
Super-Bytecode Construction for Accelerating
JavaScript Object Property Accesses

Seong-Won Lee, Soo-Mook Moon
Seoul National University

ABSTRACT
JavaScript execution during web page loading spends much of its
time for executing runtime services of the JavaScript engine,
especially for accessing properties of objects. One problem is that
many of these object properties are accessed only once during
web page loading. This makes the bytecode for these one-time
accesses be executed without optimizations such as inline caching,
while suffering from the overhead of creating property maps for
each access. This paper proposes super-bytecode for merging a
sequence of property accesses for the same object, with optimized
runtime services to accelerate them. It also improves inline
caching. Our preliminary experimental results show that the
super-bytecode accelerates the loading of some web pages.

1. Introduction
Web pages are programmed using HTML5, CSS, and JavaScript.
During web page loading, the browser parses the HTML
document and builds a document object model (DOM) tree, which
is then displayed on the screen based on CSS by the rendering
engine. When the JavaScript tag is met during the HTML parsing,
the corresponding JavaScript code is executed by the JavaScript
engine, mostly for initializing objects and registering event
handlers. JavaScript code is first parsed to the bytecode, which is
either interpreted or translated to machine code by the just-in-time
compiler (JITC) for faster execution. The JavaScript execution
takes a significant (34%) portion of the web page loading time [2].

We found that JITC is not effective for web pages, especially for
accelerating web page loading. For example, Figure 1 shows the
performance of the JITC for the JavaScript execution time during
the loading of some web pages, compared to that of the
interpreter, when we experiment with the WebKit JavaScriptCore
(JSC) engine [5] (version 1.4.0); they are (1) abc.com, (2) digg.com,
(3) iht.com, (4) maxim.com, (5) nationalgeographic.com, (6)
nydailynews.com, (7) reuters.com, (8) slashdot.org, (9) wsj.com, and (10)
Sunspider benchmark for comparison, respectively. For most web
pages except for (8), the JITC shows a worse performance than
the interpreter. This is in sharp contrast for the Sunspider
benchmark where the JITC is much better. Actually, when we turn
on JITC for any latest JavaScript engines (e.g., DFG JITC or V8
Crankshaft), we rarely see an improvement, but only a
degradation for web pages or apps.

Figure 1. JavaScript execution time during web page loading.

One reason is that JavaScript execution during web page loading
spends much of its time for executing runtime services or the

native functions of the JavaScript engine, which cannot be
accelerated by the JITC. Runtime services are for executing some
complex jobs such as object property accesses or floating point
operations, requested by the interpreter or the JITC. They are part
of the functions in the JavaScript engine in C++. Native functions
are for JavaScript built-in functions (e.g., math) or for API
functions (e.g., DOM API) in C++. When we experiment with
JITC enabled, Figure 2 shows the distribution of JavaScript
running time during the web page loading. Runtime services and
native function take more than 60% of the running time. Parsing
and JITC overhead is also significant, leaving the runtime portion
of the JITC-generated machine code somewhat marginal.

Figure 2. Distribution of JavaScript execution during loading.

The above graph indicates the JITC is not effective for web page
loading. On the other hand, there is not much to accelerate the
interpreter routine itself. And, the native functions are fixed, so
there is nothing to accelerate them, either. The only thing left to
optimize is the runtime services of the JavaScript engine. We
found that the runtime services for object property accesses are
dominant among the execution time of the runtime services as
shown in Figure 3. We also found that 84% of the accesses are the
one-time accesses, and repeated accesses are just 16%.

Figure 3. Portion of property access in runtime services.

Based on these observation, we attempt to optimize the object
property accesses during the web page loading, in the context of
interpreter, especially for the first-time accesses, most of which
are one-time accesses. We first explain the overhead involved
with the object property access, especially the first-time access.

A JavaScript object has a storage table which has the values of
its properties and a property map which describes the offset of
each property in the storage table [3]. For example, consider a
function point() in Figure 4 (a), which is used as a constructor of
an object to initialize its properties. Figure 4 (b) shows the
bytecode generated by the parser of the JSC [5], where put_by_id

0	

1	

2	

3	

4	

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)	 (9)	 (10)	

0%	

20%	

40%	

60%	

80%	

100%	

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)	 (9)	 (10)	

Runtime	 service	 Native	 JITCed	 Parse	 &	 JITC	

0%	

20%	

40%	

60%	

80%	

100%	

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)	 (9)	 (10)	

Property	 access	 Others	

will initialize each property. The runtime service for put_by_id
will first check if the property exists in the object; if not, it will
add the property in the storage table and create a new property
map based on the old one, added with the offset of the new
property. So, each put_by_id will generate a new property map as
in Figure 4 (c). If point() is called again to create a new object, the
previous property maps will be reused without creating them
again, though [3]. However, web-page loading is involved with
many one-time object property accesses, so the creation of
property maps for each bytecode can be an overhead.

 Another overhead of object accesses is related to inline caching
[4]. If point() is called again repetitively as in Figure 4 (a) and the
object structure (i.e., the constructor point()) does not change over
iterations, it would be better to remember the offset and use it
directly instead of accessing the property map. So, the bytecode
put_by_id is replaced by a quicker version where the offset and
the address of the property map are saved. When it is interpreted,
the address is compared to the current address of the property map
first, and if they are the same, the offset in the bytecode is used
directly to access the property in the storage table without using
the runtime services. This is called inline caching. The issue is
that we need to compare the address three times for each access in
Figure 4 (a), for example, which we want to reduce.

 Our optimization approach is using a super-bytecode instruction
which merges multiple object-access bytecodes into one bytecode.
This can reduce the overhead of the runtime services of individual
bytecode, especially for the first-time object accesses. For inline
caching, super-bytecode can also reduce the overhead of
comparing multiple addresses of property maps by making a
single comparison with the final property map. We will describe
how to generate the super-bytecode in the next section

Figure 4. An example of the object property accesses.

2. Super-Bytecode Construction (SBC)
When a function is called for the first time, we perform the

super-bytecode construction (SBC) for the method. To find the
candidate object accesses for SBC, we first perform an analysis on
the basic block (BB) boundary to reduce the analysis overhead. In
the current implementation, we simply merge a sequence of

put_by_ids for the same object in the BB into a single bytecode
m_put_by_id. Similarly, a sequence of get_by_ids for the same
object is replaced by a single bytecode m_get_by_id. In Figure 4
(b), we can replace the three put_by_ids which write the three
properties for the same object by a new bytecode m_put_by_id r-7,
{x,y,z}, {r-8,r-9,r-10}. This will write the three properties by a
merged, optimized runtime service routine, instead of three
runtime service routines.

 The benefit of the super-bytecode is two-folds. We can reduce
the overhead of creating the property map for each individual
bytecode for the first-time object property accesses. In Figure 4
(c), it is an overhead to create the property map0 and map1 since
only the property map2 is enough to resolve the offset of x, y, and
z. Even when the function point() is called repetitively, the
property map2 is enough to resolve the offsets. Our super-
bytecode will obviate the overhead of creating the extra property
maps or accessing them, which will be more useful as more
property accesses are merged, even if they are executed only once.

 We can also have a benefit when the super-bytecode is executed
repetitively. Inline caching requires the address comparison of the
property map, which we need to do for each access. In Figure 4
(c), for example, we need to compare three times for the three
accesses with the corresponding property maps. SBC requires
saving only one address and comparing only once, which would
accelerate the inline-cached, property accesses.

3. Experimental Result
 We implemented the proposed SBC for the JSC interpreter in a
WebKit-based web browser (the JIT compiler is disabled). We
measured the JavaScript execution time during the loading of web
pages and the running of the Sunspider benchmark on an x86-
based environment. Figure 5 shows the interpretation time speed-
up with SBC over the interpretation with the original bytecode.
We can find tangible improvement for some web pages. Also at
least, there is no serious slow-down from the optimization
overhead for the other web pages and the benchmark. We are still
working on further optimizations based on this promising result.

Figure 5. Speed-up of super-bytecode compared to original.

4. References
[1] ECMAScript. http://www.ecmascript.org/.
[2] S. Lee and S. Moon. Selective Just-in-Time Compilation for

Client-side Mobile JavaScript Engine. In CASES, 2011

[3] C. Chambers, D. Ungar, and E. Lee. An Efficient
Implementation of SELF, a Dynamically-Typed Object-
Oriented Language Based On Prototypes. In OOPSLA, 1989.

[4] U. Holzle, C. Chambers, and D. Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages with
Polymorphic Inline Caches. In ECOOP, 1991.

[5] JavaScriptCore. http://trac.webkit.org/wiki/JavaScriptCore.

0.9	

0.95	

1	

1.05	

1.1	

1.15	

(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)	 (9)	 (10)	

