem2. 

[Intermediate] 
W: a working set of nodes ready to be visited.  
EO_temp: a working set for execution order scheduling. 
iwf_temp: a working set for Inner Wavefront scheduling. 
max_EO: the maximum number of execution order. 
min_pred_O(bi): the minimum execution order for all bi’s predecessor blocks. 
max_pred_O(bi):the maximum execution order for all bi’s predecessor blocks. 



min_succ_RO(bi):the minimum execution order for all bi’s successor blocks. 
max_succ_RO(bi):the maximum execution order for all bi’s successor blocks. 
PHW(bi): the weight of bi for P.Host. 
PMW(bi): the weight of bi for P.Mem. 
Ranku(bi): the trace up value of bi used for finding CP 
Rankd(bi): the trace down value of bi used for finding CP 
 

[Method] 
Step 1: For each block of the WPG, initializes the execution order, obtains the weights of 

P.Host and P.Mem by using the weight evaluation mechanism. 
Step 2: Travel down all blocks of the WPG  to determine its rankd which is the maximal 

rankd of the parent blocks, add itself P.Mem weight and increase its execution 
order according to the maximal execution order of  its parent blocks. 

Step 3: Travel up all block to determine the ranku by current block’s P.Mem weight plus 
the max of children block’s ranku. 

Step 4: Travel all block find out the critical block that ranku + rankd equal to the rankd of 
the starting block, and then append the block into CP_temp and its order into 
CP_O. 

Step 5: In CP_temp, when a critical block’s PHW is less than PMW, assign it to PH, 
otherwise assign it to PM1. Append the block into CPk, where k is CP_O of the 
block. 

Step 6: Split all block to subset by CP_O, the subset doesn’t include the critical block, and 
then perform each subset by follow step. 
6.1 Split subset to new subset iwf_temp by order number. 
6.2 Check the PH_Used and PM1_Used between CP_O for each iwf_temp. 
6.3 Sort iwf_temp in decreasing order by the PMW. 
6.4 If the PH_Used of iwf_temp is false then find the minimal PHW block to set 

PH tag. 
6.5 Other block of iwf_temp set PMk and append to IWFi. 

Step 7: Append CPi and IWFi to CPSi set, and then append all CPSi to CPS set to generate 
the execution schedule. 

Step 8: Perform each IWFi by follow steps to modify the execution schedule to fit the 
limitation of PM number. 
8.1 Sort IWF in decreasing order by the block’s weight. 
8.2 If the PH_Used of IWF is false then find the minimal load of PH + PHW and 

set it to PH and add the PMW of block to PH load. 
8.3 Find the PM with minimal load then reassign the block to it. 
8.4 Repeat Step 8.3 until all blocks of IWF is done. 

 
The algorithm includes eight major steps. In Step 1, the algorithm initiate the 

necessary variables and determine the P.Host and P.Mem weights of each blocks 
determined by the weight evaluation mechanism. 

This algorithm figures out the critical nodes to partition WPG into Sections, so the 
critical blocks must be determined. Then the attributes, randu and rankd, of block bi in 
WPG are defined by the following equations. 

))((max)()(
)( jubsuccbiiu brankbPMWbrank

ij ∈
+=

 
)}()({max)(

)( jjdbpredbid bPMWbrankbrank
ij

+=
∈  

Here, succ(bi) and pred(bi) represent all of the successors and predecessors of bi, 
respectively. 

The critical block is defined as the following equation. 



  

 
A block bi is critical block, if and only if randu(bi) + rankd(bi) = randu(bs), where bs 

is the start block of the WPG, and bi is called the critical block. 
 
According to the above definitions, the critical block can be determined by Step 2 

to Step 4. Step 2 determines the rankd and the execution order of each block. In Fig.3 
the randu of b1 is zero and PWM(b1) is 2, that we can determine the rankd of b2…b6 
are 2. The execution order O is the max execution order O increase. By this way we 
can determine the rankd and the execution order of each block. Step 3 determines the 
randu of each block. The randu determine by the max rankd of child block add the 
PWM of current block. Then, the algorithm determines which blocks are critical 
blocks in Step 4. In Fig.3 we can find the rankd +randu of {b2,b15,b21,b29} equal to 
the randu of b1, those block are the critical block. In order to split block set, we need 
to save the information of critical block for step 6. 
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Fig. 3. WPG of a synthetic example. 
 



Fig. 3 illustrates the WPG of the synthetic program, which is processing in stages 
stated above. In this WPG, the colored blocks are critical blocks. 

When the critical blocks are determined in Step 5, it partition all blocks in the WPG 
into several Sections. Fig. 4 illustrates the result of the given WPG, which is 
partitioned into five Sections, Section1:{b1}, Section 2: {b2, b3, b4, b5, b6, b7, b8, 
b9, b10, b11, b12, b13, b14}, Section 3:{b15}, Section 4: {b16, b17, b18, b19, b20, 
b21, b22, b23, b24, b25, b26, b27, b28} and Section 5:{b29}. The execution order of 
Sections is governed by their dependence relations. After the critical blocks are 
identified, the remaining blocks are partitioned into several Inner Wavefronts 
according to the order of execution and the dependence relations. In Fig. 4, Section 2 
of the WPG is used to explain how blocks are scheduled in a Section. Since b2 is the 
critical block in Section 2, Step 5 is firstly used to schedule b2 to reduce the waiting 
and synchronization frequencies. The remaining blocks are partitioned into three 
wavefronts according to the Oi of each block, by calling Step 6. Finally, iw1={b3, b4, 
b5, b6}, iw2={b7, b8, b9}, iw3={b10, b11, b12, b13} are determined. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CPS = {CPS1 , CPS2 , CPS3 , CPS4 , CPS5} 

={{CP1 , IWF1}, {CP2 , IWF2}, {CP3 , IWF3}, {CP4 , IWF4}, {CP5 , 
IWF5}} 

 
CPS1 :  /*Section 1*/ 

CP1={PH(b1)}, 
 IWF1={φ } 
 

CPS2 :  /*Section 2*/ 
CP2={PH(b2)},  
IWF2={iwf1, iwf2, iwf3} ={{PM1(b3), PM2(b4), PM3(b5), PM4(b6)}, {PM1(b7), 

PM2(b8), PM3(b9)}, {PM1(b10), PM2(b11), PM3(b12), PM4(b13), 
PM5(b14)}} 
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Fig. 4. Scheduled WPG of Section 2. 



  

CPS3 :  /*Section 3*/ 
CP3={PH(b15)},  
IWF3={φ } 
 

CPS4 :  /*Section 4*/ 
CP4={PM1(b21)},  
IWF2={iwf1, iwf2, iwf3} ={{PH(b16), PM1(b17), PM2(b18), PM3(b19), 

PM4(b20)}, {PH(b22), PM1(b23), PM2(b24)}, {PH(b25), PM1(b26), 
PM2(b27), PM3(b28)}} 

 
CPS5 :  /*Section 5*/ 

CP5={b29}, IWF5={φ } 

Fig. 3. Output of the Critical Block scheduling algorithm. 

In Step 7, the execution schedule is generated as shown in Fig. 6. Fig. 5 shows the 
graph-mode of the execution schedule. The shaded blocks represent the execution 
latency. The blank blocks indicate that the processor is waiting for other processors to 
synchronize. The bold and dotted lines determine the point of synchronization of 
Section and Inner Wavefront respectively. 
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Fig. 4. Graphical execution schedule of the given example. 



Sometimes, the execution schedule may occupy more processors than are present in 
the architectural configuration. Therefore, Step 8 modifies the execution schedule as 
necessary. The sub-step of Step 8 is finding the minimal load processor and place the 
comport block. If PH is idle, find the maximal PHW block to fill it. Then using a loop 
to find minimal load processor to fill it and plus the PMW of block to its load. Redo 
this loop until all block fit in processor.  

5   Experimental Results 

The code generated by our Octans system is targeted on our PIM simulator that is 
derived from the FlexRAM simulator developed by the IA-COMA Lab. at UIUC [11] 
based on MINT simulator [14]. Table 1 lists the major architectural parameters. In 
this experiment, the configuration of one P.Host with many P.Mem processors is 
modeled to reflect the benefits of the multiple memory processors.  

This experiment utilizes multiple P.Mem processors in the PIM architecture to 
improve performance. The evaluated applications include five benchmarks: cg is from 
the serial version of NAS; swim is from SPEC95; strsm is from BLAS3; TISI is from 
Perfect Benchmark, and fft is from [16]. 

Table 2 and Fig. 7 summarize the experimental results. “Standard” denotes that the 
application is executed in P.Host alone. This experiment concerns a general situation 
of a uniprocessor system, and is used to compare speedup. "1H-1M” implies that the 
application is transformed and scheduled by our previous Pair-Selection Scheduling 
(PSS) [5] for the one-P.Host and one-P.Mem configuration of the PIM architecture. 
“1H-nM” implies that the application is transformed and scheduled by Critical Block 
Scheduling mechanism for the one P.Host and many P.Mem configuration of the PIM 
architecture.  

Table 2 and Fig. 7 indicate that swim and cg have quite a good speedup when the 
Critical Block Scheduling mechanism is employed because these programs contain 
many memory references and few dependence relations. Therefore, the parallelism 
and memory access performance can be improved by using more memory processors. 
Applying the 1H-1M scheduling mechanism can also yield improvements. strsm 
exhibits an extremely high parallelism but a rather few memory access, so the Critical 
Block Scheduling mechanism is more suitably adopted than the 1H-1M scheduling 
mechanism. TISI cannot generate speedup when the 1H-1M scheduling mechanism is 
applied, since it is a typical CPU bounded program, and involves many dependencies. 
The Critical Block Scheduling mechanism can be suitably used to increase speedup. 
Finally, in fft, the program is somewhat computation-intensive and sequential, and 
therefore only a little speedup can be improved after the 1H-1M scheduling 
mechanism is applied. However, an additional overhead is generated when the 
Critical Block Scheduling mechanism is applied. Accordingly, 1H-1M and Critical 
Block Scheduling mechanisms are suitable for different situations. Choosing the 1H-
1M or Critical Block Scheduling mechanism more heuristically in the scheduling 
stage of the Octans system will improve performance. 

 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6   Conclusions 

This study proposes a new scheduling mechanism, called Critical Block Scheduling, 
with Octans system for a new class of high-performance SoC architectures, 
Processor-in-Memory, which consists of a host processor and many memory 
processors. The Octans system partitions source code into blocks by statement 
splitting; estimates the weight (execution time) of each block, and then schedules each 
block to the most suitable processor for execution. Five real benchmarks, swim, TISI, 
strsm, cg, and fft were experimentally considered to evaluate the effects of the Critical 
Block Scheduling. In the experiment, the performance was improved by a factor of up 
to 4.38 while using up to six P.Mems and one P.Host. The authors believe that the 

Table 2. Execution cycles of five benchmarks. 
Speedup Bench 

mark 
Standard 1H-1M  1H-nM  1H-1M  1H-nM  n  (Occupied 

P.Mem) 

swim 228289321 116669760 52168027 1.96 4.38 6 

cg 91111840 51230772 32124287 1.78 2.84 4 

TISI 133644087 173503404 91098174 0.77 1.47 2 

fft 117998621 101841407 110399171 1.16 1.07 2 

strsm 201133647 139990872 53711479 1.44 3.74 5 
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Fig. 7. Execution times of five benchmarks obtained by Standard, 1H-1M and 1H-nM.  
 



techniques proposed here can be extended to run on DIVA, EXECUBE, FlexRAM, 
and other high-performance MPSoC/CMP architectures by slightly modifying the 
code generator of the Octans system. 
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