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Abstract
R, a dynamic scripting language designed for statistical com-
puting, has grown in popularity in recent years. However, the
low performance of R, due to inefficiencies in the interpreta-
tion, limits its usability. Our previous study classifies R pro-
grams into three types, including Type I (looping over data),
Type II (vector programming), and Type III (glue codes).
The most serious performance problems of R are mostly
manifested on Type I R codes.

We have proposed and implemented two approaches
based on specialization to improve R’s performance for Type
I R codes. Firstly, ORBIT VM, an extension of the GNU
R VM, to perform aggressive object allocation removal
and instruction path length reduction in the GNU R VM
via profile-driven specialization techniques. Secondly, the
VALOR compiler, transforming one specific R Type I code
into Type II to reduce the interpretation overhead. These two
approaches improved the running speedup from 3x to 7x in
different contexts.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers, Interpreters, Run-time environments

Keywords R, Specialization, Dynamic Scripting Language

1. Introduction
R is considered as the lingua franca for data analysis. How-
ever, like other dynamic scripting languages, R is very slow,
which makes it difficult for R to process the truly BIG
data. Earlier research revealed that GNU R VM, the most
widely used R implementation today, can be hundreds of
times slower than C [1]. Our previous study [2] classified
R programs into three categories, Type I (looping over data),
Type II (vector programming), and Type III (glue codes). We
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found out that the major performance problem only appears
in Type I R code. Although real R applications are a mixture
of all the three programming styles, due to the very slow per-
formance of Type I codes, there is a significant amount of R
scripts spend most of the time in the Type I portion.

There are many research projects trying to improve
the performance of R. Figure 1 summarizes all the major
projects through JIT compilation or VM-level optimizations.
We classify the projects according to their target R program-
ming styles (x-axis) and the compatibility with the GNU R
VM (y-axis).
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Figure 1: Landscape of R optimization projects.
The compatibility here means the R VM uses the same

memory object representation as the GNU-R’s. Many related
work built brand new R VMs with their own object represen-
tations, which create a high barrier to adoption by the R user
community. This is because the thousands of packages avail-
able from public R repositories, such as CRAN and Biocon-
ductor, are the most valuable assets of R, and many of these
packages depend on internals of the GNU R VM.

We aim at improving the performance of Type I codes,
while maintaining the full compatibility with the GNU R
VM. We do specialization JIT in the GNU-R interpreter level
to maintain the original memory object representation. Our
work includes two approaches

• ORBIT(Optimized R Byte-code InterpreTer). An ex-
tension of the GNU R VM, to perform aggressive re-
moval of allocated objects and reduction of instruction



path lengths in the GNU R VM via profile-driven special-
ization techniques. The ORBIT VM is fully compatible
with the R language and is purely based on interpreted
execution. It is a specialization JIT and runtime focusing
on data representation specialization and operation spe-
cialization. For our benchmarks of Type I R codes, OR-
BIT is able to achieve an average of 3.5X speedups over
the current release of GNU R VM

• VALOR(Vectorization of AppLy operation for Overhead
Reduction). A lightweight compiler package that reduces
the interpretation overhead of R through the vectoriza-
tion of the widely used Apply class of operations in R.
Our approach combines data transformation and function
vectorization to transform the looping-over-data execu-
tion into a code with mostly vector operations, which can
significantly speedup the execution of Apply operations
in R. The evaluation shows that the transformed code
can achieve up to 22x speedup (and 7x on average) for
a suite of data analysis benchmarks without any native
code generation and still using only a single-thread of
execution.

2. ORBIT VM
The inefficiency of R interpreter mainly comes from 1) The
type generic interpretation, which always requires heavy dy-
namic type checking and dispatch, and 2) The heavy generic
object representation of R, which allocates huge amount of
small memory objects to represents R’s data. We offered a
new approach that combines JIT compilation and runtime
techniques to tackle these problems:

• Profile-directed specialization. We instrumented a min-
imal set of byte-codes to get precise type info efficiently
and use the profiled type to do a lightweight type infer-
ence to get all required type info.

• Interpretation of optimized codes. We translate type
generic byte-codes into type specialized byte-codes, and
still execute them in the extended byte-code interpreter.
There is no native code-gen involved to achieve the light-
weight goal.

• Object allocation removal. We dynamically translate
the type generic object representation to type special-
ized object representation, and remove most of the small
object allocated, which reduces a huge amount memory
management overhead.

3. VALOR Compiler
VALOR compiler uses a lightweight approach that reduces
the interpretation overhead of R through the vectorization
of the widely used Apply class of operations. The stan-
dard implementation of Apply incurs in a large interpre-
tation overhead resulting from iteratively applying the in-
put function to each element of the input data. Our ap-

𝐿𝑜𝑢𝑡 ← 𝐴𝑝𝑝𝑙𝑦( 𝐿 , 𝑓 ) 
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Figure 2: Three Tasks in the Full Vectorization Algorithm

proach combines data transformation and function vector-
ization to transform the looping-over-data execution (Type
I) into a code with mostly vector operations (Type II), as
Lout ← Apply(L, f) ⇒ Lout ← ~f(L). And the transfor-
mation significantly reduces the interpretation overhead of
Apply operations in R

Figure 2 illustrates the three transformations in VALOR
compiler. (1) Data Object Transformation, which permutes
input data so that the vectorized function can get direct ac-
cess to the data (in vector form and stored in consecutive
space) if the input data is not already an array; (2) Function
Vectorization, which generates the vector version of the sin-
gle object function; (3) Caller Site Rewriting, which rewrites
the Apply function call into a vector function invocations,
and performs other optimizations to reduce the overhead.

4. Evaluation
Figure 3 shows ORBIT’s speedup to R byte-code interprter
on the shootout benchmark. It achieved 3.68x speedup in
average. Figure 4 presents VALOR’s speedup to the original
lapply based R code on data analytics algorithms, and it
achieved 7.3x geomean speedup.
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Figure 3: ORBIT’s speedup to R byte-code interpreter
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Figure 4: Speedup of VALOR to the original code
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