

1

ANALYSIS AND OPTIMIZATION OF JAVASCRIPT ENGINES
Gem Dot†, Alejandro Martínez‡, Antonio González†

† Technical University of Catalonia ‡ ARM

{gdot,antonio}@ac.upc.edu almavi1980@gmail.com

1. INTRODUCTION

JavaScript is an interpreted computer programming

language embedded into web pages that allows the creation

of sophisticated solutions in the client-side web. It consists

of a core programming language together with a host

environment, namely, the Document Object Model (DOM)

provided by the web browser.

JavaScript has to be interpreted and executed by a

dynamic translator inside the web browser, unlike desktop

applications, which execute optimized code for a specific

operating system. This dynamic translator is commonly

called the JavaScript engine. Google uses V8 in Google

Chrome and Node.js, Apple uses Nitro in Safari, Mozilla

uses Rhino in Firefox and Microsoft uses JScript engine in

Internet Explorer. Important efforts to improve the

performance of these engines have been done in the last

years. In this work, we focus on V8 JavaScript engine,

which is an open source and widely used JavaScript engine

developed by Google that ships with Chrome web browser.

V8 is a dynamic compiler and therefore, program

execution and code generation have to be efficiently

synchronized in order not to affect responsiveness. It

focuses on optimizing hot functions (i.e. those that execute

more often). In this regard, V8 integrates two compilers,

one that runs fast (i.e. has light overhead) and produces

generic code (Full-codegen); and one that does not run as

fast but generates more optimized code (Crankshaft).

There is a significant number of executed instructions

that are not part of the JavaScript application itself. These

instructions can be considered as overhead produced by the

V8 engine, which is a consequence of the characteristics of

the JavaScript language along with the dynamic

compilation nature of V8. This work deals with V8

targeting x86-64 processors. We have quantified two kinds

of overhead in the JavaScript execution in steady state. The

first one is the V8 runtime overhead needed to support

native execution (i.e. garbage collector, compilation, etc.).

The second one is the additional checks and guards

introduced by the dynamic nature of JavaScript. These two

types of overhead represent 35% and 25% respectively of

the total execution time in average

There is a great opportunity to improve the performance

of JavaScript platforms by reducing these overheads.

Therefore, we propose using the insights gained from this

study to improve certain parts of V8, concretely the

overhead due to the dynamic nature of JavaScript. The

optimizations that we propose are based on hw/sw

codesigned techniques that incorporate new x86-64

instructions tailored for dynamic languages.

2. PROPOSAL

We propose three optimizations that are supported by the

introduction of new hardware and the necessary software

changes. In this work we assume the x86-64 instruction set

as target for V8 and, so we introduce several new x86-64

instructions to support these optimizations.

The proposed HW/SW codesigned based optimizations

have been simulated at micro-architectural level through a

cycle-level simulator. We have named each optimization

after the kind of operation that it tries to accelerate.

2.1 Deoptimization Bailout and Check Stack

Optimization

When optimized code is checked to potentially deoptimize

it, two instructions are used. The first one is an instruction

that changes a flag. This instruction is usually a test or a

cmp instruction, but not always. The second one is a

conditional branch instruction that jumps to a

deoptimization bailout depending on the flag set by the

previous instruction. We have observed that optimized code

is rarely deoptimized.

The idea behind deoptimization bailout optimization is

changing these two instructions into a new one (Figure 1).

This new instruction performs an ALU operation, checks a

flag specified in the instruction and raises an exception in

case that the check succeeds. The key point is that in the

vast majority of cases (almost 100%) the code is not

deoptimized. Therefore, the benefits of this new instruction

are that when the code is not deoptimized, less dynamic

instructions are executed and branch prediction is not

needed.

Figure 1. Deoptimization pattern improvement.

If the code has to be deoptimized, a hardware exception

is thrown. This exception is intercepted by a handler in the

V8 runtime that executes a special routine, which finds the

action to do according to the current program counter. This

action is a jump to an address that targets a specific

deoptimization bailout. The overhead is negligible

compared with the deoptimization routine itself.

We can use the same exception mechanism to optimize

the Check Stack pattern. It uses exactly the same approach

to find the action to do. However, in this case, the action is

a call that interrupts the program because another external

mailto:antonio%7D@ac.upc.edu

2

exception has taken place. Figure 2 represents this

optimization at instruction level.

Figure 2. Check Stack improvement.

2.2 Tagged-to-Integer optimization

After applying the optimization presented in the previous

section, Figure 3a presents the new code for Tagged To

Integer conversion. We propose to join the xehtest and shift

instructions in only a new single one, which is named

xehtestshift (Figure 3b). This new instruction shifts the

value of the register. If the value is not a SMI, an exception

to deoptimization is produced.

Figure 3. Tagged-to-Integer pattern improvement.

2.3 Check Non-SMI and Check Map Optimization

We have realized that there are certain sequences of checks

that are very frequent. The most repeated pattern is a Check

Non-SMI followed by a Check Map. Therefore, with the

optimization presented in this section, the sequence of

instructions regarding this pattern is optimized.

After applying the optimization presented in section 4.1,

Figure 4a presents the new code for the Check Non-SMI

and Check Map pattern. We propose to join the xehtest and

xehcmp instructions into a new one (Figure 4b), which is

named xehtestcmp. This instruction checks whether this

pointer does not contain a SMI and whether this points to

an object whose type is the expected one. Otherwise, an

exception that jumps to deoptimization code is produced. In

this way, the number of dynamic instructions for this

pattern are reduced to only two (Figure 4b).

Figure 4. Check non-SMI and check map pattern

improvement.

3 RESULTS

Below we present the performance of our optimizations in

number of cycles, using three benchmark suites to analyze

the V8 dynamic compiler: the Octane suite, Kraken suite

and the SunSpider suite. We use a timing simulator with a

micro-architectural configuration closely matching a

Nehalem core.

All suites show an important improvement for the

Deoptimization Bailout optimization. Overall, the proposed

optimizations reduce the number of cycles by 5.2%, 6.2%

and 7%, for Octane, Kraken and SunSpider suites

respectively.

Figure 5: Improvement in number of cycles.

4 CONCLUSIONS

JavaScript is a widely-used dynamic language used by Web

browsers for web applications, and its popularity is

expected to increase in the future. Therefore, the

optimization of JavaScript engines will have a great impact

in future computing systems.

We have quantified the execution overhead and

classified it into two main categories. The first one is the

code that V8 runtime executes for different housekeeping

activities (i.e. garbage collector, compilation, etc.). The

second one is the additional checks and guards introduced

by the dynamic nature of JavaScript. These overheads are

important, and they represent around 60% (25% additional

checks and guards, and 35% compilation, garbage collector

and helpers) of the total execution time in steady state.

Finally, guided by these results, we have developed three

novel HW/SW based optimizations, which reduce the most

important sources of this overhead. They are based on a

hybrid HW/SW approach that requires the introduction of

some new machine instructions, some additional hardware

support and some changes in the code generated by the

dynamic compiler. We have shown that these optimizations

result in a 6% average speedup for representative

benchmarks.

5 ACKNOWLEDGMENTS

This work has been partially supported by the Spanish

Ministry of Economy and Competitiveness under grants

TIN2010-18368 and TIN2013-44375-R and the Spanish

Ministry of Education, Culture and Sport under grant

FPU12/05670.

