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Abstract. The Hierarchically Tiled Array (HTA) is a data type that fa-
cilitates the definition and manipulation of arrays partitioned into tiles.
The data type allows to exploit those tiles to attain both locality and
parallelism. Parallel programs written with HTAs are based in data par-
allelism, and provide the programmer with a single-threaded view of the
execution. In our experience, HTAs help to develop parallel codes in a
much more productive way than other parallel programming approaches.
While we have worked extensively with HTAs in distributed memory en-
vironments, only recently have we began to consider their adaption to
shared memory environments such as those found in multicore systems.
In this paper we review the design issues, opportunities and challenges
that this migration raises.
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1 Introduction

Arrays are one of the most basic and useful data structures. The parallelism in
the operations on their components, expressed as array operations and functions,
has been exploited successfully since the days of the early array and vector pro-
cessors [1]. The efforts to express the data parallelism in array operations have
been often implemented as new languages or language extensions. The historical
experience in the attempts to implant new languages with a focus on parallelism,
coupled with the large base of existing legacy codes, makes us think that macros,
and more in general, libraries, are a better vehicle to bring parallelism to main-
stream computing. The advent of object oriented (OO) programming further
supports our observation, as it enables to associate methods or tasks with sets
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of data. In OO languages arrays can contain objects of any kind, and the opera-
tions on them need not be restricted to be the traditional simple mathematical
operations as was the case for SIMD implementations. Rather, arbitrary tasks
encapsulated as methods can be performed in parallel on the elements of the ar-
ray. Integration of libraries and classes that express parallelism in OO languages
is further facilitated by their polymorphic features and operator overloading,
when available.

Tiling [2] is closely related to array processing. Tiles are used both to increase
the locality of the accesses in sequential programs [3] and to describe data par-
allelism [4–7]. This led us to the development of the Hierarchically Tiled Array
(HTA) data type [8]. HTAs represent arrays partitioned into tiles which can
be further partitioned recursively. When parallelism is expressed using HTAs,
programs have a single logical thread of execution. They express parallelism as
array operations on HTAs, with the operations on the different tiles of an HTA
taking place in parallel. This gives structure to parallel operations, which im-
proves readability and maintainability over the SPMD (Single Program Multiple
Data) approaches. The tiling allows to choose the granularity of the tasks with
different purposes. For example, the number of tasks can be chosen so that the
local working set fits in the memory of a node in a distributed memory environ-
ment. The tiles in an HTA can be recursively subtiled in order to subdivide the
work to perform so that the data to process at each time fits in a given level of
the memory hierarchy of the machine.

We have experimented with this data type for a number of years now [8, 9]
using both typical parallel benchmarks such as NAS [10] and serial codes that
benefit from tiling. Our experience is that HTAs allow to write these codes in
a much more productive way than traditional approaches while achieving good
performance. Still, we have always worked on distributed memory environments,
and it is for them that we have defined the semantics of our data type. Given
the growing importance of multicore systems, and the conviction that most HPC
systems in the future will have a hybrid memory model, the moment to define the
HTA implementation options and semantics for these environments and build
an HTA library for hybrid memory models has arrived.

The rest of this paper is organized as follows. Section 2 is a brief introduction
to the HTA data type. Section 3 reviews the design issues that an HTA imple-
mentation for shared memory systems poses. Finally, we present our conclusions
in Section 4.

2 The Hierarchical Tiled Array

The Hierarchically Tiled Array (HTA) [8] is an array data type which can be
partitioned into tiles. Each tile can be either a conventional array or a lower
level HTA. Tiles in an HTA can conceptually be mapped on to different levels
of the memory hierarchy. At the top-most level, tiles can represent portions of
the array that map to different nodes in a cluster. Each of those tiles could
then carry additional levels of tiling that then map to the various levels of cache
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Fig. 1. HTA Indexing, () are used to index tiles, [] to index scalars

in a machine. One could then further partition the tiles to map the individual
scalars to registers. Programmers see a single-threaded view of execution in HTA
programs. Parallelism takes the form of concurrent operations across tiles. The
tile size thus provides the granularity of parallel execution.

Figure 1 illustrates the three ways in which HTAs may be indexed. One can
index HTAs at both the tile and scalar level and combine both indexing schemes.
One can flatten the tiling structure to directly access the scalar elements of HTAs.
A hybrid approach can also be used when the programmer wants to access one
or more scalars found in one or more tiles. In the example, A(0,0) indexes the
first tile in the first row. Likewise, A(1,0:1) indexes the entire second row of
tiles. A[0,3] indexes the last scalar on the first row using the flattened notation.
The same scalar can be indexed as A(0,1)[0,1] using the hybrid scheme.

HTAs support the three main constructs found in data-parallel computations:

– Element-by-element operation: A function is applied to each element of an
array or corresponding elements of two or more conformable arrays.

– Reductions: These apply operations on an array to produce an array of lesser
rank. For example, computing the sum of the elements of a one-dimensional
array produces a scalar.

– Scan: A function computes a prefix operation across all the elements of an
array.

These operations take the form of three methods in the HTA library: hmap (which
implements element-by-element operations), reduce, and scan. The three con-
structs receive at least one argument, a function object that encapsulates the
operation to be performed. In the case of hmap, the function may accept addi-
tional HTAs as parameters that must have the same tiling structure as the HTA
instance on which the hmap is invoked. This effectively allows programmers to
extend the library with new user-defined operations. A simple example of hmap
can be seen in Figure 2. Here, two HTAs, X and Y, with ten tiles of ten elements
are created. Function F is applied on them by hmap. In it, each tile in X assigns
its elements the sum of their current values plus the values in the corresponding
tiles of Y plus one, in parallel. HTAs overload the arithmetic operators (+,*,...)
and also assignment so that these typical element-by-element operations can be
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1 HTA X([10], [10])
2 HTA Y([10], [10])
3
4 ...
5
6 hmap(F(), X, Y)
7
8 F(HTA X, HTA Y) {
9 do i=1,10

10 X[i] = X[i] + Y[i] + 1
11 }

Fig. 2. hmap Example

expressed in a traditional array syntax instead of requiring the usage of hmap.
Operations typical of array languages such as matrix multiplication, transpo-
sition, or stencil computations are also found in the library. All parallelism is
explicit and takes the form of independent operations performed on tiles. Syn-
chronization required by operations such as reductions is implicit and handled
by the library.

The tiling structure of an HTA is normally specified at creation time. How-
ever, some problems are more naturally expressed in a dynamic or input-dependent
fashion. The dynamic partitioning [9] feature enables the modification of the
structure of an HTA after its creation by adding or removing partition lines, the
abstract lines that separate the tiles in an HTA.

3 Design Issues for Multicore and Shared Memory
Systems

As mentioned before, we have an implementation supporting HTAs that runs
on distributed memory systems. An HTA program appears to the programmer
as having a single thread of execution. Arrays are partitioned and distributed
across a set of nodes and non-HTA data such as scalars and non-HTA arrays
are replicated on all the nodes. When operating on an HTA each node works
on its portion of the HTA. However, when operating on non-HTA data, our
implementation uses the SPMD mode, and all the nodes execute the same code
on its local copy of the non-HTA data. Synchronization is achieved implicitly,
by the underlying send and receive messages used to communicate between the
nodes.

When running an HTA program in a shared memory environment the situ-
ation changes quite a bit, and a wide space of design options can be explored,
each of them resulting on different performance/productivity trade-offs. In this
Section we discuss some of the issues that appear in this shared memory envi-
ronment.

3.1 Dynamic Task Creation

In many parallel programs tasks can be identified before execution begins. In
terms of HTAs, this means that HTAs can be created with a given partitioning
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suitable for the algorithm that is being parallelized and that this partitioning
does not need to be modified later. In the HTA library, the parallel tasks are
determined by the tiles. In distributed memory systems, the parallelism is also
determined by the distribution of tiles to processors. In these systems, dynamic
task creation or, in other words, repartitioning of an HTA, involves an expen-
sive redistribution of the data. For this reason, we did not implement dynamic
partitioning in our distributed memory implementation. Instead, we leave pro-
grammers to solve the problem.

In shared memory systems, however, the ability to create tasks dynamically,
that is, to define and spawn parallel subtasks from a parallel task, can be useful
and even necessary to obtain good performance. Dynamic task creation is good
for two reasons: it allows programmers to more elegantly write their algorithms
and can be used to improve load balance.

In HTA programs, tasks are created by hmap. hmap can be implemented by
a parallel loop where each iteration corresponds to a tile. If the parallel loops
are implemented using Intel’s Threading Building Blocks [11], each processor is
assigned a range of iterations and idle processors can steal part of the range
of another processor, splitting one task into two. Dynamic task creation by the
library, rather than by the program, could help improve load balance. These
issues will be further discussed in Section 3.2.

Task creation can also be hierarchical as illustrated by the example in Fig-
ure 3, parallel merging of two sorted sequences (input1 and input2), where the
partitioning is dependent on the input to be merged. A rough sketch of the algo-
rithm states that one first splits the first input HTA in half. Next, the location
of the first element greater than the midpoint element of the first input HTA
is found in the second HTA and used to partition it. The output is partitioned
such that its new tiles can fit the merged elements from the respective tiles of the
input arrays. Finally, hmap recursively calls the Merge operation on the newly
created left tiles of the two input arrays as well as the right tiles. Here, the Merge
operation creates a tree of tasks during the course of its recursion.

1 Merge(HTA output, HTA input1, HTA input2) {
2 ...
3 if (output.size() < THRESHOLD) {
4 SerialMerge(output, input1, input2)
5 }
6 else {
7 i = input1.size() / 2
8 input1.addPartition(i)
9

10 j = h2. location first gt (input1[i ])
11 input2.addPartition(j)
12
13 k = i + j
14 output.addPartition(k)
15
16 output.hmap(Merge(), input1, input2)
17 }
18 ...
19 }

Fig. 3. Parallel Merge
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Note that in this example, dynamic partitioning enables the implementation
of merge in this elegant manner. In this case, dynamic task creation for both al-
gorithmic elegance and load balancing can be combined. The programmer could
change the number of partitions created in each invocation of Merge to improve
load balance.

3.2 Locality vs Load Balancing

Conventional notation for task parallelism does not provide a convenient mech-
anism to express locality [12, 13]. However, locality is very important to achieve
good performance in multicore systems due to the existence of a hierarchy of
private and shared caches, coupled with shared buses to memory systems which
are much slower than the processors they feed. With HTAs we solved this prob-
lem in a very natural way for distributed systems. However, in shared memory,
extensions are needed to achieve locality.

In shared memory we could promote locality by assigning tiles to processors
when HTAs are created and maintaining this assignment throughout the pro-
gram. This is similar to the way HTAs operate in distributed memory systems.
However, the affinity between processors and tiles provided by this assignment
would hinder load balancing.

To solve the problem of load imbalance a more dynamic strategy is neces-
sary, and that could be to use task stealing. Task stealing provides a mechanism
for dynamic task scheduling. With task stealing a processor places tasks into
its own queue upon creation. Task queues could be implemented using parallel
programming libraries like Intel’s Threading Building Blocks [11] or written in-
dependently. Idle processors can then steal tasks and their associated tiles from
the queue for execution. Task stealing has different implications for affinity de-
pending on whether the parallelism resembles loops or whether it is hierarchical.
The former case refers to common mathematical operations and hmaps. Here, in
order to achieve locality, parallel operations performed on the same HTA should
respect any prior affinity between processors and tiles, that is, execute opera-
tions on a given tile on the same processor that used it before. Task stealing
should follow this approach when possible. However, task stealing can choose to
change the affinity between tiles and processors when a load imbalance exists,
trading better utilization for negative effects on locality.

The case of hierarchical task parallelism is shown in the Parallel Merge ex-
ample in Figure 3. Here, the Merge function performs an operation on the input
before partitioning. The new subtasks created by the subsequent invocation to
hmap would ideally be placed in the queue of the processor that created the tasks
because the data are in its cache. However, task stealing any of these dynami-
cally created tasks can be necessary to balance the load, what would change the
affinity of the tiles to processors. Care must be taken to properly address the
consequences of affinity in our design.

In addition to the concerns about locality, load balancing could also have
consequences on the correctness of HTA programs. Dynamic partitioning, as
mentioned in the previous section, provides another alternative to load balancing
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in HTAs. When load imbalance is detected, a run-time element of the library
could decide to dynamically split the tiles in an operation, creating additional
tasks with smaller granularity. For that, the library would have to provide a new
hmap or the programmer would have to annotate the operation passed to hmap to
inform the library that such splitting is legal, that is, that the parallel operation
defined would be legal if the size or shape of the tiles changed. The library could
choose from several partitioning strategies such as split on the largest dimension,
split on the smallest dimension, quarter, etc. The library would also need to know
if it is safe to permanently alter the tiling structure of an HTA or if the original
tiling structure must be restored at the end of the parallel operation.

Dynamic scheduling of tasks in the distributed memory implementation of
HTA was not feasible. Consequently, it was up to the programmer to distribute
tasks to processors in such a way as to distribute the load as evenly as possible.
However, the lack of communication involved in dynamically moving tasks in
order to improve load balance in shared memory has led us to explore this option
for our implementation on these systems. We must handle affinity in a proper
fashion whether our parallelism comes from hmap or from hierarchical dynamic
task creation. We must also ensure that if the library is allowed to dynamically
create tasks to improve that load balance that it does so in a correct manner.

3.3 Execution Models

In choosing the execution model for our shared memory implementation, we
have two choices:

– Master Thread: A single master thread executes all serial portions of the
program, and creates tasks for worker threads to run in the parallel portions.
There is a single copy of shared non-HTA data.

– Thread Private (SPMD): Every processor executes the whole program. How-
ever, each processor only executes operations on its own data during parallel
operations. Shared data is replicated across all processors.

Different programming environments have chosen different answers to this
problem, e.g., UPC [6] follows the SPMD model and OpenMP [13] follows the
master thread model.

The master thread approach is conceptually the simpler of the two. One
processor executes the sequential portions of the code and only one copy of
shared data exists. When a parallel operation occurs, the master thread spawns
tasks that the other processors execute. This approach requires synchronization
at the beginning and the end of the parallel operations. One can imagine a
parallel operation in this model as a parallel loop that iterates over all the tiles
in an HTA, applying the operation to each tile. The loop itself would be executed
only by the master thread, with the execution of the parallel body being assigned
to different threads for different iterations. In the SPMD model each processor
would execute all iterations of the loop, but the operations on each tile would
be executed by only one processor. Another difference between the SMPD and
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1 int A[10]
2
3 B() {
4 do i = 1,10
5 H(i) = H(i−1)
6 }

7 C() {
8 do i = 1,10
9 A[i] = i;

10 hmap(F, H, A)
11 }
12
13 F(HTA H, int[] A) {
14 do i=1,10
15 H[i] = H[i] + A[i]
16 }

Fig. 4. Examples

the master thread approaches is that SPMD has a larger footprint due to the
replication of the non HTA data. In either approach, threads do not explicitly
communicate. Threads correspond to independent operations on tiles and no
synchronization by the programmer is needed.

Figure 4 helps illustrate the differences between both models. In function
B, we assign each tile the values of the previous tile. Using the master thread
approach, this occurs serially on only one processor. However, using SMPD, this
loop will run in parallel, although the dependences will result in a serialization
of the code. The reason is that processor that owns tile i has to wait for a signal
from the processor that owns tile i-1 in order to perform its assignment. In
shared memory, rather than using the owner-computes rule, SPMD can follow
the more relaxed Single Computation rule. When an access to a tile of an HTA
occurs, it is only performed once. Such an access could be handled by a single
processor or even by multiple processors working on different sections if the tile
is dynamically partitioned.

The handling of the shared data on these two execution models has impli-
cations on data locality. Remember that non-HTA data is shared in the master
thread approach and replicated (and as result thread-private) in the SPMD
model. For example, Function C in Figure 4 illustrates a shortcoming of the
master thread approach. The master thread computes the values in array A, so
when the processors perform function F on each tile of H, the non-HTA data,
array A, is only in the cache of the processor that executed the serial portion
of the code. However, in the SPMD model, array A is replicated across all pro-
cessors. Thus, each processor assigns its own copy of the array A. This ensures
non-HTA data will be in every processor’s cache when hmap performs the par-
allel operation. Ultimately, performance should dictate which model we choose.
We have not yet performed experiments to determine which model will provide
better performance.

Finally, notice that under both execution models modifications of non-HTA
data within hmap functions should not be allowed. The reason is that hmap is fully
parallel. Thus, under the master thread model, synchronization would be neces-
sary for correctness and this will result in hmap not being fully parallel. Under
the SPMD model, such accesses will be a programming error, as different results
could be obtained in different processors. Ideally, the library should disallow such
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1 X = ...
2 hmap(... , X)
3 Z = X
4 X = ...
5 hmap(... , X)

Fig. 5. Copy Example

accesses, but the languages in which the HTA library can be implemented do
not provide the necessary mechanisms.

3.4 Reference/Value Semantics

In our distributed memory implementation, assigning an HTA to another that
is distributed in a different way implicated data copying. The copy could be
immediate or delayed using a lazy implementation, but the semantics was al-
ways that of a copy by value. In shared memory we can choose between copies
by value or by reference, also called deep and shallow copies, respectively. For
example, a shared memory implementation could use a copy by reference model
implemented through a copy-on-write strategy where a shallow copy that only
copies the pointers is used until a write occurs, at which point a deep copy of all
the data must occur. However, copy by reference introduces additional overhead
into the library as proper reference counts must be kept to ensure that memory
is de-allocated at the appropriate time. In addition, this scheme can potentially
affect the affinity between tiles and processors as is illustrated by Figure 5. In
this example, HTA X is initially assigned some values and then an operation is
performed on it using hmap. Next, another HTA, Z, copies X. X is then changed
again and another parallel operation occurs. Under the copy by value scheme, Z
would be a new copy of X. When X is changed and then used by a computation,
the tiles of X could still be in the caches of the processors that operated on them
in the first hmap. However, under copy by reference, the second write to X would
cause X to be the new copy, with Z continuing to point to the original data. The
second hmap could then find that the tiles of X have changed affinity if the copy
is not careful to preserve it. Intuitively, the easier implementation and lesser
bookkeeping of copy by value leads us to believe that this is, on average, the
faster strategy since one does not usually copy HTAs without modifying them
afterwards. However, this conjecture would need to be experimentally validated.

3.5 New HTA Notations/Constructs

The greater flexibility of access to data by different threads in shared memory en-
vironments probably leads to programs with more complex patterns than those
we have seen in distributed memory environments. As a result, it could be con-
venient to extend HTAs with notations to express these structures. For example,
new ways to express task dependences, new operators (possibly domain-specific),
etc. A very important question is whether these extensions would fit naturally
in the clean semantics and array notation that characterize HTAs.
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4 Conclusions

In this paper we have reviewed the different design issues that appear when
considering a shared memory implementation for the HTA, a data type that
allows to express data parallelism as well as locality. These issues can influence
the performance and programming flexibility attained with the HTA. We are
currently examining the trade-offs of the different options, considering several
potential implementations. Our priorities are, in this order, to provide clear se-
mantics to the programmer, to provide a notation as systematic as possible that
enables most if not all HTA programs to run correctly in every kind of system,
and finally to facilitate the effective parallelization of as many programs as pos-
sible using our class. In this process we should also consider their implications
in hybrid memory systems.
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