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1. INTRODUCTION 

JavaScript is an interpreted computer programming 

language embedded into web pages that allows the creation 

of sophisticated solutions in the client-side web. It consists 

of a core programming language together with a host 

environment, namely, the Document Object Model (DOM) 

provided by the web browser. 

JavaScript has to be interpreted and executed by a 

dynamic translator inside the web browser, unlike desktop 

applications, which execute optimized code for a specific 

operating system. This dynamic translator is commonly 

called the JavaScript engine. Google uses V8 in Google 

Chrome and Node.js, Apple uses Nitro in Safari, Mozilla 

uses Rhino in Firefox and Microsoft uses JScript engine in 

Internet Explorer. Important efforts to improve the 

performance of these engines have been done in the last 

years. In this work, we focus on V8 JavaScript engine, 

which is an open source and widely used JavaScript engine 

developed by Google that ships with Chrome web browser.  

V8 is a dynamic compiler and therefore, program 

execution and code generation have to be efficiently 

synchronized in order not to affect responsiveness. It 

focuses on optimizing hot functions (i.e. those that execute 

more often). In this regard, V8 integrates two compilers, 

one that runs fast (i.e. has light overhead) and produces 

generic code (Full-codegen); and one that does not run as 

fast but generates more optimized code (Crankshaft). 

There is a significant number of executed instructions 

that are not part of the JavaScript application itself. These 

instructions can be considered as overhead produced by the 

V8 engine, which is a consequence of the characteristics of 

the JavaScript language along with the dynamic 

compilation nature of V8. This work deals with V8 

targeting x86-64 processors. We have quantified two kinds 

of overhead in the JavaScript execution in steady state. The 

first one is the V8 runtime overhead needed to support 

native execution (i.e. garbage collector, compilation, etc.). 

The second one is the additional checks and guards 

introduced by the dynamic nature of JavaScript. These two 

types of overhead represent 35% and 25% respectively of 

the total execution time in average 

There is a great opportunity to improve the performance 

of JavaScript platforms by reducing these overheads. 

Therefore, we propose using the insights gained from this 

study to improve certain parts of V8, concretely the 

overhead due to the dynamic nature of JavaScript.  The 

optimizations that we propose are based on hw/sw 

codesigned techniques that incorporate new x86-64 

instructions tailored for dynamic languages.  

2. PROPOSAL 

We propose three optimizations that are supported by the 

introduction of new hardware and the necessary software 

changes. In this work we assume the x86-64 instruction set 

as target for V8 and, so we introduce several new x86-64 

instructions to support these optimizations. 

The proposed HW/SW codesigned based optimizations 

have been simulated at micro-architectural level through a 

cycle-level simulator. We have named each optimization 

after the kind of operation that it tries to accelerate. 

2.1 Deoptimization Bailout and Check Stack 

Optimization 

When optimized code is checked to potentially deoptimize 

it, two instructions are used. The first one is an instruction 

that changes a flag. This instruction is usually a test or a 

cmp instruction, but not always. The second one is a 

conditional branch instruction that jumps to a 

deoptimization bailout depending on the flag set by the 

previous instruction. We have observed that optimized code 

is rarely deoptimized. 

The idea behind deoptimization bailout optimization is 

changing these two instructions into a new one (Figure 1). 

This new instruction performs an ALU operation, checks a 

flag specified in the instruction and raises an exception in 

case that the check succeeds. The key point is that in the 

vast majority of cases (almost 100%) the code is not 

deoptimized. Therefore, the benefits of this new instruction 

are that when the code is not deoptimized, less dynamic 

instructions are executed and branch prediction is not 

needed. 

 

Figure 1. Deoptimization pattern improvement. 

If the code has to be deoptimized, a hardware exception 

is thrown. This exception is intercepted by a handler in the 

V8 runtime that executes a special routine, which finds the 

action to do according to the current program counter. This 

action is a jump to an address that targets a specific 

deoptimization bailout. The overhead is negligible 

compared with the deoptimization routine itself. 

We can use the same exception mechanism to optimize 

the Check Stack pattern. It uses exactly the same approach 

to find the action to do. However, in this case, the action is 

a call that interrupts the program because another external 
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exception has taken place. Figure 2 represents this 

optimization at instruction level. 

 

Figure 2. Check Stack improvement. 

2.2 Tagged-to-Integer optimization 

After applying the optimization presented in the previous 

section, Figure 3a presents the new code for Tagged To 

Integer conversion. We propose to join the xehtest and shift 

instructions in only a new single one, which is named 

xehtestshift (Figure 3b). This new instruction shifts the 

value of the register. If the value is not a SMI, an exception 

to deoptimization is produced. 

 

 

Figure 3. Tagged-to-Integer pattern improvement. 

2.3 Check Non-SMI and Check Map Optimization 

We have realized that there are certain sequences of checks 

that are very frequent. The most repeated pattern is a Check 

Non-SMI followed by a Check Map. Therefore, with the 

optimization presented in this section, the sequence of 

instructions regarding this pattern is optimized. 

After applying the optimization presented in section 4.1, 

Figure 4a presents the new code for the Check Non-SMI 

and Check Map pattern. We propose to join the xehtest and 

xehcmp instructions into a new one (Figure 4b), which is 

named xehtestcmp. This instruction checks whether this 

pointer does not contain a SMI and whether this points to 

an object whose type is the expected one. Otherwise, an 

exception that jumps to deoptimization code is produced. In 

this way, the number of dynamic instructions for this 

pattern are reduced to only two (Figure 4b). 

 

Figure 4. Check non-SMI and check map pattern 

improvement. 

3 RESULTS 

Below we present the performance of our optimizations in 

number of cycles, using three benchmark suites to analyze 

the V8 dynamic compiler: the Octane suite, Kraken suite 

and the SunSpider suite. We use a timing simulator with a 

micro-architectural configuration closely matching a 

Nehalem core. 

All suites show an important improvement for the 

Deoptimization Bailout optimization. Overall, the proposed 

optimizations reduce the number of cycles by 5.2%, 6.2% 

and 7%, for Octane, Kraken and SunSpider suites 

respectively. 

 

 
Figure 5: Improvement in number of cycles. 

4 CONCLUSIONS 

JavaScript is a widely-used dynamic language used by Web 

browsers for web applications, and its popularity is 

expected to increase in the future. Therefore, the 

optimization of JavaScript engines will have a great impact 

in future computing systems. 

We have quantified the execution overhead and 

classified it into two main categories. The first one is the 

code that V8 runtime executes for different housekeeping 

activities (i.e. garbage collector, compilation, etc.). The 

second one is the additional checks and guards introduced 

by the dynamic nature of JavaScript. These overheads are 

important, and they represent around 60% (25% additional 

checks and guards, and 35% compilation, garbage collector 

and helpers) of the total execution time in steady state.  

Finally, guided by these results, we have developed three 

novel HW/SW based optimizations, which reduce the most 

important sources of this overhead. They are based on a 

hybrid HW/SW approach that requires the introduction of 

some new machine instructions, some additional hardware 

support and some changes in the code generated by the 

dynamic compiler. We have shown that these optimizations 

result in a 6% average speedup for representative 

benchmarks. 
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