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Abstract
Large-scale data mining and deep data analysis are increasingly
important for both enterprise and scientific applications. Statisti-
cal languages provide rich functionality and ease of use for data
analysis and modeling and have a large user base. R[2] is one of
the most widely used of these languages, but is limited to a sin-
gle threaded execution model and problem sizes that fit in a single
node. This paper describes highly parallel R system called RABID
(R Analytics for BIg Data) that maintains R compatibility, lever-
ages the MapReduce-like distributed Spark[6] and achieves high
performance and scaling across clusters. Our experimental evalua-
tion shows that RABID performs up to 5x faster than Hadoop and
20x faster than RHIPE on two data mining applications.
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1. Introduction
Domain experts are interested in what can be discovered from data,
not learning new programming languages, and so providing par-
allel computing tools that are compatible with widely used lan-
guages is important. R is the top software tool in the data analyt-
ics community[5], and its popularity is growing. R, as a sequential
language, is easy to use but is limited to single core performance
and the memory on a single node. An R execution engine that al-
lows users to easily execute their R programs on parallel systems
with high performance would allow analysts to efficiently target
large datasets without the distraction and pain of learning a new
language. RABID is such a system.

Other efforts are summarized in Figure 1. RABID is an R sys-
tem that allows R users to implement efficient analyses (both it-
erative and non-iterative) of datasets on parallel systems without
needing to learn new programming models, languages or parallel
frameworks. RABID’s combination of high-performance and R-
compatibility places it in the upper right corner of the chart in Fig-
ure 1. RABID accomplishes this in three ways. First, RABID is im-
plemented on the Spark framework. Spark outperform Hadoop by
20x[6] on iterative jobs and provides fault tolerance and high avail-
ability, which RABID uses. This alone is insufficient for great par-
allel R performance. Second, RABID uses distributed data struc-
tures that act like regular R data structures and a serialization strat-
egy that is transparent to users and is compatible with the Renjin[1]
R execution engine utilized by RABID. This enables R compatibil-
ity and reduces the memory footprint of a RABID job. Third, R
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Figure 1. Different frameworks compared by R compatibility and
performance.

performs optimizations that reduce the communication overhead
using three strategies. RABID uses a static analysis to determine
the subset of data visible within a function that is actually needed
by the function, reducing the communication volume of data sent
to an R function, and the memory footprint by 80% of the original.
Next, RABID performs operation merging to dramatically reduce
the communication of intermediate values by 60% on average. Fi-
nally, RABID uses communication pipelining to allow communi-
cation and computation to proceed in parallel, and increase perfor-
mance by 20% on average in our applications. These techniques to-
gether allow RABID to support the familiar R programming model
while providing users with high performance parallel executions.

2. RABID Overview
The RABID system allows high performance parallel executions
of R on clusters. It does this by bridging the gap between R and
and the parallel data engine. By targeting Spark we can leverage its
efficiency in handling iterative computations and its fault tolerance
mechanisms. Detailed system design can be referred in [4].

RABID provides distributed data structures and low-level and
high-level operations on those data structures. The low-level oper-
ations target RABID’s distributed R list and the high-level opera-
tions target distributed data frames and matrices as well as provid-
ing parallel data mining functions. We also support access to the
Hadoop Distributed File System (HDFS) from R programs. The R
task coordinates distributed R code hosted by either the Renjin or
GNU R interpreters on server nodes and the optimizer and sched-
uler, as the name implies, performs optimizations described in Sec-
tion 3 and schedules distributed R functions.

R scripts, written by a RABID user, are submitted through a
web server to the RABID (and Spark) master that runs the user’s
command. An R session process (R driver) on the master runs
the user’s script with RABID support. It keeps dataset variables
in symbol tables, schedules DAG structured jobs[6] and maintains



user defined R functions (UDFs). By default, the R code is executed
using the Renjin[1] R virtual machine, which is written in Java.
Renjin was chosen because it, like Spark, is implemented in Java,
and consequently can be better integrated with Spark.

3. Optimizations
Five challenges faced by any parallel and distributed R systems
are (1) Maintaining the R programming model; (2) Enabling effi-
cient iterative parallel R execution; (3) Providing fault tolerance;
(4) Minimizing the memory footprint and (5) Minimizing commu-
nication overheads during the execution of an R program. The first
challenge is to maintain usability and RABID does this by main-
taining R compatibility, as briefly described in Section 2. RABID
meets the second and third challenges by being implemented on
top of the Spark framework, which allows for efficient execution of
iterative computations and provides fault tolerance. RABID meets
the fourth and fifth challenges by applying the optimizations in-
cluding:

• Reducing the memory footprint. On the driver side, we collect
only useful free variables that are serialized to worker nodes.
On the worker side, Spark workers share the datasets with the
Renjin interpreter.

• Optimizing communications. Datasets are blocked in chunks to
reduce the serialization overheads and the data transmission is
pipelined.

• Merging operation. Adjacent non-shuffling data operations are
merged together to reduce the data transmission.

4. Evaluation
We use two workloads, an R implementation of logistic regression
(which we refer to as LR) that implements a gradient descent algo-
rithm to compute the weight of 1 billion 10-D data points and an
R implementation of K-means that performs a clustering on movie
ratings. Both are widely used in data mining applications. Our ex-
periments show the R scripts running on RABID provide improved
performance compared to the implementations in Hadoop 0.20.205
and RHIPE 0.7. First, we show that RABID scales well with these
workloads and that in the data streaming mode our optimizations
give significantly performance improvements.

LR and K-means are both iterative algorithms. LR is run using
a synthetic dataset with 1 billion 10-D data points. K-means uses
the movie dataset with 3 billion ratings from [3]. We use the
default block size for data communication unless noted otherwise.
Experiments were conducted in a 26-node Linux cluster: each
node has 8 cores and 16 GB RAM. The cluster is running RHEL
6.5, Linux Kernel 2.6. Figure 2 shows our evaluation of RABID
performance.

5. Conclusions and Future Work
RABID provides R users with a familiar programming model that
scales to large clusters, allowing larger problem sizes to be effi-
ciently handled. Unlike other systems that require R programmers
to use unfamiliar languages or programming models, RABID users
can write R scripts to create a data analysis job. RABID is imple-
mented on Spark and uses operation merging, data pipelining and
analysis of the environment variables needed by a UDF to further
improve performance. RABID outperforms Hadoop and RHIPE
on our benchmarks. Development continues on RABID to support
more high-level functions and to implement further optimizations.
RABID is cloud-ready and future work will target cloud systems.
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(a) Runtime in seconds for LR over 3 iterations on different
data sizes in 26-node cluster.
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(b) Runtime in seconds for K-means over 3 iterations on
different data sizes in 26-node cluster.

Figure 2. Runtime in seconds for LR and K-means (lower is bet-
ter).
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