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Télécom Bretagne

serge.guelton@telecom-bretagne.eu

Pierrick Brunet
INRIA/MOAIS

pierrick.brunet@inria.fr

Mehdi Amini

Abstract
The Python language [5] has a rich ecosystem that now
provides a full toolkit to carry out scientific experiments,
from core scientific routines with the Numpy package[3, 4],
to scientific packages with Scipy, plotting facilities with the
Matplotlib package, enhanced terminal and notebooks with
IPython. As a consequence, there has been a move from
historical languages like Fortran to Python, as showcased by
the success of the Scipy conference.

As Python based scientific tools get widely used, the
question of High performance Computing naturally arises,
and it is the focus of many recent research. Indeed, although
there is a great gain in productivity when using these tools,
there is also a performance gap that needs to be filled.

This extended abstract focuses on compilation techniques
that are relevant for the optimization of high-level numerical
kernels written in Python using the Numpy package, illus-
trated on a simple kernel.

1. Optimizations Opportunities in a Typical
Numpy Kernel

This section briefly presents the core concepts of the Numpy
package, then goes through all the optimization opportuni-
ties in a small kernel as a showcase of the optimization op-
portunities.

1.1 Numpy
The reference implementation of Numpy is a native Module,
written mostly in C. It uses the BLAS API whenever possible
and provides a relatively efficient array abstraction in the
form of the ndarray data structure.

It also enforces a high-level programming style but it’s
very inefficient when explicit subscripts are used.

1.2 The Rosenbrock Function
We use the kernel illustrated in Listing 1 and adapted from
the Scipy source code of scipy.optimize.rosen as a
leading example. It uses Numpy’s sum function, Python’s
square notation and Numpy’s array slicing. It is a good
example of high-level Python kernel, although using the
original function directly would naturally make sense.

Note that due to dynamic typing, this function can take
arrays of different shapes and types as input.

def r o s e n ( x ) :
t 0 = 100 ∗ ( x [ 1 : ] − x [ : −1] ∗∗ 2) ∗∗ 2
t 1 = (1 − x [ : −1 ] ) ∗∗ 2
re turn numpy . sum ( t 0 + t 1 )

Listing 1: High-level implementation of the Rosenbrock
function in Numpy.

1.3 Temporaries Elimination
In Numpy, any point-to-point array operation allocates a new
array that holds the computation result. This behavior is con-
sistent with many Python standard module, but it is a very
inefficient design choice, as it keeps on polluting the cache
with potentially large fresh storage and adds extra alloca-
tion/deallocation operations, that have a very bad caching ef-
fect. In the rosen function from Listing 1, 7 temporary arrays
are allocated (slicing does not create a temporary array but
a view) to hold intermediate steps. Had the expression been
evaluated lazily, no temporary would have been needed.

1.4 Operator Fusion
As Numpy is a native library mostly written in C, each oper-
ator computation is performed by a function implemented as
a loop performing a single operation, and the operator chain-
ing is done at the interpreter level. This is a typical problem
in library design: if only a small set of functions is provided,
it prevents the optimization of merging multiple operators
into a single specialized operator. On the contrary, provid-
ing many operator combinations as part of the library yields
better performance to the price of API bloat. Listing 1 illus-
trates the use of a small set of functions: a loop is gener-
ated for each temporary computation, plus an extra loop for
the numpy.sum reduction, whereas a single loop would have
been necessary with operator fusion.

1.5 Loop Vectorization and Parallelization
Without operator fusion, there would be very little benefit to
generate SIMD instructions for the respective array opera-
tions used by each operator, as the memory loads and stores
would have dominated the execution time. This is even more
important as Numpy typically operates on double precision
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floats, which means only two (SSE) to four (AVX) scalars
per vector registers.

Parallelization would also suffer from the lack of opera-
tor fusion: a synchronization fence is needed between each
temporary computation. Hence the loop computation inten-
sity would be very low compared to the memory pressure
implied by two array reads and one array write for a single
binary operator.

On the opposite, if all computations were merged into
a single loop using temporaries elimination and operator
fusion, parallelization would be more effective as barriers
between binary operations are no longer needed and loads
and stores are counterbalanced by several operations.

2. Optimization with the Pythran Compiler
2.1 Pythran
The optimizations presented in the previous section have
been implemented in the Pythran compiler [1], a transla-
tor from a subset of Python to C++11 [2]. The input Opti-
mization a Python module written in the subset accepted by
the compiler. Pythran translates it in its internal representa-
tion, a simplified Python AST. It performs various optimiza-
tions then outputs either Python code, in a source-to-source
fashion, or C++ templated code calling the pythonic library
that typically implements the ndarray interface. User an-
notations can be used to instantiate this code for the proper
types and generate a native library. This library relies on
Boost.Python library to match Python’s C API.

The Pythran compiler is an open source project publicly
released under the BSD license1.

Compared to existing alternatives, Pythran keeps the
static compilation approach used by Cython, when JIT com-
pilation is mainly used to statically type kernels before
code generation in Numba and Parakeet. Unlike Cython,
it maintains full Python backward compatibility. Following
the Parakeet approach, it focuses on high-level constructs,
while still generating efficient code for explicit loop and
subscripts.

2.2 Experiments
The experiments are run on an Intel(R) Xeon(R) CPU E5-
2650 0 @ 2.00GHz for a total of 8 cores (multithreading
is not used). Each node has access to 64 KB of L1 cache,
256 KB of L2 cache. Both L1 and L2 caches are private,
while L3 cache is shared between the 8 cores. This configu-
ration provides a total of 64 GB of main memory. It supports
up to AVX. The backend compiler is GCC 4.9 (20140528)
with libgomp.

To compare the different optimization effects, we evalu-
ated different optimization combination for Listing 1. The
input is a raw array of 1,000,000 single precision floating
point elements. Figure 1 illustrates the results. We can notice
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Figure 1: Execution time of the rosen kernel on Intel Xeon.

the importance of forward substitution on this benchmark as
we avoid one extra loop, two temporary array assignments
and some load/store for SIMD instructions. Vectorization is
also extreemly profitable.

Conclusion
This extended abstract presents a short study of the optimiza-
tion of Python/Numpy high level kernels in the context of
high performance computing. It uses a real-worl synthetic
kernel as leading example and focuses on the efficient im-
plementation and optimization of array expressions within
the ahead-of-time Pythran compiler, showing that a compi-
lation step at Python level before generation of lower-level
code makes it possible to generate vectorized, parallel C++
code. A comparison with existing JIT compilers for scien-
tific Python validates the approach, showing significant per-
formance improvements over the state of the art.
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