
Iteration Disambiguation for Parallelism

Identification in Time-Sliced Applications

Shane Ryoo, Christopher I. Rodrigues, and Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
{sryoo, cirodrig, hwu} @crhc.uiuc.edu

Abstract. Media and scientific simulation applications have a large
amount of parallelism that can be exploited in contemporary multi-core
microprocessors. However, traditional pointer and array analysis tech-
niques often fall short in automatically identifying this parallelism. This
is due to the allocation and referencing patterns of time-slicing algo-
rithms, where information flows from one time slice to the next. In these,
an object is allocated within a loop and written to, with source data
obtained from objects created in previous iterations of the loop. The ob-
jects are typically allocated at the same static call site through the same
call chain in the call graph, making them indistinguishable by traditional
heap-sensitive analysis techniques that use call chains to distinguish heap
objects. As a result, the compiler cannot separate the source and des-
tination objects within each time slice of the algorithm. In this work
we discuss an analysis that quickly identifies these objects through a
partially flow-sensitive technique called iteration disambiguation. This is
done through a relatively simple aging mechanism. We show that this
analysis can distinguish objects allocated in different time slices across
a wide range of benchmark applications within tens of seconds even for
complete media applications. We will also discuss the obstacles to au-
tomatically identifying the remaining parallelism in studied applications
and propose methods to address them.

1 Introduction

The pressure of finding exploitable coarse-grained parallelism has increased with
the ubiquity of multi-core processors in contemporary desktop systems. Two do-
mains with high parallelism and continuing demands for performance are media
and scientific simulation. These often operate on very regular arrays with rela-
tively simple pointer usage, which imply that compilers may be able to identify
the parallelism in these applications. Recent work has shown that contemporary
analyses are capable of exposing a large degree of parallelism in media applica-
tions written in C [14].

However, there are still obstacles to be overcome in analyzing the pointer
behavior of these applications. A significant percentage of these applications are

based on time-sliced algorithms, with information flowing from one time slice
to the next. The code of these applications typically consists of a large loop,
often with multiple levels of function calls in the loop body, where each iteration
corresponds to a time slice. Results from a previous iteration(s) are used for
computation in the current iteration. While there are typically dependences be-
tween iterations, there is usually an ample amount of coarse-grained parallelism
within each iteration, or time slice, of the algorithm. For example, in video en-
coding applications, there is commonly a dependence between the processing of
consecutive video frames, a fundamental time slice of video processing. However,
there is an ample amount of parallelism within the video frame, where thousands
of sub-pictures can be processed in parallel.

From our experience, time-sliced algorithms typically operate by reading from
data objects that are written in the previous time slice, performing substantial
computation, and writing to data objects that will be used by the next time
slice. The primary step of parallelizing the computation of the time slice lies in
the disambiguation between the input and output objects of the time slice. This
proves to be a challenging task for memory disambiguation systems today. The
difficulty lies in the fact that the code is cyclic in nature. The output objects
of an iteration must become the input of the next iteration. That is, the input
and output objects are coupled by either a copying action or a pointer swap-
ping operation during the transition from one time slice to the next. Without
specialized flow sensitivity, a memory disambiguation system will conclude that
the input and output objects cannot be distinguished from each other.

Three different coding styles exist for transitioning output objects to input
objects in time-sliced algorithms:

1. Fixed purpose: The data objects operated on are allocated in an acyclic
portion of the program and designated specifically as input and output struc-
tures. At the end of an iteration, the data in the output structure are copied
to the input structure for use in the next iteration. Previous parallelism-
detection work [14] assumes this coding style.

2. Swapped buffer, or double-buffering: Two or more data objects are created
in the acyclic portion of the program and pointed to by input(s) and output
pointers. At the end of an iteration, the pointer values are rotated.

3. Iterative allocation: A new data object is allocated and written during
each iteration of the primary program loop and assigned to the output
pointer. At the end of the iteration, the output object of the current it-
eration is assigned to the input pointer in preparation for consumption by
the next iteration. Objects that are no longer needed are deallocated.

Many compiler analyses, even some that are flow-sensitive, will see the point-
ers in the latter two categories as aliasing within the loop. This is true when
considering the static code, since the stores in the currently-executing iteration
are writing the objects that will be read in the next iteration. When the dynamic
stream of instructions is considered, however, the pointers and any stores and
loads from them are independent within a single iteration of the loop. In me-
dia and simulation applications, this is where much of the extractable loop-level

parallelism lies. The goal of our work is to create a targeted, fast, and scalable
analysis that is cycle-sensitive, meaning that it can distinguish objects allocated
or referenced in cyclic patterns. We will address the third category; the first is
adequately disambiguated by traditional points-to analysis and the second can
be handled by tracking the independence of the pointers via alias pairs [10] or
connection analysis [4].

Figure 1 shows an example of this within a video encoder. At least two re-
lated images exist during MPEG-style P-frame encoding: the frame currently
being encoded and reconstructed and the frame(s) that was/were previously re-
constructed. During motion estimation and compensation, the encoder attempts
to achieve a close match to the desired, current image by copying in pieces from
the previous reconstructed frame. In terms of memory operations, it reads data
from the previous frame and writes it to the current frame. In the reference
MPEG-4 encoder [11], these objects can come from the same static call sites
and calling contexts and must be disambiguated by determining that they were
created in different iterations of a control flow cycle.

�����

�����	�

���������	�
	����
������

	�����������������	���

����������	�����������

����

���������������������� ��!����

������������	�
���������������������

����

���������� ��!���	�����

�������������

����

"

���������	�
������ ���	�
�����

�����������������������	�
	����

���

�� ��������#����$�!%����������&&�

���� ����'���#��'�$�!%��������'&&� �

(��)����*� �����'���	���

�����+,�!���-�
!%������&'.���

����"

"

��������	
�
	��
���������������������

��
�����
	�����

��������	�	������������������
��������	�����������

��������	
�
	��
����	/�����0�!	�������������

��	�	�����
���
�	��������
�������������������	�	
�

�
���������������������
��

	�
�����

�����	

�����
�����	�

�����	�	�

Fig. 1. An example of cycle-sensitivity enabling parallelism.

In the loop shown in Figure 1(a), the pointers prev and recon will point
to the same object at the circled assignment. Within the middle shaded region,
however, the two pointers will always point to different objects, since recon is
allocated in the current loop iteration and prev is not. Thus, loops within this
region, such as those within VopMotionCompensate as shown in Figure 1(b),
can have their iterations executed in parallel. The goal of our analysis, iteration

disambiguation, is to distinguish the most recently allocated object from older
objects that are allocated at the same site. This and similar cases require an
interprocedural analysis to be effective because the objects and loops involved
nearly always span numerous functions and loop scopes.

We first cover related work in Section 2. We then describe the analysis in
Section 3. Section 4 shows analysis results for several benchmark programs. We
conclude with some final comments and future work.

2 Related Work

The intent of iteration disambiguation is to quickly distinguish objects that come
from the same static call site and chain, but different iterations of a control flow
loop. It is designed as an extension of a more general pointer analysis system.
By doing this, the analysis is able to capture cases which general analyses are
incapable of distinguishing or cannot accomplish in an inexpensive manner. For
an overview of previous work in pointer analysis, we refer to [8].

The closest existing work to iteration disambiguation, in terms of disam-
biguation results, is connection analysis, as proposed by Ghiya and Hendren [4].
It attempts to overcome the limitation of basic points-to analysis and naming
schemes by using a storeless model [3] to determine the sets of interacting, or
connected, pointers that may alias. At each program point and for each calling
context, the analysis maintains the sets of connected local and global pointer
variables. Each pointer’s connection set approximates the set of other pointers
with which it may alias. Connections are removed, or “killed”, for a pointer when
it is assigned, and replaced with the connection information of the right-hand
expression, if any. At a given program point, disjoint connection sets for two
pointers indicates that they have not interacted in any way and do not conflict.
Interprocedural analysis is handled by exhaustive inlining.

Connection analysis distinguishes new and old objects in a loop by making
a newly-allocated object be initially unconnected to anything else. The basic
example shown in Figure 1 can be disambiguated by connection analysis because
the assignment to the variable recon kills recon’s connection to previous objects.
However, control flow within the loop body can foil connection analysis. When
a variable is assigned on only some paths through a loop, its connections are not
killed on the other paths. This leads to pointer aliasing of the variable and its
connected variables after the paths merge. This case has been observed in video
encoders and obscures parallelism in those applications.

Shape analysis is a flow-sensitive analysis which attempts to analyze the
pattern of pointer usage to express relationships between different instances of
the same abstract heap object, examples of which are [5, 6, 15]. This can im-
prove pointer disambiguation for recursive data structures. Generally, the possi-
ble types of structures must be known to the analysis, with the exception of [6].
The purpose of this work is not to identify the relationship between instances of
recursive structures, but to disambiguate “top-level” pointers retained in local
or global variables that refer to objects created in different iterations of a con-
trol flow cycle. Shape analysis generally does not focus on this aspect of pointer
behavior.

Wu et al. [16] have developed a may-alias points-to analysis that can distin-
guish different elements of an array in loops where array elements are known to
be accessed by a strictly monotonically increasing index variable in a loop. In
their analysis, there can be no interaction between the array elements, whereas
the objects targeted by iteration disambiguation are coupled through copying or
pointer assignment at the end of loop iterations. Their work is complementary
to ours and can be combined with ours to provide greater precision.

3 Analysis

This section describes iteration disambiguation, a dataflow algorithm that dis-
tinguishes objects allocated in different iterations of a cycle at compile-time. It
does this by marking objects’ references with different ages. Intuitively, if one
considers a loop body as a code segment observed during dynamic execution, the
objects created outside of the segment or in previous instances of the segment
are distinct from any objects created in the examined segment.

3.1 Example

Figure 2(a) shows the control flow graph for a simple example of an iteration
disambiguation opportunity, while Figure 2(b) shows an unrolled version of the
loop to clarify the relationship between pointers a and b within each outer loop
iteration. We define two memory objects A and B by their static allocation sites.
Since object B lies within a loop, its instances are given subscripts to indicate
the iteration of the loop in which they were allocated.

������

�����������	
����

���	���

������

���������

	��������

���

���

���

������

�����������	
����

���	���

������

���������

	��������

���

���

���

�����������	
����

���������

	��������

�����������	
����

���	���

������

���	
���

���
����

���	
���

���
����

���������

�

�

�

�

�

�����������	
����
�

���	
���

����

�����

���������
�

��������	�
��	�������	����	���������
����� ����������	���	�����

������������	 	�	�
	���!

��������	�
���

���

���

���������	�
���

���

���

Fig. 2. Iteration disambiguation example.

In the first iteration of the loop in Figure 2(b), pointer a points to object
A, while pointer b points to object B1, created in block 2.1. These two pointers
do not alias within block 3.1 but do in block 4.1. There is a similar situation in
block 3.2, except that in this case a points to object B1, created in block 2.1,
while b points to object B2, created in block 2.2. Additional iterations of the
loop would be similar to the second iteration. Although b aliases with a within
instances of block 4, the two do not alias within any instance of block 3: a points
to A or Bn−1, while b points to Bn. The compiler can determine that loads are
independent from stores within the smaller loop in block 3 and can combine this

with array index analysis to determine that parallel execution is safe for those
loop iterations.

Another way of looking at this relationship is that object Bn is a separate
points-to object from previously created objects. We call the Bn object new,
while Bn−1 and older objects are lumped together as aged. Objects become aged
at aging points, which are ideally just before a new object is created. Between
the aging points for an object, or between an aging point and the end of the
program, two pointers that point to these two objects cannot alias for any n.

3.2 Algorithm

Our algorithm operates on non-address-taken local variables in the program’s
control flow graph. A pointer analysis, run prior to the algorithm, annotates
variables with sets of objects they may point to. Points-to sets are represented
as a set of abstract object IDs, where each ID stands for an unknown number of
dynamic objects that exist at runtime. Intuitively, the analysis distinguishes new
references to an abstract object created within the body of a loop from aged ones
that must have been created prior to entering the loop or within a prior iteration
of the loop. References are ambiguous when it becomes unclear whether they
refer to aged or new objects. As long as the ages of two references are distinct
and unambiguous, they refer to independent dynamic objects within the scope
that contains both references and the allocation for that object. The algorithm
is described for a single abstract object with a unique allocation site and calling
context. When analyzing multiple objects, analyses of separate abstract objects
do not interact. The compiler may choose the objects which are potentially
profitable; at this time every heap object allocated within a cycle is analyzed.

The analysis uses aging points in the control flow graph to delineate the
scope over which a reference is considered new. A reference becomes aged when
it crosses an aging point. Aging points are placed at the entry point of each loop
and function containing the allocation. Placing aging points at the beginning
of loop iterations ensures that all new references within the loop are to objects
created in the current loop iteration. New references outside the loop point
to objects created in the last loop iteration. Aging at function entry points is
necessary for recursive function calls.

Recursive functions require additional consideration. A new reference be-
comes aged at the entrance of a recursive function that may allocate it, and could
be returned from the function. This is effectively traveling backwards across an
aging point, creating a situation where the same reference is both aged and new

in the same region. We avoid this error by conservatively marking an aged re-
turn value of a recursive function ambiguous when it is passed to callers which
are also in the recursion. 1

The example in Figure 2 obtained the aged reference via a local variable
that was live across the back edge of the loop. However, many programs retain

1 If a function could have multiple return values, the same situation can occur without
recursion. However, only one return value is allowed in C/C++.

pointers to older objects in lists or other non-local data structures and load them
for use. In order to detect these pointers as aged, the analysis must determine
that the load occurs before any new references are stored to non-local memory.
Once non-local memory contains a new reference, the abstract object is labeled
escaped until control flow reaches the next aging point. Loads of an escaped

object return references that are ambiguous instead of aged. Effectively, non-
local memory is an implicit variable that is either ambiguous (escaped) or aged
(not escaped). Escaped reference analysis runs concurrently with propagation
of new and aged reference markings.

Setup. There are several items that need to be performed prior to executing
the dataflow algorithm:

1. A heap-sensitive pointer analysis is run to identify dynamically-allocated
objects, distinguished by call site and calling context [2], and find which
variables may reference the object(s). Figure 3(a) shows a code example
with initial flow-insensitive pointer analysis information.

2. SSA notation is constructed for each function in the program, with µ-functions2

at loop entry points. Although constructing SSA notation prior to pointer
analysis can improve the resolution of the input information via partial flow-
sensitivity [7], this is not necessary for the algorithm to function correctly.

3. Aging points are marked, for each abstract object, at the entry of each
loop or function containing an allocation of the object. This is a bottom-
up propagation and visits strongly connected components in the program
callgraph only once. In loops, µ-functions that assign references to objects
created within the loops are aging points. The input parameters to a function
that may create the object are also marked as aging points.

4. A dataflow predicate, representing an age, is initialized for each pointed-to
object on each pointer assignment, including SSA’s µ- and φ-functions, and
function parameter. The latter are treated as implicit copy operations during
interprocedural propagation. We initialize these predicates as follows:

– Pointer variables which receive the return address of the allocation call
are marked with new versions of the references.

– The destination of µ-functions are marked aged for an object if the
corresponding loop contains an allocation of the object.

– Destinations of loads that retrieve a reference from memory are opti-
mistically marked aged. Unlike the previous two cases, this initialized
value may change during propagation of dataflow.

– All other pointer assignments are marked unknown.

Figure 3(b) shows the results of SSA construction, marking of aging points,
and initialization of dataflow predicates for the example in Figure 3(a).

2
µ-functions were proposed in the Gated Single Assignment notation [1]. Unlike that
work, it is not necessary to know which references are propagated from the loop
backedges; we use the form simply to mark entries of loops.

�����������	
����

���������

	��������

�����������	
����

���	���

������

�� ���	��������

�� ���������	
�����

�� ���������	
�����

���	����

�� �����

�� ���	��������

�� ���������	
�����

�� ���������	
�����

���	����

�� �����

�
 ��������

	
�������
�

��������	�
��
���	�����������
���

������������������	����
�����	���
��

�����
�	�����������
��������

�����	�����������	������������
�����	��������

�
 ��������

	
�������
�

�������
�����	���
�������	�

�	�����������������
��

������������������� ����������

!

"

#

$

!

"

#

$

!

"

#

$

%

%

��&�����

�

������� ��&�����

�

�������

��&�����

���������

%
%

	���	��������

��������	�
���

������

����

���

���������

���������	�
���

������

����

���

���������

'�����������
��

��	�
������
����

��	�
������
����

(������

���

�����

Fig. 3. Iteration disambiguation dataflow.

Propagation. Figure 3(c) shows the results of dataflow propagation for the
given example. Conceptually, the algorithm marks a reference returned by an
allocation routine as new. This dataflow predicate propagates forward through
the def-use chain until it reaches an aging point, after which it becomes aged.
This aged reference is also propagated forward. If aged and new references for
the same object meet at control flow merges other than aging points, the result
becomes ambiguous. Separate abstract objects do not interact in any way; for
example, propagation from a0 to a1 remains new for object A because there is
only an aging point for object B for that transition.

As mentioned previously, we desire that the analysis capture cases where
older object references are loaded from non-local memory. For this, the anal-
ysis identifies regions of the program where new or ambiguous references have
escaped to non-local memory. References loaded from memory outside this re-
gion are guaranteed to be aged, but those loaded within the region are ambiguous
because a potentially new reference has been placed in memory.

Propagation of age markings for object references and detection of escaped
references proceed concurrently. All propagation is done in the forward direction.
Age markings propagate via SSA def-use chains, while escape markings propa-
gate along intra- and inter-procedural control flow paths. Age propagation uses
a three-stage lattice of values, depicted in the legend in Figure 3. The least value
of the lattice is unknown. The other lattice values are aged, new, and ambiguous.
The join or union of an aged and a new reference is ambiguous, which means
that the compiler cannot tell the iteration relationship of the reference relative

to other object references in the loop. The contents of memory are ambiguous

where an object has escaped; elsewhere, memory only contains aged references.
Age and escape markings increase monotonically over the course of the analysis.
The analysis provides a measure of flow-sensitivity if the base pointer analysis
did not support it: references which remain unknown at analysis termination are
not realizable.

Age markings propagate unchanged through assignment and address arith-
metic. The union of the ages is taken for references passed in to φ-functions
or to input parameters of functions that do not contain an allocation call. At
aging points first the union of the ages is taken, then new or ambiguous ages are
converted to aged. Function return values are handled differently depending on
whether the caller and callee lie in a recursive callgraph cycle. For the nonre-
cursive case, return values are simply propagated to the caller. For the recursive
case, aged returns are converted to ambiguous. This is necessary to preserve
correctness; since the call itself is not an aging point but the callee may con-
tain aging points, a new reference passed into the recursive call may be returned
as aged while other references in the caller to the same dynamic object would
remain new.

Propagation proceeds analogously for escaped markings. The union of es-
caped markings is taken at control flow merge points. Escaped markings are not
propagated past aging points since all references in memory become aged at
those points. At the return point of a call where the caller and callee lie in a
recursive cycle, memory is conservatively marked escaped.

Age and escaped reference markings influence one another through load and
store instructions. Stores may cause a new or ambiguous reference to escape past
the bounds that can be tracked via SSA. For our implementation, this occurs
when a pointer is stored to a heap object, global variable, or local variable which
is address-taken. At that store instruction, the analysis sets an escaped marking
which propagates forward through the program. The region where this escape
dataflow predicate is set is called the escaped region.

The analysis optimistically assumes during setup that loaded references are
aged. If a loaded reference is found to be in the escaped region, the analysis must
correct the reference’s marking to ambiguous and propagate that information
forward through def-use chains. Conceptually, the compiler cannot determine
whether the reference was the most recent allocation or an earlier one, since a
new reference has been placed in memory. An example of an escaped reference is
shown in the bottom block of Figure 3(c). Aged references do not escape because
the default state of references loaded from memory is aged.

Iteration disambiguation preserves context-sensitivity provided by the base
pointer analysis. The calling context is encoded for each object. When the anal-
ysis propagates object references returned from functions, the contexts are ex-
amined and objects with mismatched contexts are filtered out. The analysis also
performs filtering to prevent the escaped dataflow from propagating to some
unrealizable call paths: references can escape from a function only if they were
created in that function or passed in as an input parameter. Our implementa-

tion currently is overly conservative for escaped dataflow when a reference is
an input parameter which doesn’t escape on some call paths. Handling this case
requires an analysis to determine which input parameters may escape, and has
not been prominent in studied applications.

3.3 Properties and Limitations

The iteration disambiguation algorithm explained here is only able to distinguish
the object from the current/youngest iteration of a cycle from objects allocated
during previous iterations. In other terms, the analysis is k-limited [9] to two
ages. The benefit of this is that the analysis is relatively simple and can be
formulated as an interprocedural, monotonic dataflow problem. In general only
the most recently allocated object is written, while older ones are read-only, so
a single age delineation is sufficient to identify parallelism.

The profitability of iteration disambiguation depends on how long a new ob-
ject stays in a local variable and is operated on before escaping. In studied media
and simulation applications, new references are often created at the top of loop
bodies and escape towards the bottom of the loop after significant computation
is performed. This exposes the available parallelism within the primary compu-
tation loops. However, is not uncommon for a reference to escape immediately
on allocation and not be retained in a local variable, which prevents benefit
from iteration disambiguation. The common case for this is sub-objects which
are linked into an aggregate object, such as separate color planes of an image.
Methods for resolving these objects are discussed in the next section.

The presented algorithm’s effectiveness is also inversely tied to the distance
between the aging points and the allocation of the object, since all objects be-
tween the aging locations and the allocation are aged. These cases might be
disambiguable if the aging point was relocated, but this causes more complexity
in utilizing the analysis results.

4 Experiments

This section presents empirical results that show that iteration disambiguation
generally takes a small amount of time and can identify the distinction between
cyclic objects. We covered two categories of benchmarks. For the first, we chose
programs from SPEC CPU 2000 and 2006, excluding those from 2000 that have
newer versions or equivalents in 2006, and those that the current version of our
compiler cannot complete, notably gcc and Perl. For the second category, we
used several applications from MediaBench I as well as a few independent ones.
Our intent with the broad selection is to show that the analysis can disambiguate
references in application domains other than media and scientific simulation. We
use Fulcra [12] as our base pointer analysis.

4.1 Analysis Statistics

Figure 4 shows analysis statistics for the benchmark programs analyzed. The
bars represent iteration disambiguation’s time to analyze, annotate, and count
statistics in seconds, on a 1.8 GHz Athlon 64. The dots connected by lines
represent the number of distinct cyclic objects, distinguishable by call site and
calling contexts. The number of heap objects is dependent on the degree of
cloning (replication per call site and path) [13] performed by the base pointer
analysis. For example, the MPEG-4 decoder and encoder applications have a
large number of nested allocation functions which create the large number of
objects seen in the figure. The “lowest-level” objects tend to be replicated the
most, which affects some of our metrics.

0

5

10

15

20

16
4.

gz
ip

17
5.

vp
r

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
19

7.
pa

rs
er

25
4.

ga
p

25
5.

vo
rt
ex

30
0.

tw
ol

f
40

1.
bz

ip
2

42
9.

m
cf

43
3.

m
ilc

45
6.

hm
m

er
45

8.
sj

en
g

46
4.

h2
64

re
47

0.
lb

m
48

2.
sp

hi
nx

h2
63

de
c

h2
63

en
c

jp
eg

de
c

jp
eg

en
c

jp
g2

K
de

c
m

pe
g2

de
c

m
pe

g2
en

c
m

pe
g4

de
c

m
pe

g4
en

c
m

pg
12

3

0

200

400

600

800

1000
Time

Cyclic
Objects

�
�
��
�
��
��
	�

��
��
�
�
�
�
��

�
�
�
�
��
�
��
	
�

��� ���
�����

	
��

����

	
��

Fig. 4. Iteration disambiguation analysis time and object count.

In general, the analysis is fast and highly scalable. For most programs, which
have few cyclic objects, the analysis takes only a few seconds. Even for programs
with many cyclic objects, such as 464.h264ref and mpeg4enc, the analysis runs
within 16 seconds. The majority of analysis time is spent in the setup phase
and the time for propagation of age markings and escaped dataflow is usually
insignificant. The primary outliers are two SPEC CPU2000 benchmarks, 254.gap
and 255.vortex. These benchmarks are over twice as large as the majority of
the benchmarks in the program, with a correspondingly higher setup time. The
larger size also increases the amount of code that escaped reference dataflow must
propagate through. Finally, they have an unusually high number of references
relative to the size of the codes. Unlike the other benchmarks, the time for age
propagation and escaped reference dataflow is on the same order as setup time.

4.2 Object Classifications

There are two special object classifications which are exposed by the analysis.
First, some objects allocated within cycles are used as temporary storage and are

deallocated within the same iteration. These cases are interesting because they
represent privatization opportunies. In iteration disambiguation, these objects
are recognizable since only new references are used to load data from or store data
to them. The percentage of only-new objects is shown in Figure 5. Benchmarks
that have no cyclic objects are omitted.

0%

20%

40%

60%

80%

100%

16
4.

gz
ip

17
5.

vp
r

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

25
4.

ga
p

25
5.

vo
rt
ex

30
0.

tw
ol

f

40
1.

bz
ip

2

43
3.

m
ilc

45
6.

hm
m

er

45
8.

sj
en

g

46
4.

h2
64

re
f

48
2.

sp
hi

nx
3

h2
63

de
c

h2
63

en
c

jp
eg

de
c

jp
eg

en
c

jp
g2

K
de

c

m
pe

g2
de

c

m
pe

g2
en

c

m
pe

g4
de

c

m
pe

g4
en

c

m
pg

12
3

Useful
Objects

Ambiguous
Objects

Only New
Objects

Fig. 5. Iteration disambiguation results: proportion of only new and ambiguous objects.

Second, for some cyclic objects, there are either no new markings or no aged

markings. For these objects, iteration disambiguation has no useful effect. We
term these ambiguous objects. In programs with inherent parallelism, these ob-
jects are commonly multidimensional arrays and sub-structures, which require
complementary analyses when detecting parallelism. As mentioned previously,
these lower-level objects are a significant portion of the total object count due
to heap cloning, and thus increase the apparent number of ambiguous objects
beyond a static count of call sites when heap cloning has an effect. Even so,
direct inspection of several of the applications has shown that the majority of
the heap objects are ambiguous.

4.3 Analysis results

Prior to discussing the analysis results, we break the categories of aged and
ambiguous references into subcategories to gain a better understanding of the
results and program properties. They are:

– Loop Aged: The reference was passed via a local variable across the backedge
of a loop, or entered a recursive function that may allocate the object.

– Loaded Aged: The reference’s source is loaded from memory in a region
where a new or ambiguous reference has not escaped.

– Merge Ambiguous: The age of the reference is ambiguous due to a control
flow or procedure call merge in which new and aged references of an object
merge via dataflow, such as for conditional allocations.

– Escape Ambiguous: The age of the reference is ambiguous because it was
obtained via a load in a code region where a new or ambiguous reference has
escaped. We also include aged references returned from a recursive function
to callers within the recursion in this category.

– Combination Ambiguous: This represents a merge of an escape-ambiguous
reference with other types of references.

Figure 6 shows statistics of the results of iteration disambiguation. Results are
shown as a percentage of the total static, heap-referencing memory operations,
in an assembly-like representation, for each program. When a memory operation
may access multiple cyclic objects, an equal fraction is assigned to each object.
References to objects that are only new have been omitted because they inflate
the apparent utility of the analysis. A significant percentage of both new and
aged references indicates likely independence of operations within a loop body.
Applications that have no useful cyclic objects have been omitted.

Although a more appropriate test of this analysis would be to show the
amount of parallelism exposed by the analysis, we do not attempt this for this
work. The objects of interest in many time-sliced applications are children ob-
jects of the top-level objects that iteration disambiguation can operate on, and
are identified as ambiguous objects. We currently do not have an analysis to
prove that children are unique to a parent object, so the amount of extractable
parallelism is relatively small. In the future we hope to show application perfor-
mance difference when the additional analyses are integrated into our framework.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16
4.

gz
ip

17
5.

vp
r

18
8.

am
m

p

30
0.

tw
ol

f

40
1.

bz
ip

2

43
3.

m
ilc

45
6.

hm
m

er

45
8.

sj
en

g

46
4.

h2
64

re
f

48
2.

sp
hi

nx
3

h2
63

en
c

jp
eg

de
c

jp
eg

en
c

jp
g2

K
de

c

m
pe

g4
de

c

m
pe

g4
en

c

Comb
Ambig

Escape
Ambig

Merge
Ambig

New

Loop
Aged

Loaded
Aged

Fig. 6. Iteration disambiguation results: percentages of reference types.

The high percentage of escape and combination ambiguous references indi-
cate that many static operations on heap objects use references that have been
stored to and then loaded back from memory prior to an aging point. This is
expected for programs that build up large aggregate structures and then oper-
ate on them, such as the larger SPEC CPU benchmarks. Despite the fact that

ambiguous objects tend to make up the majority of objects, they do not always
dominate the references because of fractional counting per memory operation.
We observed a tendency for operations to be one type of reference, because the
objects they reference usually have similar usage patterns.

Media programs have a high percentage of ambiguous references because the
majority of operations work on data substructures linked to top-level structures.
As previously mentioned, escaped references are often multidimensional arrays
and can be addressed with the appropriate analysis. Another case that is missed
by iteration disambiguation is sub-structures of a cyclic object linked into an
aggregate structure. We are currently developing a complementary analysis to
address this shortcoming.

One interesting case is 464.h264ref, which is a video encoder application
and thus expected to do well with iteration disambiguation. However, it has
a smaller percentage of new references than most applications. The reason is
the common use of an exit-upon-error function, which calls and is called by
many of the allocation and free functions used in the application. This creates
a large recursion in the call graph, which has the effect of aging new references
rapidly. In addition, we discovered that half of the loaded aged references become
escape ambiguous if the analysis does not prevent dataflow propagation through
unrealizable paths, such as calls to exit().

5 Conclusions and Future Work

This paper discusses iteration disambiguation, an analysis that distinguishes
high-level, dynamically-allocated, cyclic objects in programs. This cyclic rela-
tionship is common in media and simulation applications, and the appropriate
analysis is necessary for automatic detection and extraction of parallelism. We
show that we can disambiguate a significant percentage of references in a sub-
set of the presented applications. We also explain some of the reasons why the
analysis was not able to disambiguate more references in cases where we would
expect a compiler to be able to identify parallelism.

For future work, we will be developing complementary analyses which will
enable a compiler to automatically identify parallelism within programs that are
amenable to parallel execution. These include array analyses, analyses that iden-
tify structure relationships such as trees, and value flow and constraint analyses.

Acknowledgment

This work would not have been possible without the work performed by Erik
Nystrom and Sara Sadeghi Baghsorkhi on the Fulcra pointer analysis. We thank
Bolei Guo for his advice and the anonymous reviewers for their feedback. We also
acknowledge the support of the Gigascale Systems Research Center, funded un-
der the Focus Center Research Program, a Semiconductor Research Corporation
program.

References

1. R. Ballance, A. Maccabe, and K. Ottenstein. The Program Dependence Web:
A representation supporting control-, data-, and demand-driven interpretation of
imperative languages. In Proceedings of the ACM SIGPLAN’90 Conference on

Programming Language Design and Implementation, pages 257–271, 1990.
2. J. D. Choi, M. G. Burke, and P. Carini. Efficient flow-sensitive interprocedural

computation of pointer-induced aliases and side effects. In Proceedings of the 20th

ACM Symposium on Principles of Programming Languages, pages 232–245, Jan-
uary 1993.

3. A. Deutsch. A storeless model of aliasing and its abstractions using finite repre-
sentations of right-regular equivalence relations. In Proceedings of the 1992 Inter-

national Conference on Computer Languages, pages 2–13, April 1992.
4. Rakesh Ghiya and Laurie J. Hendren. Connection analysis: A practical interpro-

cedural heap analysis for C. In Proceedings of the Eighth Workshop on Languages

and Compilers for Parallel Computing, pages 515–533, August 1995.
5. Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? A

shape analysis for heap-directed pointers in C. In Proceedings of the 23rd ACM

Symposium on Principles of Programming Languages, pages 1–15, 1996.
6. B. Guo, N. Vachharajani, and D. I. August. Shape analysis with inductive recursion

synthesis. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming

Language Design and Implementation, June 2007.
7. R. Hasti and S. Horwitz. Using static single assignment form to improve flow-

insensitive pointer analysis. In Proceedings of the ACM SIGPLAN ’98 Conference

on Programming Language Design and Implementation, pages 97–105, June 1998.
8. M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings of

the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, pages 54–61, 2001.
9. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of LISP-like

structures. In Proceedings of the 6th ACM SIGPLAN Symposium on Principles of

Programming Languages, pages 244 – 256, 1981.
10. W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural

pointer aliasing. In Proceedings of the ACM SIGPLAN ’92 Conference on Pro-

gramming Language Design and Implementation, pages 235–248, June 1992.
11. MPEG Industry Forum. http://www.mpegif.org/.
12. E. M. Nystrom. FULCRA Pointer Analysis Framework. PhD thesis, University of

Illinois at Urbana-Champaign, 2005.
13. E. M. Nystrom, H.-S. Kim, and W. W. Hwu. Importance of heap specialization

in pointer analysis. In Proceedings of ACM-SIGPLAN-SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering, pages 43–48, June 2004.
14. S. Ryoo, S.-Z. Ueng, C. I. Rodrigues, R. E. Kidd, M. I. Frank, and W. W. Hwu.

Automatic discovery of coarse-grained parallelism in media applications. Transac-

tions on High-Performance Embedded Architectures and Compilers, 1(1):194–213,
2007.

15. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. In Proceedings of the ACM Symposium on Programming

Languages, pages 16–31, January 1996.
16. P. Wu, P. Feautrier, D. Padua, and Z. Sura. Instance-wise points-to analysis for

loop-based dependence testing. In Proceedings of the 16th International Conference

on Supercomputing, pages 262–273, 2002.

