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Abstract

Reductions are important and time-consuming opera-
tions in many scientific codes. Effective parallelization of
reductions is a critical transformation for loop paralleliza-
tion, especially for sparse, dynamic applications. Unfortu-
nately, conventional reduction parallelization algorithms are
not scalable.

In this paper, we present new architectural support that
significantly speeds-up parallel reduction and makes it scal-
able in shared-memory multiprocessors. The required ar-
chitectural changes are mostly confined to the directory
controllers. Experimental results based on simulations
show that the proposed support is very effective. While
conventional software-only reduction parallelization deliv-
ers average speedups of only 2.7 for 16 processors, our
scheme delivers average speedups of 7.6.

1 Introduction

During the last decade, programmers have obtained in-
creasing help from parallelizing compilers. Such compilers
help detect and exploit parallelism in sequential programs.
They also perform other transformations to reduce or hide
memory latency, which is crucial in modern parallel ma-
chines.

In scientific codes, an important class of operations that
compilers have attempted to parallelize is reduction oper-
ations. A reduction operation occurs when an associative
and commutative operator � operates on a variable � as in
� � ������������, where � does not occur in ����������
or in any other place in the loop.

Parallelization of reductions is crucial to the overall per-
formance of many parallel codes. Transforming reductions
for parallel execution requires two steps. First, data depen-
dence or equivalent analysis is needed to prove that the op-
eration is indeed a reduction. Second, the sequential com-

putation of the reduction must be replaced with a parallel
algorithm.

In parallel machines of medium to large size, the reduc-
tion algorithm is often replaced by a parallel prefix or recur-
sive doubling computation [15, 21]. For reductions on array
elements, a typical implementation is to have each proces-
sor accumulate partial reduction results in a private array.
Then, after the loop is executed, a cross-processor merging
phase combines the partial results of all the processors into
the original, shared array.

Unfortunately, such an algorithm can be very inefficient
in scalable shared-memory machines when the reduction
array is large and sparsely accessed. Indeed, the merging
phase of the algorithm induces many remote memory ac-
cesses and its work does not decrease with the number of
processors. As a result, parallel reduction is slow and not
scalable.

In this paper, we propose new architectural support to
speed-up parallel reductions in scalable shared-memory
multiprocessors. Our support eliminates the need for the
costly merging phase, and effectively realizes truly-scalable
parallel reduction. The proposed support consists of archi-
tectural modifications that are mostly confined to the direc-
tory controllers.

Results based on simulations show that the proposed
support is very effective. While conventional software-
only parallelization delivers an average speedup of 2.7 for
16 processors, the proposed scheme delivers an average
speedup of 7.6.

This paper is organized as follows: Section 2 discusses
the parallelization of reductions in software, Section 3
presents our new architectural support, Section 4 describes
our evaluation methodology, Section 5 evaluates our pro-
posed support, Section 6 outlines how the support can also
be used for another problem, Section 7 presents related
work, and Section 8 concludes.



2 Parallelization of Reductions in Software

2.1 Background Concepts

A loop can be executed in parallel without synchroniza-
tion only if its outcome does not depend upon the execution
order of different iterations. To determine whether or not
the order of iterations affects the semantics of the loop, we
need to analyze the data dependences across iterations (or
cross-iteration dependences) [1]. There are three types of
data dependences: flow (read after write), anti (write after
read), and output (write after write).

If there are no dependences across iterations, the loop
can be executed in parallel. Such a loop is called a doall
loop. If there are cross-iteration dependences, we must in-
sert synchronization or eliminate the dependences before
we can execute the loop in parallel.

If there are only anti or output dependences in the loop,
we can eliminate them by applying privatization. With pri-
vatization, each processor creates a private copy of the vari-
ables that cause anti or output dependences. During the par-
allel execution, each processor operates on its own private
copy.

Figure 1(a) shows an example of a loop that can be par-
allelized through privatization. There is an anti dependence
between the read to variable Temp in line 4 and the write to
Temp in line 2 in the next iteration. Furthermore, there is an
output dependence between the write to Temp in line 2 in
one iteration and the next one. By privatizing Temp, these
dependences are removed and the loop can be executed in
parallel.

1 for (i=0;i<n;i+=2)�
2 Temp=a[i+1];
3 a[i+1]=a[i];
4 a[i]=Temp;
5 �

1 for (i=1;i<n;i++)
2 A[ i]+=A[ i-1];

(a) (b)

Figure 1. Loops with anti and output dependences (a)
and flow dependences (b).

If there are flow dependences across iterations, the loop
cannot generally be executed in parallel. For example, the
loop in Figure 1(b) has a flow dependence in line 2 between
consecutive iterations. In this case, iteration � needs the
value that is produced in iteration � � �. As a result, the
loop cannot be executed in parallel.

2.2 Parallelizing Reductions

A special and frequent case of flow dependence occurs in
loops that perform reduction operations. A reduction oper-
ation occurs when an associative and commutative operator

� operates on a variable � as in � � ������������, where
� does not occur in ���������� or in any other place in the
loop. In such a case, � is a reduction variable.

A simplified example of reduction is shown in Figure 2.
In the figure, array w is a reduction variable. Note that
the pattern of access to a reduction variable is a read fol-
lowed by a write. Therefore, there may be flow dependences
across iterations. As a result, the loop cannot be run in par-
allel.

1 for (i=0;i<Nodes;i++)
2 w[x[i]]+=expression;

Figure 2. Loop with a reduction operation.

Parallelizing loops with reductions involves two steps:
recognizing the reduction variable and transforming the
loop for parallelism. Recognizing the reduction variable in-
volves several steps [30]. First, the compiler syntactically
pattern-matches the loop statements with the template of a
general reduction (� � � � ����������). In our example,
the statement in line 2 matches the pattern. Then, the op-
erator (� in our example) is checked to determine if it is
commutative and associative. Finally, data dependence or
equivalent analysis is performed to verify that the suspected
reduction variable is not accessed anywhere else in the loop.
In our example, all of these conditions are satisfied for w.

Once the reduction variable is recognized, the loop is
transformed by replacing the reduction statement with an
equivalent parallel algorithm. For this, there are several
known methods. The two most common ones are as fol-
lows:

� Enclose the access to the reduction variable in an un-
ordered critical section [8, 30]. Alternatively, we can
access the variable with an atomic fetch-and-op oper-
ation. The main drawback of this method is that it is
not scalable, as the contention for the critical section
increases with the number of processors. Thus, it is
recommended only for low-contention reductions.

� Exploit the fact that a reduction operation is an associa-
tive and commutative recurrence. Therefore, it can be
parallelized using a parallel prefix or a recursive dou-
bling algorithm [15, 21]. This approach is more scal-
able.

For reductions on array elements, a commonly-used im-
plementation of the second method is to create, for each
processor, a private version of the reduction array initialized
with the neutral element of the reduction operator. During
the execution of the parallelized loop, each processor ac-
cumulates partial results in its private array. Then, after the
loop is executed, a cross-processor merging phase combines
the partial results of all the processors into the shared array.
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Using this approach, our example loop from Figure 2
gets transformed into the parallel loop of Figure 3. For sim-
plicity, static scheduling is used and the code for forking and
joining is omitted. Thus, we show only the code executed
by each processor.

In the parallelized loop, each processor has its own ar-
ray w priv[PID], where PID is the processor ID. First, each
processor initializes its array with the neutral element of the
reduction operator (lines 1-2). In our example, the neu-
tral element is 0 because the reduction operator is addi-
tion. Next, each processor gets a portion of the loop and
executes it, performing the reduction operation on its array
w priv[PID] (lines 3-4). After that, all processors synchro-
nize (line 5). Then, they all perform a Merging step, where
the partial results accumulated in the different w priv[PID]
arrays are merged into the shared array w.

// Initialize the private reduction array
1 for (i=0;i<NumCols;i++)
2 w priv[PID] [i]=0;
// The range 0..Nodes is split among the processors
3 for (i=MyNodesBegin;i<MyNodesEnd;i++)
4 w priv[PID][ x[i]]+=expression;
5 barrier();
//The range of indices of w is split among processors
6 for (i=MyColsBegin;i<MyColsEnd;i++)
7 for (p=0;p<NumProcessors;p++)
8 w[i]+=w priv[p] [i];
9 barrier();

Figure 3. Code resulting from parallelizing the loop in
Figure 2.

In the case of scalars, this merging step can be paral-
lelized through recursive doubling. In the case of arrays,
however, it is more efficient to parallelize it by having each
processor perform merging for a sub-range of the shared
array. Thus, in our example each processor processes a por-
tion of w element by element (line 6). For each element, the
processor in charge of processing it takes the partial result
of each processor (line 7) and combines it into its shared
counterpart (line 8). Finally, another global synchroniza-
tion is performed (line 9), to guarantee that the subsequent
code accesses see only the fully merged array w.

2.3 Drawbacks in Scalable Multiprocessors

This implementation of reduction parallelization has two
important drawbacks in scalable shared-memory multipro-
cessors with large memory access latencies: many remote
misses in the merging phase and cache sweeping in the ini-
tialization and merging phases.

The merging phase necessarily suffers many remote
misses. Indeed, for each shared array element that a pro-
cessor accesses in line 8, all but one of the corresponding
private array elements are in remote memory locations. Be-
cause of this, the merging operation (also called merge-out)
can be very time consuming.

Note that the time needed to perform the merging does
not decrease when more processors are used. With more
processors, each processor has to perform combining for
fewer elements of the shared array. However, each element
requires more work because more partial results need to be
combined. Specifically, consider an array of size � and �
processors. The merging step requires that each processor
combine � sub-arrays of size ���. As a result, the total
merging time is proportional to � � ��� � �, which does
not depend on the number of processors.

The problem gets worse when the access pattern of the
reduction is sparse. In this case, the merging operation per-
forms a lot of unnecessary work, since it operates on many
elements that still contain the neutral element. To improve
this case, each processor could use a compact private data
structure such as a hash table instead of a full private array.
With this approach, however, improving the merging phase
comes at the cost of slowing down the main computation
phase. The reason is that addressing this compact structure
requires indirection, which is more expensive than the sim-
ple addressing of array elements.

The second problem, namely cache sweeping, occurs in
the initialization (lines 1-2) and merging (lines 6-8) phases.
Cache sweeping in the initialization may cause additional
cache misses in the main computation phase (lines 3-4).
Cache sweeping in the merging phase may cause additional
misses in the code that follows the reduction loop.

3 Private Cache-Line Reduction (PCLR)

To address the problems discussed in Section 2.3, we
propose to add new architectural support to scalable shared-
memory multiprocessors. We call the new scheme Private
Cache-Line Reduction (PCLR). In this section, we give an
overview of the scheme and then propose an implementa-
tion.

3.1 Overview of PCLR

The essence of PCLR is that each processor participat-
ing in the reduction uses non-coherent lines in its cache as
temporary private storage to accumulate its partial results
of the reduction. Moreover, if these lines are displaced
from the cache, their value is automatically accumulated
onto the shared reduction variable in memory. Finally, since
the cache lines are non-coherent, cache misses are satisfied
from within the local node by returning a line filled with
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neutral elements. Figure 4 shows a representation of the
scheme.
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Figure 4. Representation of how PCLR works.

With this approach, the processors are relieved of the
initialization and merge-out work, therefore eliminating the
two problems pointed out in Section 2.3. Also, since the ap-
proach is still based on computing partial results and com-
bining them, the reduction is performed with no critical sec-
tions.

The initialization phase is avoided by initializing the re-
duction lines on demand, as they are brought into the cache
on cache misses. Since the cache is used as private storage
to accumulate the partial results, there is no need to allocate
any private array in memory. On a cache miss to a reduction
line, the local directory controller intercepts the request and
services it by supplying a line of neutral elements.

The merging phase is avoided by combining the reduc-
tion cache lines in the background, as they are displaced
from the cache during parallel loop execution. As each dis-
placed reduction line reaches the home of the shared reduc-
tion variable, the directory controller combines its contents
with the shared reduction variable in memory. Meanwhile,
the processors continue processing the loop without any in-
terruption.

When the parallel loop ends, some partial results may
still remain in the caches. They must be explicitly flushed so
that they are correctly combined with the shared data before
any further code is executed. This flush step takes much less
time than the ordinary merging phase of Figure 3. There are
two reasons for it. First, it has less combining to perform,
as most of it has already been performed through displace-
ments during the loop execution. In fact, the work to do is
at worst proportional to the size of the cache, rather than to
the size of the shared array. The second reason is that the
processor issues no remote loads. Instead, it simply sends

all the partial results to their homes, where the directory
controller combines the data.

With PCLR support, the code in Figure 2 becomes the
one in Figure 5. Note that we have added a call to a func-
tion that configures the machine for PCLR before the loop
execution. As in Figure 3, this example is also simplified by
using static scheduling and omitting the forking and joining
code. In the rest of this section, we present an implementa-
tion of PCLR.

1 ConfigHardware(arguments);
// The range 0..Nodes is split among the processors
2 for (i=MyNodesBegin;i<MyNodesEnd;i++)
3 w[x[i]]+=expression;
4 CacheFlush();
5 barrier();

Figure 5. Parallelized reduction code under PCLR.

3.2 Implementation of PCLR

Any implementation of PCLR has to consider the follow-
ing issues: differentiation of reduction data (Sections 3.2.1
and 3.2.5), support for on-demand initialization (Sec-
tion 3.2.2) and combining (Section 3.2.3) of lines, config-
uration of the hardware (Section 3.2.4), and atomicity guar-
antees (Section 3.2.6). We discuss these issues in this sec-
tion.

In the following discussion, we assume a CC-NUMA ar-
chitecture such as the one in Figure 4. Each node in the
machine has a directory controller that snoops and poten-
tially intervenes on all requests and write-backs issued by
the local cache, even if they are directed to remote nodes.

3.2.1 Differentiating Reduction Data

While the data used in reduction operations remain in
the cache, they are read and written just like regular, non-
reduction data. However cache misses and displacements
of reduction data require special treatment. Consequently,
any implementation of PCLR has to provide a way to dis-
tinguish reduction data from regular data.

A simple way of doing so is to use special load and
store instructions for “reduction” accesses. Cache lines ac-
cessed by these special instructions are marked as contain-
ing reduction data by putting them into a special “reduc-
tion” state. In this state, a processor can read and write the
line without sending invalidations, even though other pro-
cessors may be caching the same memory line. Misses by
reduction loads and displacements of lines in the reduction
state cause special transactions that are recognized by the
local and home directories, respectively.
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Note that we assume that reduction and regular data
never share a cache line. Although it would be possible
to enhance our scheme to support line sharing, alignment of
reduction data on cache line boundaries is beneficial even
without PCLR. Consequently, we assume that the compiler
guarantees no line sharing.

In the following, we explain the rest of PCLR assuming
this simple approach to differentiating reduction data. In
Section 3.2.5, we propose a more advanced scheme for re-
duction data differentiation that allows using unmodified or
slightly modified processors and caches.

3.2.2 On-Demand Initialization of Reduction Lines

When a reduction load misses in the cache, a specially-
marked cache line read transaction is issued to the memory
system. The local directory controller intercepts the request
and satisfies it by returning a line initialized with neutral
elements for the particular reduction operation. The line is
loaded into the cache in the reduction state.

A reduction load may hit in the cache on a line that is not
in the reduction state. This may occur if the line had been
accessed prior to the reduction loop with plain accesses and
happened to linger in the cache. In this case, if the line is
in state dirty, it is written back to memory in a plain write-
back. Irrespective of its state, the line is then invalidated.
Finally, the cache issues a reduction read miss as indicated
above.

3.2.3 On-Demand Combining of Partial Results

When a line in the reduction state is displaced from the
cache, a specially-marked write-back transaction is issued
to the memory system. Once the write-back arrives at its
home, the directory controller reads the previous contents of
the line from memory, combines it with the newly-arrived
partial result, and stores the updated line back to memory.
The combining of the lines is done according to the reduc-
tion operator in the code, and is performed for every single
element in the line. Note that those elements of the dis-
placed line that were not accessed by the processor still con-
tain the neutral element, so the effect of merging them with
memory content is that the memory content is unchanged.

To combine the lines, the directory controller has to be
enhanced with execution units that support the required re-
duction operators. Since a cache line contains several in-
dividual data elements, such execution units may become
a bottleneck if their performance is too low. Luckily, all
the elements of a line can be processed in parallel or in a
pipelined fashion. Consequently, it is not too difficult to im-
prove the performance by pipelining these execution units
or adding more units.

These execution units should include an integer ALU
for integer operations. For floating-point operations, hav-
ing a full floating-point unit would be more general, but

would also increase the complexity of the directory con-
troller significantly. Our experience with the applications in
Section 4.2 suggests that multiplication is rarely used as a
reduction operator. Thus, for floating-point operations, hav-
ing a floating-point adder and comparator is sufficient.

Finally, it is possible that the reduction data had been
accessed prior to the reduction loop with plain accesses,
and still lingers in several caches when the reduction loop
starts. To handle this case, when the home directory con-
troller receives a write-back for the line, it always checks
the list of sharer processors for the line in the directory.
Note that misses due to the reduction accesses do not go
to the home. Thus, the home only has sharing informa-
tion about non-reduction sharers. If the line is in a (non-
reduction) dirty state in a cache, the controller recalls the
line and writes it back to shared memory before performing
any combining. The controller also sends invalidations to
all (non-reduction) sharer processors. After the first reduc-
tion write-back of a line, the list of sharers at its home is
empty for the remainder of the reduction loop and causes
no further invalidation or recall messages.

3.2.4 Configuring the Hardware

Before executing a reduction loop, each processor issues
a system call to inform the directory controller in its node
about the data type and the operation of the reduction. This
is shown in line 1 of Figure 5. With this simple approach,
we can only support one type of reduction operation per
parallel section. In our example of Figure 5, the controller
must be configured to perform double-precision floating-
point addition when it receives a reduction write-back.

Any loop that performs several types of reduction oper-
ation must be distributed into multiple loops, so that each
loop performs only one type of reduction operation. Fortu-
nately, loops with multiple types of reduction operation are
rare.

Finally, the operating system knows if different, time-
shared processes want to use different types of reduction
operations. If this is the case, the operating system flushes
the reduction data from the caches when a process is pre-
empted, and reprograms the directory controller when the
process is re-scheduled.

3.2.5 Advanced Differentiation of Reduction Data

In Section 3.2.1 we explained a simple mechanism to
distinguish reduction data from regular data and then ex-
plained the rest of PCLR using that simple mechanism.
Now we propose a more advanced, but equivalent, mech-
anism that eliminates the need to modify the processor, the
caches, or the coherence protocol.

In this scheme, instead of using special instructions,
cache states, and protocol transactions to identify reduc-
tion data, such data are identified by using Shadow Ad-
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dresses [5]. The scheme works as follows. In the reduction
code, we use a Shadow Array instead of the original reduc-
tion array. For example, in Figure 5, we would use array
w redu instead of w. This shadow array is mapped to phys-
ical addresses that do not contain physical memory. How-
ever, such addresses differ from the corresponding physical
addresses of the original array in a known manner. For ex-
ample, they can have their most significant bit flipped. As
a result, when a directory controller sees an access that ad-
dresses nonexistent memory, it will know two things. First,
it will know that it is a reduction access. Second, from the
physical address, it will know what location of the original
array it refers to.

With this approach, we do not need to modify the hard-
ware of the processor, caches, or coherence protocol. The
only requirement is that the machine must be able to address
more memory than physically installed. Then, when a di-
rectory controller sees a read miss from the local processor
to nonexistent memory, it simply returns a line of neutral
elements to the processor. Furthermore, when a directory
controller sees the write-back of a line from the local pro-
cessor to nonexistent memory, it will forward it to the home
of the corresponding element of the original array. Finally,
when a directory controller receives the write-back of a line
from a remote processor, it translates its address to the ad-
dress of the corresponding element in the original array and
combines the incoming data with the data in memory.

This approach requires modest compiler and operating
system support. The compiler modifies the reduction code
to access a shadow array instead of the original array. It
also declares the shadow array and inserts a system call to
tell the operating system which array is shadow of which.
The operating system has to support the mapping of pages
for the shadow array. Specifically, on a page fault in the
shadow array, it assigns a nonexistent physical page whose
number bears the expected relation to the number assigned
to the corresponding original array page. Moreover, if the
latter does not exist yet, it is allocated at this time.

3.2.6 Atomicity Concerns and Solutions

In PCLR, a problem occurs if a line with reduction data
is displaced from the cache between a read and the corre-
sponding write of the reduction operation. As an example,
assume that the value of a variable in the line is 	 . This
value is read into a register and updated to 	 � 
 . How-
ever, before the result register is written to the cache, the
line gets displaced from the cache. In this case, the partial
result 	 will be sent to memory and accumulated onto the
shared data. Then, the cache miss will be serviced with the
neutral element and the variable in the line will be updated
to 	�
 . Later, a displacement of this line will cause	�

to be accumulated onto the shared data in memory. Thus,

the partial result	 will be accumulated onto the shared data
twice.

We can solve this problem through recovery or preven-
tion. Recovery solutions attempt to recover the correct
state of computation after the problem has already occurred.
Unfortunately, the problem can generally be detected only
when the store misses in the cache. In our example, the re-
covery would involve subtracting 	 from either the register
involved in the miss or the shared location. However, 	 is
unknown at the time the problem is detected, as the shared
location contains the combined result of other computations
and 	 , while the offending store has 	 � 
 . Instead of at-
tempting to checkpoint the partial results or the shared value
in order to enable recovery, we choose to prevent the occur-
rence of the problem.

Note that reduction lines in a cache do not receive ex-
ternal invalidations or downgrade requests that force them
to write-back. Therefore, a miss on a store to a reduction
line can only occur because, between the load and the store,
the local processor has brought in a second line that has
displaced the one with reduction data. If we ensure that the
processor does not perform any access between the load and
the store to the reduction variable, the displacement prob-
lem should not happen. Unfortunately, modern processors
reorder independent memory accesses like those to different
words of the same line and, therefore, may induce the prob-
lem. Preventing this reordering involves putting a memory
fence before the load and after the corresponding store to
the reduction variable. This approach is unacceptable be-
cause it would limit the performance of PCLR on modern
processors.

The approach that we use is the pinning of a line in the
cache between a reduction load to the line and the corre-
sponding store. We introduce two new instructions, namely
load&pin and store&unpin, and add a small number of
Cache Pin Registers (CPRs) to the processor. Each CPR
has two fields: the tag field which holds the tag of the pinned
line, and a pin count counter.

When a load&pin instruction is executed, a read from the
cache is performed. At the same time, a CPR is allocated,
its tag is set to the tag of the cache line, and the pin count
is set to one. If one of the CPRs already has the tag of
the line, its pin count is incremented. When a store&unpin
instruction is executed, a store to the cache is performed.
At the same time, the pin count for the matching CPR is
decremented. If after this the pin count is zero, the CPR is
freed. Before a displacement of a cache line is allowed, the
tags of the CPRs are checked. If any of the active CPRs has
a matching tag, the displacement is prevented until the line
is no longer pinned in the cache.

With this support, all micro-architectural features found
in modern microprocessors can still be used, including out-
of-order instruction issue, speculative execution, instruction
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squashing, and memory renaming. However, care must be
taken to keep the CPRs up-to-date. For example, if a spec-
ulatively executed load&pin has to be squashed, the hard-
ware needs to decrement the corresponding pin count and
possibly free the CPR. Similarly, consider memory renam-
ing from a store&unpin to a load&pin of the same address.
In this case, even though the load is transformed into a
register-to-register transfer, the CPR for the load&pin still
needs to be operated on.

Finally, if all CPRs are in use when one more is needed,
or a pin counter saturates, the instruction is delayed un-
til a CPR is free or the counter is decremented. Because
CPRs are needed to allow instruction reordering by the pro-
cessor, this delay cannot cause deadlocks. In fact, even
if a processor has only one CPR, it can correctly execute
any code. With more CPRs, the compiler can be more ag-
gressive about instruction scheduling. In practice, we have
found that a small number of CPRs (8) is sufficient to main-
tain good performance.

3.3 Summary

The PCLR scheme addresses the problems of parallel re-
ductions in scalable shared-memory multiprocessors as dis-
cussed in Section 2.3. PCLR has two main advantages.
First, it uses cache lines as the only private storage and
initializes them on demand. As a result, there is no need
to allocate private data structures or to perform a cache-
sweeping initialization loop. Second, it performs the com-
bining of the partial results with their shared counterparts on
demand, as the reduction loop executes. As a result, there
is no need for a costly merging step that involves sweep-
ing the cache and many remote misses. All that is needed
is to flush the reduction data from the caches at the end of
the loop. These two advantages are particularly important
when the reduction access patterns are sparse.

Most PCLR modifications are in the directory con-
trollers, which perform special actions on read misses and
write backs. With the use of shadow addresses, the only
modification to the processor and caches is the ability to
pin and unpin lines in the caches through the load&pin and
store&unpin instructions. It can be argued that these in-
structions could also be useful for other functions in modern
processors.

4 Evaluation Methodology

We evaluate the PCLR scheme using simulations driven
by several applications. In this section, we describe the sim-
ulation environment and the applications.

4.1 Simulation Environment

We use an execution-driven simulation environment
based on an extension to MINT [26] that includes a dynamic
superscalar processor model [14]. The architecture mod-
eled is a CC-NUMA multiprocessor with up to 16 nodes.
Each node contains a fraction of the shared memory and the
directory, as well as a processor and a two-level cache hier-
archy with a write-back policy. The processor is a 4-issue
dynamic superscalar with register renaming, branch predic-
tion, and non-blocking memory operations. Table 1 lists the
main characteristics of the architecture. Contention is accu-
rately modeled in the entire system, except in the network,
where it is modeled only at the source and destination ports.

Processor Parameters Memory Parameters

4-issue dynamic, 1 GHz L1, L2 size: 32 KB, 512 KB
Int, fp, ld/st FU: 4, 2, 2 L1, L2 assoc: 2 way, 4 way
Inst. window: 64 L1, L2 size: 64 B, 64 B
Pending ld, st: 8, 16 L1, L2 latency: 2, 10 cycles
Branch penalty: 4 cycles Local memory latency: 104 cycles
Int, fp rename regs: 64, 64 2-hop memory latency: 297 cycles

Table 1. Architectural characteristics of the modeled
CC-NUMA. The latencies shown measure contention-
free round trips from the processor in processor cycles.

The system uses a directory-based cache coherence pro-
tocol along the lines of DASH [22]. Each directory con-
troller has been enhanced with a single double-precision
floating-point add unit. Both the directory controller and
the floating point-unit are clocked at 1/3 of the processor’s
frequency. The floating-point unit is fully pipelined, so it
can start a new addition every three processor cycles. Its
latency is 2 cycles (6 processor cycles). Floating-point ad-
dition is the only reduction operation that appears in our
applications (Section 4.2).

Private data are allocated locally. Pages of shared data
are allocated in the memory module of the first processor
that accesses them. Our experiments show that this alloca-
tion policy for shared data achieves the best performance
results for both the baseline and the PCLR system.

4.2 Applications

To evaluate the PCLR system, we use a set of FORTRAN
and C scientific codes. Two of them are applications: Euler
from HPF-2 [7] and Equake from SPECfp2000 [13]. The
three other codes are kernels: Vml from Sparse BLAS [6],
Charmm from [4], and Nbf from the GROMOS molecular
dynamics benchmark [11].

All of these codes have loops with reduction operations.
Table 2 lists the loops that we simulate in each application
and their weight relative to the total sequential execution
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Appl. Names of Loops % of # of In- Iters. per Instruc. Red. Ops. Red. Array Lines Lines
Tseq vocations Invocation per Iter. per Iter. Size (KB) Flushed Displaced

dflux do[100,200]
Euler psmoo do20 84.7 120 59863 118 14 686.6 3261 2117

eflux do[100,200,300]
Equake smvp 50.0 3855 30169 550 22 707.1 742 580
Vml VecMult CAB 89.4 1 4929 135 6 40.0 168 0
Charmm dynamc do 82.8 1 82944 420 54 1947.0 1849 330
Nbf nbf do50 99.1 1 128000 1880 200 1000.0 238 1774

Average 81.2 795 61181 620 59 871.0 1251 960

Table 2. Application characteristics. In Euler, we only simulate dflux do100, and all the numbers except Tseq correspond
to this loop. The data in the last two columns of this table correspond to a single loop, and are collected through simulation
of a 16-processor system.

time of the application (%Tseq). This value is obtained by
profiling the applications on a single-processor Sun Ultra 5
workstation. The table also shows the number of loop in-
vocations during program execution, the average number of
iterations per invocation, the average number of instructions
per iteration, the average dynamic number of reduction op-
erations per iteration, and the size of the reduction array.
The last two columns of the table will be discussed in the
next section.

The loops in Table 2 are analyzed by the Polaris par-
allelizing compiler [2] or by hand to identify the reduction
statements. Then, we modify the code to implement the par-
allel reduction code for the software and PCLR algorithms,
as shown in Sections 2.2 and 3, respectively. For PCLR,
reduction accesses are also marked with special load and
store instructions to trigger special PCLR operations (Sec-
tion 3.2.1) in our simulator.

In the next section we report data, including speedups,
for only the sections of code described in Table 2. Also,
since there is a significant variation in speedup figures
across applications, we report average results using the har-
monic mean.

5 Evaluation

5.1 Impact of PCLR

We evaluate two different implementations of our PCLR
scheme. The first one is an implementation where the di-
rectory controller is hardwired. The second implementa-
tion utilizes a programmable directory controller, similar
to the MAGIC micro-controller in the FLASH multipro-
cessor [19]. A programmable controller can provide the
functionality required by PCLR without requiring hardware
changes. These two implementations of PCLR are com-
pared against a baseline system, which uses a software-only
approach to parallelize reductions. The software-only ap-
proach utilizes an algorithm that accumulates partial results

in private arrays and merges the data out when the loop is
done, as described in Section 2.2.

Figure 6 compares the execution time of these three sys-
tems. The baseline software-only system is Sw. The PCLR
implementation with a hardwired directory controller is Hw,
and the implementation with a flexible programmable direc-
tory controller is Flex. The simulated system is a 16-node
multiprocessor. For each application, the bars are normal-
ized to Sw, and broken down into time spent in the initial-
ization phase of the Sw scheme (Init), loop body execution
(Loop), and time spent merging the partial results at the end
of the loop in Sw or flushing the caches in Hw and Flex
(Merge). The numbers above each bar show the speedup
relative to the sequential execution of the code. In the se-
quential execution, all data were placed on the local mem-
ory of the single active processor.

The performance of Hw and Flex improves significantly
over Sw. This improvement is mainly due to the elimination
of the final cross-processor merging step that is required in
the software-only implementation. In Sw, the work in this
merging step is proportional to the size of the reduction ar-
ray and does not decrease when more processors are avail-
able. When this time is significant relative to the time spent
in the execution of the main loop, the benefits of PCLR be-
come substantial. For example, in Charmm the main par-
allel loop alone executes with Sw 9 times faster than the
sequential loop. However, the merging step is responsible
for the poor final speedup of Sw (1.9 on 16 processors). As
mentioned in Section 3, a second benefit of PCLR is that
the initialization phase is removed. In general, this phase
accounts for a relatively small fraction of the Sw execution
time.

The Hw and Flex systems always spend less time in
Merge than the Sw system. In PCLR, Merge only accounts
for the time spent flushing the caches after the last processor
has finished the execution of the parallel loop. When using
PCLR, processors do not have to synchronize after the par-
allel loop. They can start flushing their caches as soon as

8



0

0.2

0.4

0.6

0.8

1

S
w

H
w

F
le

x

S
w

H
w

F
le

x

S
w

H
w

F
le

x

S
w

H
w

F
le

x

S
w

H
w

F
le

x

E
xe

cu
ti

o
n

 T
im

e

Init

Merge

Loop

Euler Equake Vml Charmm Nbf

  1.3     4.0    3.5 7.3    14.0   10.6  3.1    6.1    5.0      1.9     9.9    7.7    9.1   15.6   14.2 

Figure 6. Execution time under different schemes for a 16-node multiprocessor. The numbers above the bars are
speedups relative to the sequential execution.

they finish, and overlap this flush with the execution of the
loop on other processors.

In our experiments, we do not assume special support
to flush only the reduction data. Thus, the L2 cache is tra-
versed and all the dirty lines (reduction or not) are writ-
ten back to memory. In Table 2, the column Lines Flushed
shows the average number of cache lines flushed by each
processor. Most of these lines contain reduction data. The
column Lines Displaced shows the average number of lines
with reduction data displaced by each processor during the
execution of the main reduction loop.

The differences between the Hw and the Flex schemes
are mainly due to two reasons. First, with a software direc-
tory controller, all the transactions in the node have to go
through the node controller, increasing the contention. Sec-
ond, the software directory controller takes longer to pro-
cess individual transactions. To accurately simulate these
two effects, in our simulations of Flex we have used the
cycle counts for response time and occupancy reported for
the FLASH directory controller [12]. For example, a clean
read miss is serviced in 11 cycles of the directory controller.
Since we assume that the directory controller is clocked at
1/3 of the processor’s frequency, this corresponds to 33 cy-
cles of the main processor. The directory controller is occu-
pied during that time.

The figure shows that the speedups in Flex are, on the av-
erage, only 16% lower than in Hw and 136% higher than in
Sw. Therefore, implementing PCLR using a programmable
directory controller is a good trade-off.

Overall, for a 16-node multiprocessor, the Hw PCLR
scheme achieves an average speedup of 7.6, while the
software-only system delivers an average speedup of only
2.7. If PCLR is implemented with a programmable direc-
tory controller the average speedup is 6.4.

5.2 Scalability of PCLR

To evaluate the scalability of PCLR, we have simulated
a multiprocessor system with 4, 8, and 16 processors. Fig-
ure 7 shows the harmonic mean of the speedups delivered
by the different mechanisms. It can be seen that PCLR (both
Hw and Flex) scale well. However, the Sw scheme scales
poorly. As explained in Section 2.2, the time of the merg-
ing step in Sw does not decrease when more processors are
available. If the main loop scales well, the merging step
limits the achievable speedups according to Amdahl’s law.
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Figure 7. speedups delivered by the different mecha-
nisms (harmonic mean).
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5.3 Impact of FP-Unit Speed

In previous sections we have assumed that the floating-
point unit in the directory controller was clocked at ��� of
the processor’s frequency. To determine whether this unit
is a point of contention in our PCLR system, we evalu-
ate a system with a faster unit. Thus, Figure 8 compares
the previous system (Hw) with a system where the floating-
point unit in the directory is clocked at the full frequency
of the processor (Fast). We can see from the Figure that,
although the execution times of some applications improve,
the improvements are not significant. Therefore, even the
relatively slow floating-point unit is not a bottleneck in our
system.
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Figure 8. Comparing the performance with floating-
point units of different frequencies.

6 Additional Use of PCLR

The PCLR scheme can also be used to speed-up another
algorithm, namely the dynamic last value assignment. In
this section, we explain the dynamic last value assignment
problem (Section 6.1) and show how PCLR can be used
(Section 6.2).

6.1 Dynamic Last Value Assignment in Software

As explained in Section 2, privatization is a common
technique used to parallelize loops with anti and output de-
pendences. When privatization is used, if the value of the
privatized variable is needed after the parallel loop, a last
value assignment has to be performed. Specifically, after
the loop execution is complete, the shared counterpart of
the privatized variable has to be updated with the value pro-
duced by the highest writing iteration. If the compiler can
determine which iteration is that, it generates the code that
puts this value in the shared variable. In the common case
when all iterations write to the privatized variable, the last

writing iteration is the last iteration of the loop. In this case,
the compiler can simply peel off this last iteration and make
it write directly to the shared variable.

However, when the last writing iteration cannot be deter-
mined at compile time, dynamic last value assignment has
to be performed. In this case, the main parallel loop is fol-
lowed by a copy-out phase. This phase identifies, for each
element of the shared variable, the processor that ran the
highest iteration that wrote to that element.

Figure 9 shows an example of a loop that is parallelized
through the privatization of array A. It also needs dynamic
last value assignment if the elements of array A are read
after the loop, or the compiler cannot prove they are not
read.

1 for (i=0;i<N;i++)
2 if (f[i])�
3 A[g[i]]= . . .;
4 . . .=A[g[i]];
5 �

Figure 9. Loop to be parallelized with privatization and
dynamic last value assignment.

Figure 10 shows the parallel version of the loop, with
the copy-out phase. The figure assumes that array A con-
tains NumElement elements. As usual, static scheduling is
used for simplicity. As can be seen, together with the pri-
vate array A priv[PID], each processor also has a private
time-stamp array A ts[PID]. Whenever a processor writes
to an element of the private array, it also updates the corre-
sponding element in the private time-stamp array with the
number of the iteration it is executing. When the loop is
done, the copy-out phase compares the private time-stamps
of all the processors. Each element of the shared array is
updated with the private copy of the processor where the
maximum time-stamp is found.

Note that the private time-stamps A ts[PID] have to be
initialized to a number that is smaller that any possible itera-
tion number (-1 in our example). Also, note that when static
scheduling is used, as in our example, the processor ID can
be used to update the time-stamps (A ts[PID][g[i]] in line
6) instead of the iteration number, assuming that scheduling
is done so that processors with increasing PIDs get iteration
ranges with increasing indices.

6.2 Using PCLR for Last Value Assignment

Note that Figure 10 uses the private time-stamp arrays
as reduction data, where the reduction operation is maxi-
mum. During the execution of the main loop, the updates
to the private time-stamps compute the partial results, while
the search for the maximum during the copy-out phase cor-
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// Initialize the private time-stamp array
1 for (i=0;i<NumElement;i++)
2 A ts[PID] [i]=-1;
// The range 0..N is split among the processors
3 for (i=MyNBegin;i<MyNEnd;i++)
4 if (f[i])�
5 A priv[PID][ g[i]]= . . .;
6 A ts[PID][ g[i]]=PID;
8 . . .=A priv[PID][ g[i]];
9 �
10 barrier();
// Copy-out. Range 0..NumElement is split among procs
11 for (i=MyNumElemBegin;i<MyNumElemEnd;i++)�
12 x=-1;
13 for (p=0;p<NumProcessors;p++)
14 x=max(x,A ts[p][i]);
15 if(x>-1)
16 A[i]=A priv[x][i];
17 �
18 barrier();

Figure 10. Code resulting from parallelizing the loop
in Figure 9 with dynamic last value assignment.

responds to the merge-out. Thus, the PCLR mechanism as
explained in Section 3, can be used to speed-up the dynamic
last value assignment operation. Since PCLR performs re-
ductions without declaring private reduction arrays, we only
need to declare one shared time-stamp array. Its elements
have to be initialized to a number lower than any possible
iteration or processor ID.

During the execution of the main loop, the time-stamps
are updated using the maximum operator. After the parallel
loop is finished and the caches are flushed, each element
of the shared time-stamp array will contain the maximum
time-stamp for that element. Each of these maxima will
be used to identify the correct private version to copy into
the corresponding element of the shared array. Thus, using
PCLR speeds-up dynamic last value assignment and makes
it scalable with the number of processors.

6.3 Advanced Support

A further speedup could be obtained if the final copy-out
phase was eliminated. To do so, we could extend PCLR
with additional support. Currently, PCLR speeds-up the
computation of the maximum time-stamp for each data ele-
ment. However, we still have to explicitly perform the copy-
out.

With advanced support, caches and directory controllers
could help eliminate the copy-out as follows. Every time
that a line from the privatized array is displaced from the

cache, the cache could also force the displacement of the
corresponding time-stamps. When the displaced privatized
line and time-stamps arrived at the home directory con-
troller, a comparison would take place. An element in the
privatized line would update the shared data in memory
only if its time-stamp was higher than the one in shared-
memory. At the end of the loop execution, a cache flush
step would flush the remaining private array lines and time-
stamps. Again, the home directory controller would only
conditionally accept the incoming private data based on a
time-stamp comparison. Overall, with this support, at the
end of execution, the shared array would have the last val-
ues and no copy-out would have been necessary.

7 Related Work

Nearly all of the past work on reduction parallelization
has been based on software-only transformations [8, 27].
The most related architectural work that we are aware of is
the work of Larus et al. [20], Zhang et al. [28], and the work
on advanced synchronization mechanisms [3, 9, 10, 16, 17,
18, 23, 24, 25, 29].

Larus et al. briefly mention an idea similar to PCLR
as one application of their Reconcilable Shared Memory
(RSM) [20]. RSM is a family of memory systems whose be-
havior can be controlled by the compiler. They use RSM to
support programming language constructs. The paper only
mentions the applicability to reduction very briefly and pro-
vides no evaluation.

Zhang et al. propose a modified shared-memory archi-
tecture that combines both speculative parallelization and
reduction optimization [28]. In contrast to that work, which
relies on a significantly modified multiprocessor architec-
ture, we have presented relatively simple architectural sup-
port to optimize reduction parallelization. In addition, un-
like in [28], our scheme assumes that the compiler has al-
ready proved that our transformation is legal.

Finally, the combining support that we propose for the
directory controller is related to the existing body of work
on hardware support for synchronization. Such work in-
cludes the Full/Empty bit of the HEP multiprocessor [25],
the atomic Fetch&Add primitive of the NYU Ultracom-
puter [10], the Fetch&Op synchronization primitives of the
IBM RP3 [3, 23], support for combining trees [16, 24], the
memory-based synchronization primitives in Cedar [17, 18,
29], and the set of synchronization primitives proposed by
Goodman et al [9].

8 Summary

In this paper, we have proposed new architectural sup-
port to speed-up parallel reductions in scalable shared-
memory multiprocessors. The support consists of architec-
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tural modifications that are mostly confined to the directory
controllers. With this support, we eliminate the final merg-
ing phase that typically appears in conventional algorithms
for parallel reduction. This phase takes time that is pro-
portional to the data size in the dense case, or to the data
structure dimensions in the sparse case. With our support,
parallel reduction only needs a final cache flush step that
takes time proportional only to the cache size. Overall,
our scheme realizes truly scalable parallel reduction. While
conventional software-only parallelization delivers average
speedups of 2.7 for 16 processors, the proposed scheme de-
livers average speedups of 7.6.
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