
P-Ray: A Suite of Micro-benchmarks for

Multi-core Architectures ⋆

Alexandre X. Duchateau, Albert Sidelnik, Maŕıa Jesús Garzarán, and David
Padua

Department of Computer Science
University of Illinois at Urbana-Champaign

{axdn,asideln2,garzaran,padua}@uiuc.edu

Abstract. The increasing complexity of computer architectures has made
the approach of automatically generating code that is optimized for the
target machine a growing area of interest. Examples of such systems are
library generators, such as ATLAS, SPIRAL, or FFTW. To generate op-
timized code without manual intervention, these systems need to know
the values of certain hardware parameters, such as the cache size or the
number of registers. Current benchmark suites such as X-Ray or LM-
bench can automatically determine some of these parameters for single
processor super-scalar machines but cannot determine multi-core specific
characteristics.

In this paper, we present P-Ray, a suite of micro-benchmarks that fo-
cus on hardware characteristics specific to multi-core architectures. Such
characteristics include the number of cores that share the L2 cache, the
different processors’ interconnection topologies, and the bandwidth-to-
memory for multi-cores. Our experiments show that, for several different
architectures tested (desktop and server), P-Ray generates accurate re-
sults.

1 Introduction

With multi-core processors as the current dominant trend, and architectures
more complex and less documented, finding hardware specifications is becoming
increasingly difficult. Knowledge of hardware features can be useful in driving
program optimization, such as in library generators. ATLAS [9], SPIRAL [5], and
FFTW [2] are examples of known library generators. ATLAS generates linear
algebra routines (BLAS) with a focus on matrix-matrix multiplication. SPIRAL
and FFTW are similar to ATLAS, but generate signal processing libraries. An-
alytical models have been [10], or are being [1] developed for library generators
that use hardware characteristics to reduce the search time. For example, AT-
LAS will use knowledge of the L2 cache size in order to determine optimal tile
sizes for matrix-matrix multiplication.

⋆ This material is based upon work supported by the National Science Founda-
tion under Awards CCF 0702260 and CNS 0509432 and by DARPA under award
W911NF0710416

2 P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures

Existing benchmark suites such as X-Ray [11], Saavedra [7], and LMbench [4]
try to address the problem of automatically finding machine specifications, but
focus on features of uniprocessor super-scalars. To our knowledge, no existing
micro-benchmarks measure multi-core characteristics.

In this paper, we extend the existing sets of micro-benchmarks to multi-cores
to find the number of caches shared by the cores, the processors’ interconnec-
tion topologies, and the effective bandwidth and block size used by the cache
coherence mechanism.

Our experimental results for three different platforms show that P-Ray gen-
erates accurate results.

The remainder of this paper is organized as follows. Section 2 provides moti-
vating examples for our work. Section 3 presents the different benchmarks imple-
mented. Section 4 describes our implementation requirements and details. Sec-
tion 5 summarizes the experimental environment and discusses results. Section 6
describes related work. Section 7 proposes future work. Finally in Section 8, we
summarize our work and offer concluding remarks.

2 Motivation

Multi-threaded matrix-matrix multiplication

 In L2 cache fo r co res 1 & 2 I n bo th caches In L2 cache fo r co res 3 & 4

Thread 3 Thread 4

 Thread 2Thread 1

A C

B

(a) Inefficient mapping

A

B

C
 Thread 2Thread 1

Thread 3 Thread 4

(b) Efficient mapping

Fig. 1. Data Locality depending on thread to core affinity

Library generators need a detailed knowledge of the architectural features of
the machine to generate high-performance code. To show that this is the case,
we ran an implementation of matrix-matrix multiplication (C = A ∗ B) using
POSIX threads on an Intel Core 2 Quad desktop that has four cores and two
L2 caches, each cache shared by two cores. Figure 1 shows two different possible

P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures 3

mappings for the matrices depending on thread affinity. For this experiment,
matrix C is split into four sub-matrices, and each thread is assigned to one
quadrant. Matrices are of size 800 × 800 each, so that they fit in memory but
not in the L2 cache. With the mapping in Figure 1(a), both matrices A and B
need to be loaded in both L2 caches. Using the mapping of Figure 1(b), matrix
B can be split so that one half goes to one L2 cache and the other half goes to
the second. Our experimental results show that an inefficient mapping can run
up to 32% slower than an efficient one. To correctly map the threads to cores as
in Figure 1(b), it was necessary to use P-Ray to obtain the ID of the cores that
share the L2 cache. Thread affinity has been used in the past to pin a thread to
a core in order to avoid its mapping to a different core (and subsequent cache
trashing) after a context switch [8]. However, in current architectures where
several cores could share a cache, thread affinity can be used to place in L2 the
data shared by two threads. In most cases, this use of thread affinity can only be
done if the programmer has the information provided by a tool such as P-Ray,
by exhaustive search of all the possibilities, or if additional operating support is
provided.

3 Benchmarks

In this section, we provide a high level description of each benchmark imple-
mented in P-Ray. Implementation specifics and detailed interpretation of the
produced results will be discussed in Sections 4 and 5.

3.1 Cache Coherence Protocol Block Size

Knowing the block size used by the coherence protocol can aid the programmer in
reducing false sharing misses. Other benchmarks already exist to measure cache
line size, but are relatively slow. By exploiting false sharing our benchmark infers
the block size in a fast and simple way.

... ...

T1 T2

... ...

I teration 0 Iteration i

T1 T2

0 1 i n 0 1 i n

. . .

Fig. 2. Coherence Block Size Benchmark

Figure 2 illustrates Algorithm 1, that is used to compute the block size.

Two threads are spawned to work on a shared array of characters1. Both
threads modify the shared data in order to induce coherence traffic. The data is

1 In most architectures, a character is a basic type of size 1 byte.

4 P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures

Algorithm 1 Calculate block size

measure-size(core1,core2) {
char data[MAXLSIZES]
i← 1
while i ≤MAXLSIZE do

Start timing
Spawn thread-work(core1,0)
Spawn thread-work(core2,i)
Wait for threads to complete
Stop timing
Print i, timing

i← 2 ∗ i

end while

}

thread-work(core,index) {
Set-thread-affinity(core)
i← 0
while i ≤ SAMPLES do

data[index]← data[index] + 1
i← i + 1

end while

}

also read to ensure it resides in L1: some architectures implement write-through
write-no-allocate caches2.

Thread one will always access the first element of the array. Thread two
starts accessing the second element of the array; however, with each iteration, it
accesses an element which is further apart from the first one.

At first, both threads will access the same cache line and have poor per-
formance due to false sharing; as the spacing between accesses increases, the
performance stays poor until both accessed values are on two separate cache
lines. At this point, execution time decreases drastically and we automatically
infer the coherence block size.

This algorithm can tell us the block size of different levels of cache. When the
threads are mapped to cores that share a L2, this algorithm measures the block
size of L1. However, when threads are mapped to cores that do not share a L2,
this algorithm measures the block size of L2. When we do not have information
about the mapping of a core to the caches, the second thread can be mapped to
different cores in the system. By comparing the execution times of the different
mappings, P-Ray can determine whether the block size corresponds to the L1
or L2 cache. When there is no coherency between the caches, this mechanism
cannot determine the block size.

3.2 Cache Mapping

This benchmark is used to find the number of caches at a given level on the
system and cores that share them.

Here the benchmark needs to know the size of the cache at the level in which
we are interested. For completeness, P-Ray includes a benchmark to approxi-
mate it; however cache size can also be measured with other benchmarks [11,
4]. Algorithm 2 calculates the number of caches. Each thread accesses an array

2 Sun Niagara T1: http://opensparc-t1.sunsource.net/specs/OpenSPARCT1_

Micro_Arch.pdf

P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures 5

Algorithm 2 Calculate cache mapping

cache-mapping(core1, core2) {
i← 1
while i ≤ SAMPLES do

Spawn thread-work(core1,1)
Spawn thread-work(core2,2)
Wait on thread barrier
Wait for threads to complete
i← i + 1

end while

}

thread-work(core, id) {
Set-thread-affinity (core)
Pointer p ← Initialize local data
Wait on thread barrier
Start timing
for i← 0 to SIZE do

p← ∗p
end for

Stop timing
if id = 1 then

Print core pair, timing
end if

}

approximately sized to L2 in order to cause misses between cores that share the
same cache. This array is initialized as described in Algorithm 5 below. The first
step of the algorithm is to measure the time it took for one thread to read the
elements of this array when running in isolation. This time will be used as a
reference to interpret the results.

Then, we run a similar test with two threads. Each thread sets its affinity
to a different core, initializes its workset, and waits on a barrier for the other
thread. Once both threads leave the barrier, we measure the time it takes for
the threads to read their arrays while running simultaneously. If the measured
execution time is higher than the reference time, we conclude that both threads
ran on cores that share a cache, and that performance degraded due to the
worksets of the two threads competing for cache space. If it is the same, we
instead infer that both threads ran on separate caches.

This test is run for all pairs of cores on the system. After gathering all the
results, P-Ray determines the number of caches on the system and the ID of the
cores that map to them.

3.3 Processor Mapping

This benchmark is used to determine the processors’ interconnection topology.
Algorithm 3 uses two threads sharing a workset the size of the L1 cache, but

running on separate cores. This algorithm functions by having one thread that
reads and modifies its workset (i.e. brings it into L1) and measuring the time it
takes for the second thread to read the data. By comparing the different access
times of all possible pairs of cores, this benchmark can determine the different
relative distances between all cores.

3.4 Effective Bandwidth

This benchmark is used to measure the available bandwidth for one core to
memory by saturating it from one or several threads. In the following description

6 P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures

Algorithm 3 Calculate processor mapping

thread-work1(core id2) {
Set-thread-affinity (core id2)
p ← InitData(data,size,stride)
Wait on thread barrier
}

Require: Pointer p is global
thread-work2(core id1) {
Set-thread-affinity (core id1)
Wait on thread barrier
Start timing
for i← 0 to L1SIZE do

p← ∗p
end for

Stop timing
Print (core id1,core id2), timing
}

the term “memory” will be used both for memory and caches unless otherwise
specified.

Algorithm 4 Calculate bandwidth

Iteration1() {
Start timing
for i← 0 to N ITER do

p← ∗p
end for

Stop timing
Print timing
}

Iteration2() {
Start timing
for i← 0 to N ITER/2 do

p1← ∗p1
p2← ∗p2

end for

Stop timing
Print timing
}

We use an array that does pointer chaining with multiple entry points (this
data structure and its initialization are described in Algorithm 5 and Figure 3
below). The offset between two entry points is here set to the size of a memory
page. The stride between accesses is set to the smallest multiple of the page size
that avoids overlap between chains.

To target a specific level in the memory hierarchy, we control the number of
elements in the pointer chain before the loop back. We ensure that any reuse
would happen after the data was displaced from levels closer to the core. More-
over, when measuring memory bandwidth, L2 is flushed after initialization.

Single-threaded bandwidth The first step is to measure the bandwidth to
memory for an isolated thread.

In the first iteration, the benchmark traverses the array through a single entry
pointer, as shown by Iteration1 in Algorithm 4. The code in Iteration1 serializes
array accesses, as the access to the next element of the array cannot be issued
until the pointer load returns. The second iteration of this benchmark traverses
the array through two entry pointers, as shown by Iteration2 in Algorithm 4.

P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures 7

This loop has two independent accesses that can be sent simultaneously to the
memory. However, accesses in an iteration depend on the accesses of the previous
iteration for the same pointer chain due to the loop-carried dependences for all
pointers. The benchmark proceeds by increasing the number of independent
requests. By measuring the execution time of these loops, P-Ray can determine
the number of requests that a core can have in-flight as well as its saturation
point.

To calculate effective bandwidth, we use the following equation: Effective
Bandwidth for program = ClockFreq∗ReadSize

CyclesPerRead
, where CyclesPerRead is obtained

by dividing the Execution Cycles at any of the saturation points by the number
of iterations in our access loop. ClockFreq is the clock rate for the given core.
ReadSize is the size of the cache line being read.

Multi-threaded bandwidth We then look at the memory bandwidth when
multiple cores are sending requests simultaneously. For that, we use Algorithm 4
in parallel over multiple threads. When considering a cache, we limit ourselves to
running the benchmark with threads on the cores that share that cache. When
considering memory, we run the benchmark with any number of cores in the
system.

To better understand the impact of concurrent access on the bandwidth for
the targeted memory, we test different numbers of threads: we test anywhere
between two and the number of cores sharing the targeted memory.

4 Implementation

4.1 Requirements

Our benchmarks have two major requirements: i) a high resolution wall timer
(e.g. on Intel machines we use the RDTSC instruction to get timing in clock
cycles [3]) and ii) library and operating system support to set thread to core
affinity.

4.2 Implementation details

Pointer chaining The data structure used by most of our benchmarks is an
array of pointers where each element of the array contains the address to the
next element to access when traversing the structure. A similar data structure
has been used by X-ray [11] and LMbench [4], but we initialize it using our own
techniques.

A picture of the data structure is shown in Figure 3, and the algorithm for
its initialization is shown in Algorithm 5. The initialization algorithm takes four
arguments: i) data is a pointer to the allocated memory, ii) size is the size in
memory of the data structure, iii) stride is the distance between two consecutive
accesses, iv) offset is the distance between two entry points, and v) entries is
the number of entry pointers.

8 P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures

Our initialization routine uses a stride larger than page size to circumvent
the hardware prefetcher and offset larger than the cache line size to prevent
consecutive entry pointers from sharing a cache line. Since some experiments
need to run for a large number of iterations, we limit the size of the array by
having the last element of the chain point back to the first element (bottom lines
of Algorithm 5).

Algorithm 5 Pointer Chaining

Init-data(data,size,stride,offset,entries)
i← 0
while i < entries do

uoffset← i ∗ offset

Init-entry(data,size,stride,uoffset)
i← i + 1

end while

Init-entry(data,size,stride,offset)
i← offset

while i ≤ size− stride do

data[i]←&data[i + stride]
i← i + stride

end while

data[i]← &data[offset]

Fig. 3. Pointer chaining: General case

This structure has many advantages: i) it minimizes overhead, as no address
has to be computed, ii) it allows for easy ways to experiment with different access
patterns by tuning the initialization parameters, and iii) it prevents compiler
optimizations that could interfere with performance measurements.

Loop Overhead The loop overhead should not be considered in the timing.
Thus, in order to minimize the control overhead, the main data access loops
are unrolled by a factor of 512. This value was chosen because it reduces loop
overhead without adding substantial instruction cache pressure. Additionally, we
time an empty loop to remove the control overhead from our timing. This way,
the final time reflects the actual access times.

Code Reordering In order to prevent the compiler from performing any re-
ordering of instructions within the timed kernel, volatile data modifiers are used.
We were careful to not excessively mark every variable volatile when used outside
of timed kernels, as this can hurt performance substantially.

P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures 9

System Noise To deal with the problem of system noise from the operating
system and other user applications, we take numerous timing samples and use
the minimum timed value as our result. This compensates for other programs
and daemons running on the system.

5 Evaluation

5.1 Experimental Environment

We tested on three different architectures described in Table 1.

X86-64 Intel X86-64 Intel Core 2 Sun UltraSPARC
Xeon Harpertown Quad Kentsfield T1 Niagara

Num cores 8a 4 8 (32 threads)

Clock Rate (GHz) 2.0 2.4 1.2

L2 Cache size (MB) 6 4 3

OS (Kernel) Fedora 8 (2.6.24) Fedora 8 (2.6.24) Solaris 10

Compiler GCC 4.1.2 GCC 4.1.2 GCC 3.4.3

a Composed of two four-core chips
Table 1. Architectures tested

5.2 Experimental results

Coherence Block Size Figure 4 illustrates the results for Algorithm 1. On the
Intel machines (Figure 4(a) and 4(b)), the threads were mapped to cores not
sharing the L2 cache. The results show that, on the Intel machines, there is a
notable time decrease as soon as the two accesses are 64-bytes apart. From this,
we conclude that the coherence protocol on these machines uses 64-byte blocks.

On the Sun UltraSPARC T1 (Figure 4(c)), we observe that the largest per-
formance difference occurs at the 16-byte block size, which corresponds to the
size of the L1 data cache block.

To show block sizes at the different cache levels and communication laten-
cies, we evaluated different mappings of threads to cores. Figure 5 shows the
results for the Intel Harpertown architecture, which has eight cores. We first
mapped the threads to the two cores on the same dual-core. We then mapped
the threads to cores on the same chip but not the same cache. Finally we mapped
the threads to cores on different chips. We see that for this machine, while the
block size is always 64-bytes, the different values of execution time show the
different communication latencies among the different cores. There is a higher
communication latency when the communicating cores are on different chips,
and the communication cost is lower when the cores are closer together.

10 P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

1 2 4 8 16 32 64 12
8

25
6

51
2

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Tested size in Bytes

(a) Harpertown

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

51
2

25
6

12
8

6432168421

E
xe

cu
tio

n
tim

e
in

 c
lo

ck
 C

yc
le

s

Tested size in Bytes

(b) Kentsfield

 0

 200,000

 400,000

 600,000

 800,000

 1,000,000

 1,200,000

 1,400,000

 1,600,000

1 2 4 8 16 32 64 12
8

25
6

51
2

E
xe

cu
tio

n
tim

e
in

 c
lo

ck
 c

yc
le

s

Tested size in Bytes

(c) Niagara

Fig. 4. Coherence Block Size Results

Through Cache
On Chip
Cross Chip

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

1 2 4 8 16 32 64 12
8

25
6

51
2

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Tested size in Bytes

Fig. 5. Coherence block size and communication latency

Cache Mapping Figure 6 illustrates the results for Algorithm 2. The results
clearly show which of the cores share a cache.

By looking at the pairs of cores with the highest access times, we see that for
the Harpertown (Figure 6(a)), core pairs of ID (1−3),(2−4),(5−7), and (6−8)
share a cache, and for the Kentsfield (Figure 6(b)), the core pairs ID (1−2) and
(3 − 4) share a cache.

For the Sun UltraSPARC (Figure 6(c)), we see that all core pairs have the
same performance. When comparing this performance with the single thread

P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures 11

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

(r
ef

)
(1

−
2)

(1
−

3)
(1

−
4)

(1
−

5)
(1

−
6)

(1
−

7)
(1

−
8)

(2
−

3)
(2

−
4)

(2
−

5)
(2

−
6)

(2
−

7)
(2

−
8)

(3
−

4)
(3

−
5)

(3
−

6)
(3

−
7)

(3
−

8)
(4

−
5)

(4
−

6)
(4

−
7)

(4
−

8)
(5

−
6)

(5
−

7)
(5

−
8)

(6
−

7)
(6

−
8)

(7
−

8)

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Pairs of Cores

(a) Harpertown

 0

 5,000

 10,000

 15,000

 20,000

 25,000

(r
ef

)

(1
−

2)

(1
−

3)

(2
−

3)

(1
−

4)

(2
−

4)

(3
−

4)

E
xe

cu
tio

n
tim

e
in

 c
lo

ck
 C

yc
le

s

Pairs of cores

(b) Kentsfield

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

(r
ef

)
(1

−
2)

(1
−

3)
(1

−
4)

(1
−

5)
(1

−
6)

(1
−

7)
(1

−
8)

(2
−

3)
(2

−
4)

(2
−

5)
(2

−
6)

(2
−

7)
(2

−
8)

(3
−

4)
(3

−
5)

(3
−

6)
(3

−
7)

(3
−

8)
(4

−
5)

(4
−

6)
(4

−
7)

(4
−

8)
(5

−
6)

(5
−

7)
(5

−
8)

(6
−

7)
(6

−
8)

(7
−

8)

E
xe

cu
tio

n
tim

e
in

 c
lo

ck
 C

yc
le

s

Pairs of Cores

(c) Niagara

Fig. 6. Cache Mapping

reference time, we realize that all core pairs perform poorly and, thus, we infer
that all cores share the same cache.

Processor Mapping Figure 7 illustrates the results for Algorithm 3. For the
Harpertown (Figure 7(a)), we see three different distances. First, we have the
pairs of cores that are the closest. These pairs correspond to those that share
a cache in Figure 6(a): (1 − 3),(2 − 4),(5 − 7), and (6 − 8). Then we have two
groups of four cores, where communicating between pairs in a group is faster
than communicating between cores in different groups: ((1 − 3)(5 − 7)) and
((2 − 4)(6 − 8)). Those results confirm what is found on the design of the two
architectures: the machine is composed of two four-core chips, with each four-
core chip composed of two combined dual-cores. For the Kentsfield (Figure 7(b)),
we confirm that pairs of cores that share a cache communicate faster.

For the Niagara (figure 7(c)), results show that all cores are equidistant,
which confirms the results obtained for the cache mapping.

Effective L2 Bandwidth Figure 8 illustrates the results for Algorithm 4.
We show data for each platform when a thread is run in isolation and when
two or more threads run concurrently. By looking at results for one thread, we
observe that, for all Intel machines, the execution time decreases as the number
of independent accesses that can be issued simultaneously increases. There is
a saturation point where the execution time remains constant. The smallest
number of independent accesses where the saturation point is reached tell us the
number of requests that can be served in parallel. When two or more threads run

12 P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

(1
−

2)
(1

−
3)

(1
−

4)
(1

−
5)

(1
−

6)
(1

−
7)

(1
−

8)
(2

−
3)

(2
−

4)
(2

−
5)

(2
−

6)
(2

−
7)

(2
−

8)
(3

−
4)

(3
−

5)
(3

−
6)

(3
−

7)
(3

−
8)

(4
−

5)
(4

−
6)

(4
−

7)
(4

−
8)

(5
−

6)
(5

−
7)

(5
−

8)
(6

−
7)

(6
−

8)
(7

−
8)

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Pairs of Cores

(a) Harpertown

 0

 5,000

 10,000

 15,000

 20,000

 25,000

(1
−

2)

(1
−

3)

(1
−

4)

(2
−

3)

(2
−

4)

(3
−

4)

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Pairs of Cores

(b) Kentsfield

 0

 5,000

 10,000

 15,000

 20,000

 25,000

(1
−

2)
(1

−
3)

(1
−

4)
(1

−
5)

(1
−

6)
(1

−
7)

(1
−

8)
(2

−
3)

(2
−

4)
(2

−
5)

(2
−

6)
(2

−
7)

(2
−

8)
(3

−
4)

(3
−

5)
(3

−
6)

(3
−

7)
(3

−
8)

(4
−

5)
(4

−
6)

(4
−

7)
(4

−
8)

(5
−

6)
(5

−
7)

(5
−

8)
(6

−
7)

(6
−

8)
(7

−
8)

E
xe

cu
tio

n
tim

e
in

 c
lo

ck
 C

yc
le

s

Pairs of Cores

(c) Niagara

Fig. 7. Processor Mapping

One Thread
Two threads

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Number of Independent Accesses

(a) Harpertown

One Thread
Two threads

 0

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Number of Independent Accesses

(b) Kentsfield

One Thread
Two threads
Four Threads
Eight Threads

 0

 100,000

 200,000

 300,000

 400,000

 500,000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Number of Independent Accesses

(c) Niagara

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Number of Independent Accesses

(d) Niagara with branch penalty

Fig. 8. Effective Bandwidth to L2 Results

concurrently, the bars have a similar trend but have a slightly higher execution
time.

Figure 8(d) shows the execution time for the benchmark run without remov-
ing the loop overhead. The improvement in execution time looks like it comes
from more parallelism between memory requests. In fact, the Niagara does not

P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures 13

have branch prediction; the reduction in execution time is only due to the de-
crease in number of iterations (i.e. number of branches per access).

Finally Table 5.2 shows the bandwidth computed using the formula shown
in Section 3.4 for the different number of threads.

Machine L1 Block Cycles per Access (concurrent accesses) Effective Bandwidth
GB/s

threads 1 2 4 8 1 2 4 8

Harpertown 64B 6.18 (9) 7.54 (9) - - 19.29 15.81 - -

Kentsfield 64B 6.05 (6) 6.50 (9) - - 23.65 22.01 - -

Niagara 16B 25.00 (6) 21.66 (1) 21.64 (1) 21.66 (1) 0.71 0.83 0.83 0.83
Table 2. Effective Bandwidth to L2

One Thread
Two threads
Four Threads
Eight Threads

 0

 1,000,000

 2,000,000

 3,000,000

 4,000,000

 5,000,000

 6,000,000

 7,000,000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Number of Independent Accesses

(a) Harpertown

One Thread
Two threads
Four Threads

 0

 1,000,000

 2,000,000

 3,000,000

 4,000,000

 5,000,000

 6,000,000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Number of Independent Accesses

(b) Kentsfield

One Thread
Two threads
Four Threads
Eight Threads

 0

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

10987654321

E
xe

cu
tio

n
T

im
e

in
 C

lo
ck

 C
yc

le
s

Number of Independent Accesses

(c) Niagara

Fig. 9. Effective Bandwidth to Memory Results

Effective Memory Bandwidth Figure 9 illustrates the results for Algo-
rithm 4. For the Intel processors (Figure 9(a) and 9(b)), as the number of cores
accessing memory increases, we observe a substantial decrease in bandwidth.

14 P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures

On the Niagara (Figure 9(c)), we observe similar results as for the L2 cache; the
bandwidth available to the cores stays the same regardless of the number of con-
current requests. Finally, Table 3 shows the values for the effective bandwidth.

Machine L2 Block Cycles per Access (concurrent accesses) Effective Bandwidth
GB/s

threads 1 2 4 8 1 2 4 8

Harpertown 64B 52.09 (8) 53.60 (8) 93.92 (9) 183.30 (9) 2.29 2.22 1.29 0.65

Kentsfield 64B 32.03 (8) 56.49 (10) 121.02 (10) - 4.47 2.53 1.18 -

Niagara 64B 111.62 (10) 107.61 (8) 108.45 (8) 110.14 (8) 0.64 0.67 0.66 0.65
Table 3. Effective Bandwidth to Memory

6 Related Work

As discussed in the introduction, there are other micro-benchmarks such as LM-
Bench[4], Saavedra[6], and X-Ray[11] that measure architectural characteristics
and, while these benchmarks focus on single core features, P-Ray focuses on
multi-core specific features. Other benchmark suites like SPEC OMP3 are de-
signed for shared memory multiprocessors. Such benchmarks only give a relative
performance scale, but do not give any information about the characteristics of
the targeted system.

7 Future Work

We are looking into additional benchmarks to add to this suite. While synchro-
nization contention is mostly a library/OS issue, it could be a useful feature. It
would be also be beneficial to have a similar suite of benchmarks for heteroge-
neous systems such as the Cell or GPU-based architectures.

From feedback received, there is a need for these multi-core benchmarks to
be completed online as well as offline. This would be beneficial for projects such
as adaptable systems with dynamic hardware features[5]. If we are to do online
processing of certain benchmarks, execution time will have to be addressed to
minimize the overhead of using our framework.

It would be interesting to run our benchmark suite on additional hardware
architectures, such as IBM Power6 and Intel Itanium 2.

8 Conclusion

We have developed a suite of conceptually simple micro-benchmarks that focuses
on multi-core characteristics. Our suite returns results that are in accordance
with vendor specifications when available and coherent when they are not.

3 Standard Performance Evaluation Corporation. http://www.spec.org/omp

P-Ray: A Suite of Micro-benchmarks for Multi-core Architectures 15

The main difference between P-Ray and existing benchmarking suites is that
P-Ray offers a unique view of the system design, showing the position of the
different cache levels and relative distances between (virtual) cores in the system.
With this information at hand, a programmer has the ability to use more efficient
hardware-aware optimizations in their applications. In addition, we provide a
faster means to calculate a cache block size by exploiting false sharing. Finally,
the execution and analysis framework is extensible, allowing for the addition of
benchmarks.

Acknowledgments We would like to thank Dario Suarez Garcia (University
of Zaragoza, Spain), Basilio Fraguela (University of Coruña, Spain), and James
Brodman (University of Illinois at Urbana Champaign) for their advice and
comments.

References

1. In personal communication with Basilio B. Fraguela, Universidade da Coruña.
2. M. Frigo. A Fast Fourier Transform Compiler. In PLDI’99 — Conference on

Programming Language Design and Implementation, 1999.
3. V. U. Instruction. Intel architecture software developer’s manual.
4. L. McVoy and C. Staelin. lmbench: portable tools for performance analysis. In

ATEC ’96: Proceedings of the annual conference on USENIX Annual Technical
Conference, pages 23–23. USENIX Association, 1996.

5. M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.
SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special
issue on ”Program Generation, Optimization, and Adaptation”, 93(2):232– 275,
2005.

6. R. Saavedra. Characterizing the performance space of shared memory computers
using micro-benchmarks, 1993.

7. R. H. Saavedra and A. J. Smith. Analysis of benchmark characteristics and bench-
mark performance prediction. ACM Trans. Comput. Syst., 14(4):344–384, 1996.

8. J. Torrellas, A. Tucker, and A. Gupta. Evaluating the performance of cache-
affinity scheduling in shared-memory multiprocessors. J. Parallel Distrib. Comput.,
24(2):139–151, 1995.

9. R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimizations of
Sofware and the ATLAS Project. Parallel Computing, 27(1-2):3–35, 2001.

10. K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P. Stodghill.
Is search really necessary to generate high-performance blas? Proceedings of the
IEEE, 93(2):358–386, Feb. 2005.

11. K. Yotov, K. Pingali, and P. Stodghill. X-ray: A tool for automatic measurement of
hardware parameters. In QEST ’05: Proceedings of the Second International Con-
ference on the Quantitative Evaluation of Systems on The Quantitative Evaluation
of Systems, page 168. IEEE Computer Society, 2005.

