
- 1 -

A Julia-based Problem Solving Environment for HPC
Youfeng Wu, Todd Anderson, Raj Barik, Chunling Hu, Victor Lee, Hai Liu, Hongbo Rong, Tatiana Shpeisman, Geoff Lowney, Paul Petersen

Intel Corporation

1. Introduction
Traditionally, scripting is glue code that connects system
components and library modules to create useful applications. It
is considered much more productive than C/C++ programming
due to its concise syntax and the Read-Eval-Print-Loop (REPL)
for quick feedback [2][8][10]. The superior productivity has
propelled scripting languages to become very popular nowadays
[14], e.g. in technical computing (Matlab, R, Julia), web design
(JavaScript), serve-side scripting (PHP), and general
programming (Python, Ruby).

The glue code itself, however, usually runs much slower than
C/C++ programs [3], as it is often interpreted/JITed and run
serially. With scripting languages becoming more general
purpose, significant portion of program execution time is spent in
“glue code”. Consequently, many of the programs written in
scripting languages currently run slowly [9]. In fact, most of script
programs for high performance computing (HPC) would be
converted into C/Fortran programs by expert programmers to be
performant. For the “missing middle” [12] HPC users, we need
a Problem Solving Environment (PSE) to achieve both scripting
level productivity and significantly better performance than
existing scripting language systems.

A PSE provides the computational facilities needed to solve a
target class of problems at a high level of abstraction on human
terms [4][5]. The high level abstraction contains domain specific
interfaces and mathematical formulations. The computational
facilities include a host language and tools, the target machine
descriptions, and the hand-crafted high performance library
building blocks. By exploring both domain specific and target
machine knowledge, PSE can achieve both productivity and high
performance.

Figure 1. PSE motivation

Figure 1 illustrates the motivation for PSE targeting HPC. Line
(1) may represent the traditional approach, where expert
programmers spend months or years to come up with a “ninja
version” of programs, achieving high performance. Line (2)
would be what “average” programmers are achieving using
scripting languages. Although a scripting language programmer
can obtain a functional program quickly, it usually runs 10x to
100x slower than the ninja version. PSE (line 3) would achieve
the same level of productivity as scripting languages, but run
much faster than the script program, achieving a significantly
portion (e.g. ~50%) of the ninja version performance. People
usually would be satisfied with 50% ninja performance if they
may get to the solution quickly, as stated by the FFTW author,
“FFTW (FFTs) and BLAS libraries (matrix multiplication) take

~100,000 lines [of code] to solve problems that can be
implemented in ~15 lines of (slow) code… It usually isn’t worth it
to get the last factor of two in speed” [15]. Furthermore, a PSE
that is both productive and performant would allow users to
experiment alternative solutions quickly, which can potentially
leads to new algorithms that may perform even better than the
ninja version.

2. PSE overview
Our position is that we may augment an existing scripting
language to build a PSE for HPC and achieve high performance
with scripting level productivity. We choose Julia for its LLVM
based infrastructure and good glue code performance [9]. The
PSE has high-level abstractions such as vectors, matrices, linear
algebra (both dense and sparse), stencils, statistics, and graphs
that typical scientists, engineers, and data analysts can use to
develop HPC applications productively. The PSE also provides
parallelism analysis/optimizations and library description meta-
data, so that the abundant parallelism in the high level
abstraction can be discovered and mapped to efficient execution
on parallel systems. This is in contrast to other approaches that
extend scripting languages with explicit parallel constructs and
interface, such as PyCuda and PyOpenCL [1], Parallel MATLAB
[7], and Hierarchically Tiled Arrays (HTA [6]), etc. Those explicit
parallel extensions could be more involved for general users to
program them productively.

Figure 2. PSE execution flow

Figure 2 shows how our PSE works. It starts with workloads
written in serial Julia with domain specific extensions. The PSE
has a collection of hand-coded library modules. Each library
module includes Library Description (LD) meta-data written in a
Library Description Language that tells how the library module
would be decomposed and composed with others. The PSE
code, together with LD, is then transformed through the PSE
transformation engine, which does domain specific optimizations
and parallelism discovery, maps or decomposes operations to
low level building blocks, and generates code and library
invocations. The final code is run on parallel systems, e.g. Intel
Xeon and Xeon Phi, orchestrated by PSE’s dynamic runtime
system.

3. Preliminary evaluation

Our	current	PSE	prototype	focuses	on	HPC	workloads	with	data‐
parallel	 and	 stencil	 computations. Our experiment runs on an
Intel Xeon X5680 system (2-sockets, 6-cores/12 threads each,
with 196GB of memory) with two Phi SE10P cards. Since the

- 2 -

multi-threading support in Julia is still under development, we
developed and open-source released a “Julia to C” module that
converts parallelized PSE code to C and compiles and runs it via
C tools [13]. Our performance measurement does not include
compilation and JITing overhead.

Figure 3. PSE achieves Straight C performance for a data parallel
program

Figure 3 shows a data parallel program that does simple vector
operations (vector size = 100 million elements) running on the
Xeon host. The program written in serial Julia is much simpler
than the straightforward C code (with OpenMP pragma for
parallelization). Not surprisingly, though, the Julia version is
much slower than the Straight C version (16.3x). Our PSE takes
advantage of data parallelism and improves the performance by
~7x. Furthermore, PSE optimizations, such as fusion, improves
the program speed by another 2.5x, bringing its performance to
about the same as the Straight C code. Even if an expert
programmer can improve the C code by 2x via ninja tricks, PSE
performance would still reach ~50% of the ninja performance.

Iterate to solution
for i in 1:ni
 Apu = Array(Float32, w, h)
 Apv = Array(Float32, w, h)
 runStencil(Apu, Apv, pu, pv, Ix, Iy, :oob_src_zero)
 do Apu, Apv, pu, pv, Ix, Iy
 ix = Ix[0,0]
 iy = Iy[0,0]

Apu[0,0] = ix * (ix * pu[0,0] + iy * pv[0,0]) + lam *
 (4.0f0 * pu[0,0] - (pu[-1,0] + pu[1,0]+ pu[0,-1] + pu[0,1]))
Apv[0,0] = iy * (ix * pu[0,0] + iy * pv[0,0]) + lam *
 (4.0f0 * pv[0,0] - (pv[-1,0] + pv[1,0] + pv[0,-1] + pv[0,1]))

 end
 pTAp = sum(pu .* Apu) + sum(pv .* Apv)
 α = rsold / pTAp
 xu += α * pu
 xv += α * pv
 ru -= α * Apu
 rv -= α * Apv
 zu, zv = blockJacobiPrecond(Ix, Iy, ru, rv, lam)
 rsnew = sum(ru .* zu) + sum(rv .* zv)
 β = rsnew / rsold
 pu = zu + β * pu
 pv = zv + β * pv
 rsold = rsnew
end

Figure 4 Inner loop of the Optical Flow in PSE/Julia

For Stencil computation, we select the Optical Flow workload
[11], which features a ten-point stencil. Figure 4 shows the
inner loop of the Optical Flow in Julia/PSE, where runStencil is
a domain specific interface for Stencil computation. For
comparison, we also developed an idiomatic and an optimized

Julia versions, as well as a ninja C version, contributed by a
domain expert with ninja programming expertise.

Figure 5 shows the relative timing of four versions of code on an
image of size 5184x2912, 100 scales, 44 levels, running on the
Xeon host. The idiomatic Julia version is about 115x slower than
the ninja C version. We hand-optimize the Julia version (e.g.
manually inline Stencil kernels) and improve its performance by
7.4x, although it is still 15.6x slower than ninja C version. Our
PSE starts with the version similar to idiomatic Julia,
automatically inlines Stencil kernels, aggressively fuses loops,
and parallelizes and vectorizes the stencil and other operations.
It achieves ~77x improvement over idiomatic Julia and reaches
~67% of ninja C performance.

Figure 5. PSE achieves 67% Ninja C performance for Optical Flow

We use HPL (High Performance Linpack) benchmark [16] to
demonstrate the benefit of library description and dynamic
scheduling in PSE. HPL is the most popular benchmark to rank
supercomputers in TOP500, and it spends majority of time in
numeric libraries. Figure 6 shows the relative timing of three
versions of code for a matrix of size 30K*30K using block size of
1536. The Julia version basically shows the performance of
straightforward calls to MKL libraries, such as dgetrf, dtrsm,
dlaswp and dgemm, executing on Xeon host-only mode. The
Ninja C version is 3x faster than the Julia version, via careful
partitioning and scheduling of tasks between Xeon host and
Xeon Phi cards. PSE embeds within each MKL library module
the ninja level knowledge, such as input/output shapes, min/max
threads, schedule hints, tile sizes, and the corresponding
performance data for specific systems, which enables PSE to
efficiently divide tasks between Xeon host and the 2 Phi cards
and schedule them intelligently. PSE also overlaps data transfer
between the Xeon host and Phi cards with computation on the
Phi cards. As the result, the PSE version reaches 73% of Ninja
C performance.

Figure 6. PSE achieves 73% Ninja C performance for HPL

4. Summary and future work
The Julia-based PSE system presented here features three
novel components: 1) high level domain specific extensions for
HPC applications; 2) library description (LD) for decomposition
and composition of low-level high performance library modules;
3) advanced transformation engine and dynamic runtime for

- 3 -

optimization and scheduling. Our preliminary evaluation with
data parallel and stencil workloads shows promising results, with
the PSE achieving a significant portion of ninja performance
without sacrificing the productivity of scripting languages.

As the ongoing efforts, we will add more domain specific
interfaces in PSE to handle sparse and graph workloads and
extend our experiment from a single node system to multi-nodes.
We are also collaborating with Julia Computing, LLC, to add a
threading abstraction to Julia language for expert programmers
and develop native code generation for Xeon Phi. Besides
further improving the PSE performance, we would also like to
experimentally qualify the productivity benefit of PSE over
traditional programming systems.

Acknowledgements
We would like to thank Neal Glew, Arch Robison, Kiran Pamnany,
Pradeep Dubey, Michael Lischke, Intel compiler team, and Julia
team for their contributions and collaborations.

References
[1] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan

Catanzaro, Paul Ivanov, Ahmed Fasih, “PyCUDA and
PyOpenCL: A scripting-based approach to GPU run-time code
generation”, Parallel Computing, Volume 38, Issue 3, March
2012, Pages 157–174

[2] Andrew Binstock with Peter Hill, “The Comparative Productivity
of Programming Languages” Dr Dobb's,
http://www.drdobbs.com/jvm/the-comparative-productivity-of-
programm/240005881, August 20, 2011

[3] Andrew Funk, Victor Basili, Lorin Hochstein and Jeremy
Kepner, “Application of a Development Time Productivity Metric
to Parallel Software Development,” in Proceedings of the
second international workshop on Software engineering for high
performance computing system applications, May 15, 2005

[4] Daniel C. Stanzione Jr., Walter B. Ligon III, “Problem Solving
Environment Infrastructure for High Performance Computer
Systems”, 15 IPDPS 2000 Workshops, May 1-5, 2000

[5] E. Gallopoulos, E. Houstis, J.R. Rice, ”Problem-solving
environments for computational science,'' IEEE Computational
Science & Engineering, 1, 1994, 11--23

[6] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe
Almasi, Basilio B. Fraguela, Mar ı́a J. Garzar´an, David Padua
and Christoph von Praun, “Programming for Parallelism and
Locality with Hierarchically Tiled Arrays”, PPoPP’06 March 29–
31, 2006

[7] J. Kepner, “Parallel Matlab for Multicore and Multinode
Computers”, SIAM Press, 2009.

[8] J.K. Ousterhout, “Scripting: Higher Level Programming for the
21st Century,” Computer, Mar. 1998, pp. 23-30.

[9] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman,
“Julia: A Fast Dynamic Language for Technical Computing,”
CoRR, 2012

[10] Lutz Prechelt. “An Empirical Comparison of Seven
Programming Languages”. Computer 33, 10 (October 2000).

[11] Michael Anderson, Forrest Iandola and Kurt Keutzer,
“Quantifying the Energy Efficiency of Object Recognition and
Optical Flow”, UC Berkeley Tech Report (EECS-2014-22),

[12] Sharan Kalwani, “On Democratizing HPC: Addressing the
Missing Middle Lobbying for a new paradigm”, Dec. 2011.

[13] Julia to C: https://github.com/IntelLabs/julia/tree/j2c

[14] Stephen Cass, “Top 10 Programming Languages,” IEEE
Spectrum, July 2014.

[15] http://www.slideshare.net/acidflask/julia-compilercommunity

[16] http://www.netlib.org/benchmark/hpl/

