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1. Introduction 
Traditionally, scripting is glue code that connects system 
components and library modules to create useful applications. It 
is  considered much more productive than C/C++ programming 
due to its concise syntax and the Read-Eval-Print-Loop (REPL) 
for quick feedback [2][8][10].  The superior productivity has 
propelled scripting languages to become very popular nowadays 
[14], e.g. in technical computing (Matlab, R, Julia), web design 
(JavaScript), serve-side scripting (PHP), and general 
programming (Python, Ruby).  

The glue code itself, however, usually runs much slower than 
C/C++ programs [3], as it is often interpreted/JITed and run 
serially.  With scripting languages becoming more general 
purpose, significant portion of program execution time is spent in 
“glue code”.  Consequently, many of the programs written in 
scripting languages currently run slowly [9].  In fact, most of script 
programs for high performance computing (HPC) would be 
converted into C/Fortran programs by expert programmers to be 
performant.   For the “missing middle” [12] HPC users, we need 
a Problem Solving Environment (PSE) to achieve both scripting 
level productivity and significantly better performance than 
existing scripting language systems.   

A PSE  provides the computational facilities needed to solve a 
target class of problems at a high level of abstraction on human 
terms [4][5]. The high level abstraction contains domain specific 
interfaces and mathematical formulations. The computational 
facilities include a host language and tools, the target machine 
descriptions, and the hand-crafted high performance library 
building blocks. By exploring both domain specific and target 
machine knowledge, PSE can achieve both productivity and high 
performance.     

Figure 1. PSE motivation 

Figure 1 illustrates the motivation for PSE targeting HPC.  Line 
(1) may represent the traditional approach, where expert 
programmers spend months or years to come up with a “ninja 
version” of programs, achieving high performance.  Line (2) 
would be what “average” programmers are achieving using 
scripting languages.  Although a scripting language programmer 
can obtain a functional program quickly, it usually runs 10x to 
100x slower than the ninja version.  PSE (line 3) would achieve 
the same level of productivity as scripting languages, but run 
much faster than the script program, achieving a significantly 
portion (e.g. ~50%) of the ninja version performance.  People 
usually would be satisfied with 50% ninja performance if they 
may get to the solution quickly, as stated by the FFTW author, 
“FFTW (FFTs) and BLAS libraries (matrix multiplication) take 

~100,000 lines [of code] to solve problems that can be 
implemented in ~15 lines of (slow) code… It usually isn’t worth it 
to get the last factor of two in speed” [15].  Furthermore, a PSE 
that is both productive and performant would allow users to 
experiment alternative solutions quickly, which can potentially 
leads to new algorithms that may perform even better than the 
ninja version. 

2. PSE overview  
Our position is that we may augment an existing scripting 
language to build a PSE for HPC and achieve high performance 
with scripting level productivity.  We choose Julia for its LLVM 
based infrastructure and good glue code performance [9].  The 
PSE has high-level abstractions such as vectors, matrices, linear 
algebra (both dense and sparse), stencils, statistics, and graphs 
that typical scientists, engineers, and data analysts can use to 
develop HPC applications productively.  The PSE also provides 
parallelism analysis/optimizations and library description meta-
data, so that the abundant parallelism in the high level 
abstraction can be discovered and mapped to efficient execution 
on parallel systems. This is in contrast to other approaches that 
extend scripting languages with explicit parallel constructs and 
interface, such as PyCuda and PyOpenCL [1], Parallel MATLAB 
[7], and Hierarchically Tiled Arrays (HTA [6]), etc.  Those explicit 
parallel extensions could be more involved for general users to 
program them productively. 

Figure 2. PSE execution flow 

Figure 2 shows how our PSE works.  It starts with workloads 
written in serial Julia with domain specific extensions.  The PSE 
has a collection of hand-coded library modules. Each library 
module includes Library Description (LD) meta-data written in a 
Library Description Language that tells how the library module 
would be decomposed and composed with others.  The PSE 
code, together with LD, is then transformed through the PSE 
transformation engine, which does domain specific optimizations 
and parallelism discovery, maps or decomposes operations to 
low level building blocks, and generates code and library 
invocations.  The final code is run on parallel systems, e.g. Intel 
Xeon and Xeon Phi, orchestrated by PSE’s dynamic runtime 
system.   

3. Preliminary evaluation 

Our	current	PSE	prototype	focuses	on	HPC	workloads	with	data‐
parallel	 and	 stencil	 computations. Our experiment runs on an 
Intel Xeon X5680 system (2-sockets, 6-cores/12 threads each, 
with 196GB of memory) with two Phi SE10P cards. Since the 
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multi-threading support in Julia is still under development, we 
developed and open-source released a “Julia to C” module that 
converts parallelized PSE code to C and compiles and runs it via 
C tools [13].  Our performance measurement does not include 
compilation and JITing overhead. 

 

Figure 3. PSE achieves Straight C performance for a data parallel 
program  

Figure 3 shows a data parallel program that does simple vector 
operations (vector size = 100 million elements) running on the 
Xeon host.  The program written in serial Julia is much simpler 
than the straightforward C code (with OpenMP pragma for 
parallelization).  Not surprisingly, though, the Julia version is 
much slower than the Straight C version (16.3x).  Our PSE takes 
advantage of data parallelism and improves the performance by 
~7x.  Furthermore, PSE optimizations, such as fusion, improves 
the program speed by another 2.5x, bringing its performance to 
about the same as the Straight C code.  Even if an expert 
programmer can improve the C code by 2x via ninja tricks, PSE 
performance would still reach ~50% of the ninja performance. 

# Iterate to solution 
for i in 1:ni 
  Apu = Array(Float32, w, h) 
  Apv = Array(Float32, w, h) 
  runStencil(Apu, Apv, pu, pv, Ix, Iy, :oob_src_zero)  
                    do Apu, Apv, pu, pv, Ix, Iy 
    ix = Ix[0,0] 
    iy = Iy[0,0] 

Apu[0,0] = ix * (ix * pu[0,0] + iy * pv[0,0]) + lam *  
    (4.0f0 * pu[0,0] - (pu[-1,0] + pu[1,0]+ pu[0,-1] + pu[0,1])) 
Apv[0,0] = iy * (ix * pu[0,0] + iy * pv[0,0]) + lam *  
    (4.0f0 * pv[0,0] -  (pv[-1,0] + pv[1,0] + pv[0,-1] + pv[0,1])) 

  end 
  pTAp   = sum(pu .* Apu) + sum(pv .* Apv) 
  α = rsold / pTAp 
  xu    += α * pu 
  xv    += α * pv 
  ru    -= α * Apu 
  rv    -= α * Apv 
  zu, zv = blockJacobiPrecond(Ix, Iy, ru, rv, lam) 
  rsnew  = sum(ru .* zu) + sum(rv .* zv) 
  β = rsnew / rsold 
  pu     = zu + β * pu 
  pv     = zv + β * pv 
  rsold  = rsnew 
end 

Figure 4 Inner loop of the Optical Flow in PSE/Julia 

For Stencil computation, we select the Optical Flow workload 
[11], which features a ten-point stencil.    Figure 4 shows the 
inner loop of the Optical Flow in Julia/PSE, where runStencil is 
a domain specific interface for Stencil computation.  For 
comparison, we also developed an idiomatic and an optimized 

Julia versions, as well as a ninja C version, contributed by a 
domain expert with ninja programming expertise.   

Figure 5 shows the relative timing of four versions of code on an 
image of size 5184x2912, 100 scales, 44 levels, running on the 
Xeon host.  The idiomatic Julia version is about 115x slower than 
the ninja C version.  We hand-optimize the Julia version (e.g. 
manually inline Stencil kernels) and improve its performance by 
7.4x, although it is still 15.6x slower than ninja C version.  Our 
PSE starts with the version similar to idiomatic Julia, 
automatically inlines Stencil kernels, aggressively fuses loops, 
and parallelizes and vectorizes the stencil and other operations. 
It achieves ~77x improvement over idiomatic Julia and reaches 
~67% of ninja C performance. 

 

Figure 5. PSE achieves 67% Ninja C performance for Optical Flow  

We use HPL (High Performance Linpack) benchmark [16] to 
demonstrate the benefit of library description and dynamic 
scheduling in PSE.  HPL is the most popular benchmark to rank 
supercomputers in TOP500, and it spends majority of time in 
numeric libraries.  Figure 6 shows the relative timing of three 
versions of code for a matrix of size 30K*30K using block size of 
1536.  The Julia version basically shows the performance of 
straightforward calls to MKL libraries, such as dgetrf, dtrsm, 
dlaswp and dgemm, executing on Xeon host-only mode. The 
Ninja C version is 3x faster than the Julia version, via careful 
partitioning and scheduling of tasks between Xeon host and 
Xeon Phi cards.  PSE embeds within each MKL library module 
the ninja level knowledge, such as input/output shapes, min/max 
threads, schedule hints, tile sizes, and the corresponding 
performance data for specific systems, which enables PSE to 
efficiently divide tasks between Xeon host and the 2 Phi cards 
and schedule them intelligently. PSE also overlaps data transfer 
between the Xeon host and Phi cards with computation on the 
Phi cards. As the result, the PSE version reaches 73% of Ninja 
C performance.  

 

Figure 6. PSE achieves 73% Ninja C performance for HPL  

4. Summary and future work 
The Julia-based PSE system presented here features three 
novel components: 1) high level domain specific extensions for 
HPC applications; 2) library description (LD) for decomposition 
and composition of low-level high performance library modules; 
3) advanced transformation engine and dynamic runtime for 
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optimization and scheduling.  Our preliminary evaluation with 
data parallel and stencil workloads shows promising results, with 
the PSE achieving a significant portion of ninja performance 
without sacrificing the productivity of scripting languages. 

As the ongoing efforts, we will add more domain specific 
interfaces in PSE to handle sparse and graph workloads and 
extend our experiment from a single node system to multi-nodes.  
We are also collaborating with Julia Computing, LLC, to add a 
threading abstraction to Julia language for expert programmers 
and develop native code generation for Xeon Phi. Besides 
further improving the PSE performance, we would also like to 
experimentally qualify the productivity benefit of PSE over 
traditional programming systems. 
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