
Improving JavaScript Performance
by Deconstructing the Type System

∗

Wonsun Ahn
University of Pittsburgh

{wahn}@pitt.edu

Jiho Choi, Thomas Shull, María J.
Garzarán, and Josep Torrellas

University of Illinois at Urbana-Champaign
{jchoi42, shull1, garzaran,

torrella}@illinois.edu

ABSTRACT

Increased focus on JavaScript performance has resulted in
vast performance improvements for many benchmarks. How-
ever, for actual code used in websites, the attained improve-
ments often lag far behind those for popular benchmarks.

This paper shows that the main reason behind this short-
fall is how the compiler understands types. JavaScript has
no concept of types, but the compiler assigns types to ob-
jects anyway for ease of code generation. We examine the
way that the Chrome V8 compiler defines types, and identify
two design decisions that are the main reasons for the lack
of improvement: (1) the inherited prototype object is part
of the current object’s type definition, and (2) method bind-
ings are also part of the type definition. These requirements
make types very unpredictable, which hinders type special-
ization by the compiler. Hence, we modify V8 to remove
these requirements, and use it to compile the JavaScript
code assembled by JSBench from real websites. On aver-
age, we reduce the dynamic instruction count of JSBench
by 49%.

1. MOTIVATION

Figure 1 compares the number of instructions executed by
several JavaScript benchmarks with different V8 optimiza-
tion levels. We show data for the JSBench [5], Kraken [1],
Octane [2], and SunSpider [3] suites. JSBench is a suite
that assembles JavaScript code from some real websites,
while Kraken, Octane, and SunSpider are popular bench-
marks that were developed by the web browser community
to compare the performance of JavaScript compilers. Note
that the Y axis is in logarithmic scale. For each benchmark
(or average), we show three bars, corresponding to three
environments. Baseline is when all the V8 optimizations
have been applied. No Crankshaft is Baseline with the V8
Crankshaft compiler disabled. Crankshaft is the V8 opti-
mizing compiler, which performs traditional compiler opti-
mizations. Finally, No Crankshaft, No IC is No Crankshaft
with inline caching disabled.

Looking at the mean bars, we see that both the optimizing
compiler and inline caching substantially benefit the Kraken,
Octane, and SunSpider suites. However they have a negligi-
ble effect on the JSBench suite. The goal of this work is to
explain why real websites as assembled in JSBench do not
benefit from neither inline caching or V8 optimizations, and
propose solutions to the problem.

∗This work is supported in part by NSF under grants CCF-
1012759, CNS-1116237, and CNS-1319657, and Intel under
the Illinois-Intel Parallelism Center (I2PC).

am
azon-chrom

e

am
azon-opera

facebook-chrom
e

google-chrom
e

google-firefox

google-opera

tw
itter-w

ebkit

yahoo-firefox

yahoo-opera

jsbench-am
ean

kraken-am
ean

octane-am
ean

sunspider-am
ean

0.1

1.0

10.0

100.0

N
o

rm
a

liz
e

d
 I

n
s
tr

u
c
ti
o

n
s

Baseline
No Crankshaft
No Crankshaft, No IC

Figure 1: Comparing the number of instructions executed with
different V8 optimization levels.

2. LOW TYPE PREDICTABILITY

Websites perform poorly compared to popular benchmarks
because of type unpredictability. We define type predictabil-
ity in terms of (1) the ability of the compiler to anticipate
the type of an object at the object access site, and (2) the
variability in object types observed at the access site. We
refer to the former form of predictability as type-hit-rate and
the latter as polymorphism. Type predictability is crucial to
generating high-quality code.

With a low type-hit-rate, the compiler is frequently forced
to perform an expensive dictionary lookup on an object
property access, instead of a simple indexed access after a
simple type check. Also, a type miss sometimes requires the
creation of a new hidden class for the new type — which is
even more expensive. Finally, with high polymorphism, the
compiler is forced to do a lookup for the entry of the correct
type among multiple code entries in an inline cache.

There is an abundance of literature to help JavaScript
programmers write high-performance code by avoiding type
unpredictability. Programmers are advised to coerce all the
objects at an access site to have the same set of properties,
and to add the properties in the same order, such that they
do not end up having different hidden classes.

However, we have discovered that, in reality, the bulk of
type unpredictability in JavaScript code in websites comes
from two unexpected sources: prototypes and method bind-
ings. Prototypes in JavaScript serve a similar purpose as
class inheritance in statically-typed object-oriented languages
such as C++ and Java. Object methods serve a similar pur-
pose as class methods in statically-typed languages. In a
statically-typed language, the parent classes and the class
method bindings of an object never change.

JavaScript compilers optimize code under the assump-

tion that, although JavaScript is a dynamically-typed lan-
guage, its behavior closely resembles that of a statically-
typed language. This is done by integrating the prototype
and method binding information into hidden classes. Since
hidden classes are immutable, this allows a single check of
the hidden class in inline caches to suffice as a check for,
not only the set of properties, but also the prototype and
method bindings. This allows the compiler to generate opti-
mized code when traversing the prototype inheritance chain
or when performing method calls, in the same way it can
optimize for property accesses. However, the downside is
that, to maintain the immutability of hidden class, a new
hidden class needs to be created for every modification.

For the popular JavaScript benchmarks that compiler de-
velopers compete on, the assumption that prototypes and
method bindings rarely change holds true. However, the be-
havior of the code that is being used in websites is much more
dynamic. In websites, prototypes and method bindings do
change quite often. This results in an increase in the number
of hidden classes and, along with it, type unpredictability.
This is the prime reason behind the comparatively lackluster
performance of the optimizing compiler and inline caching
in websites seen in Figure 1.

Figure 2(a) shows an example where prototype changes
can lead to type unpredictability. A loop creates a new
function object at each iteration, assigning it to the vari-
able Foo, and along with it its associated prototype object.
Also at each iteration, a new object Obj is constructed us-
ing that function. Since a new object in JavaScript always
inherits from the prototype associated with its constructor,
Obj ends up having a different prototype, and hence a new
hidden class, at each iteration. This type of code pattern,
where functions are created dynamically in the same scope
as the call site, is quite common in JavaScript code — of-
ten simply because it is easier to program that way. Also,
it leads to better encapsulation, compared to defining the
function in the global scope and polluting the global name
space. Regardless of the reason, ideally we would like only
a single type to reach the inline cache, namely the initial
hidden class created by function Foo.

Figure 2(b) shows an example where method binding changes
can lead to type unpredictability. A loop creates a new ob-
ject Obj at each iteration, and then assigns new functions to
properties Foo and Bar. The call to function property Foo

at line 5 is made using a call inline cache. We would like
that only a single type reaches the inline cache. In reality,
the type of Obj that reaches line 5 changes across iterations
due to different method bindings at Foo and Bar.

3. RESTRUCTURING THE TYPE SYSTEM

We restructure the V8 compiler to decouple prototypes
and method bindings from the type of an object, so a change
in either does not result in the creation of a new hidden class.

We decouple prototypes from types by modifying inter-
nal data structures in the compiler such that the __proto__

pointer (the pointer to the parent prototype) is moved from
the hidden class to the object itself. With this change, indi-
vidual objects now point directly to their respective proto-
types. This change obviates the need to create a new hidden
class whenever the prototype is changed.

With prototype decoupling, all instances of Obj in Fig-
ure 2(a) can now share a single hidden class. In order to
enable reuse of a single hidden class across multiple dynamic

1 for (var i = 0 ; i < 100 ; i++) {
2 var Foo = func t i on (x , y) {
3 th i s . sum = x + y ;
4 }
5 var Obj = new Foo (1 , 2) ;
6 }

(a)

1 for (var i = 0 ; i < 100 ; i++) {
2 var Obj = new Object () ;
3 Obj.Foo = func t i on () {} ;
4 Obj.Bar = func t i on () {} ;
5 Obj.Foo () ;
6 }

(b)

Figure 2: Code patterns that lead to high type unpredictability
due to (a) prototype changes and (b) method binding changes.

instances of a function (Foo in the example), we modify the
compiler such that now all objects created by the same syn-
tactic function start from the same initial hidden class. A
syntactic function is a static function instance in the source
code as given in the abstract syntax tree. The initial hid-
den class is cached in the internal syntactic function object
shared by all instances of that function with the creation
of the first instance. A subsequent instance of the function
uses that hidden class as the initial hidden class for its con-
structed objects.

We propose two approaches to decoupling method bind-
ings from types: complete and partial.

With Complete Decoupling, we entirely decouple method
bindings from types by disallowing the storage of method
bindings in the hidden class altogether. Instead, method
bindings are always stored in the object itself in the form of
pointers to function objects. Now, this can result in slower
method calls, since the compiler can no longer optimize the
calls based on the bindings stored in the immutable hidden
class.

With Partial Decoupling, we seek to keep method bindings
in hidden classes to still optimize calls but in a way that does
not result in excessive hidden class generation. Specifically,
we still store the function object pointers in the object itself
such that updates to them don’t cause new hidden class cre-
ation. But, in addition, we also store bindings to syntactic
functions in the hidden classes to optimize calls. The bi-
nary code generated for a function is stored in the syntactic
function object allocated for that function. Hence, only the
binding to the syntactic function is needed for the purposes
of calling a method.

4. EVALUATION

We implement our enhancements in the Chrome V8 JavaScript
compiler [4]. We build on top of the Full compiler, which is
the lower-tier compiler of V8 that only does inline caching,
and disable Crankshaft. As we saw in Section 1, Crankshaft
does not improve JSBench in any way. Implementing our
enhancements on the more complicated Crankshaft is more
elaborate, and is left as future work.

We test four compiler configurations: B, B*, P, and C.
The baseline (B) is the original V8 compiler. B* is the
original V8 compiler after disabling the flushing of inline
caches on page loads. The Chrome web browser flushes in-
line caches at every page load because, without our enhance-
ments, inline caches are mostly useless across page loads.
The rest of the configurations are built on top of B*. Specif-

0

10

20

30

40

50

60

70

80

90

100

110
N

o
rm

a
liz

e
d

 I
n

s
tr

u
c
ti
o

n
s

Runtime
Store_IC_Miss
Call_IC_Miss
Load_IC_Miss
Code

B B* P C
am

azon-chrom
e

B B* P C
am

azon-opera

B B* P C
facebook-chrom

e

B B* P C
google-chrom

e

B B* P C
google-firefox

B B* P C
google-opera

B B* P C
tw

itter-w
ebkit

B B* P C
yahoo-firefox

B B* P C
yahoo-opera

B B* P C
jsbench-am

ean

B C
kraken-am

ean

B C
octane-am

ean

B C
sunspider-am

ean

Figure 3: Dynamic instruction count normalized to the original V8 compiler (B).

ically, P is B* enhanced with Prototype decoupling. Finally,
C is B* enhanced with the Combination of both prototype
decoupling and method binding decoupling.

Figure 3 shows the dynamic instruction counts for the
given configurations when executing the various benchmarks.
All bars are normalized to B. Dynamic instructions are cat-
egorized into five types: Code, Load IC Miss, Call IC Miss,
Store IC Miss, and Runtime. Code are instructions in the
code generated by the V8 compiler. Load IC Miss, Call IC Miss,
and Store IC Miss are instructions in the runtime inline
cache miss handlers for loads, calls, and stores, respectively.
Runtime are instructions in other runtime functions.

Kraken, Octane, and SunSpider show no improvements as
expected, but we note that our modifications do not cause
overhead either. For JSBench, our optimizations eliminate
on average 49% of the dynamic instructions in JSBench
when all enhancements are applied (C). The reduction in
dynamic instructions comes from a lower inline cache miss
handling overhead, which in turn comes from improvements
in type predictability enabled by our optimizations.

In terms of heap memory footprint, our optimizations has
the potential to increase heap memory for objects due to
adding the __proto__ pointer to objects. On the other hand,
the heap memory dedicated to inine cache code and the hid-
den class metadata can go down due to the reduction of
hidden classes and inline cache misses. On average, we ac-
tually reduce the total heap memory allocated by a sizable
20% for JSBench. The other three benchmark suites had a
negligible increase of 0.4%.

5. CONCLUSIONS

This paper analyzed the impact of the Chrome V8 com-
piler optimizations on JavaScript code from real websites
assembled by JSBench, and found that it lags far behind
the impact on popular benchmarks. We identified the core
problem hampering optimizations as type unpredictability.
The problem stems from the way the compiler understands
the notion of types. V8 encodes into types two pieces of
information unrelated to object structure: (1) the inher-
ited prototype and (2) method bindings. This was done
assuming that the behavior of JavaScript code mimics that
of statically-typed languages, where the inherited class and
method bindings cannot change once an object is created.
We showed that this assumption is often false for JavaScript
code used in real websites.

We proposed rethinking types to accommodate the dy-
namic behavior of JavaScript website code, eliminating most
type unpredictability. In JSBench, these optimizations re-
duced, on average, the the dynamic instruction count by
49% and heap memory allocated by 20%.

6. REFERENCES

[1] Kraken Benchmarks. http://krakenbenchmark.mozilla.org/.
[2] Octane Benchmarks. https://developers.google.com/octane.
[3] SunSpider Benchmarks. http://www.webkit.org/perf/sun-

spider/sunspider.html.
[4] V8 JavaScript Engine. https://developers.google.com/v8/.
[5] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated con-

struction of JavaScript benchmarks. In OOPSLA, 2011.

