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Abstract. Dramatic increases in the number of transistors that can be inte-
grated on a chip make processors more susceptible to radiation-induced tran-
sient errors. For commodity chips which are cost- and energy-constrained,
we need a flexible and inexpensive technology for fault detection. Software
approaches can play a major role for this sector of the market because they
need little hardware modifications and can be tailored to fit different require-
ments of reliability and performance. However, software approaches add a
significant overhead.
In this paper we propose two novel techniques that reduce the overhead of
software error checking approaches. The first technique uses boolean logic
to identify code patterns that correspond to outcome tolerant branches. We
develop a compiler algorithm that finds those patterns and removes the
unnecessary replicas. In the second technique we evaluate the performance
benefit obtained by removing address checks before load and stores. In ad-
dition, we evaluate the overheads that can be removed when the register file
is protected in hardware.
Our experimental results show that the first technique improves performance
by an average 7% for three of the SPEC benchmarks. The second technique
can reduce overhead by up-to 50% when the most aggressive optimization
is applied.

1 Introduction

Dramatic increases in the number of transistors that can be integrated on a chip
will deliver great performance gains. However, it will also expose a major roadblock,
namely the poor reliability of the hardware. Indeed, in the near-future environment
of low power, low voltage, relatively high frequency, and very small feature size,
processors will be more susceptible to transient errors. Transient faults, also known
as soft errors are due to impacts from high-energy particles that change the logic
values of latches or logic structures [1–4].

In this new environment, we believe that a Software Checking System has a
fundamental role in providing fault detection and recovery. It is possible that high-
end architectures will include several hardware-intensive fault-tolerance techniques
that are currently supported by IBM mainframes [5], HP NonStop [6] or mission-
critical computers [7]. However, commodity multicore chips will likely be too cost-
and energy-constrained to include such hardware. Instead, we believe that they will
likely include only relatively simple hardware primitives, such as parity for certain
processor buses and structures, error correction codes (ECC) and scrubbing in the
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memory hierarchy [8] and low-cost support for memory checkpointing and rollback
(e.g., ReVive [9] or SafetyNet [10]). Then they will rely on flexible and inexpensive
software technology for error protection.

Current software approaches address the problem by replicating the instructions
and adding checking instructions to compare the results, but they add a significant
overhead. In this paper we propose two novel techniques to reduce the overhead of
the software error checking approaches. The first technique is based on the fact that
programs already have redundancy, and if the compiler can determine the programs
sections where such redundancy exists, it can avoid the replication and later check-
ing. We use boolean logic to identify a code pattern that corresponds to outcome
tolerant branches and develop a compiler algorithm that automatically finds those
patterns and removes the unnecessary replicas. The second technique is based on the
observation that faults that corrupt the application tend to quickly generate other
noisy errors such as segmentation faults [11]. Thus, we can reduce replication of the
instructions that tend to generate these type of errors, trading reliability for per-
formance. In this paper we remove the checks of the memory addresses and discuss
situations where removing these checks affect little to the fault coverage. This occurs
when a check of a variable is covered by a later check to the same variable, and thus
errors in the first check will be detected by the later checks, and in pointer-chasing,
when the data loaded by a load is used immediately by another load. Finally, We
also consider the situation where the register file is protected with parity or ECC,
such as Intel Itanium [12], Sun UltraSPARC [13] and IBM Power4-6 [14]. We call
them register safe platforms.

We have implemented the baseline replication and the proposed techniques using
the LLVM Compiler Infrastructure [15] and run experiments on a Pentium 4 using
Spec benchmarks. Our results show that the boolean logic technique achieves 7%
performance speedup on three benchmarks, and 1.6% on average. If we do not check
load addresses, the performance is improved by 20.2%. If we do not check addresses
of both load and store, the performance is improved by 24.8%. On platforms where
registers are protected in hardware, we can combine these techniques and obtain
an average speedup of 35.2% and 40.8%, respectively, and decrease the software
checking overhead by 44.9% and 50%, respectively. Our fault injection experiments
show that removing address checks before loads only increases Silent Data Corrup-
tion (SDC) from 0.27% to 0.35%, and removing address checks for loads and stores
raises SDC to 1.11%.

The rest of the paper is organized as follows. Section 2 presents the background
and the baseline software checking; Section 3 describes the techniques to detect
outcome tolerant branches; Section 4 describes the removal of address checks; Sec-
tion 5 discusses the benefits of having a register file that is checked in hardware;
Section 6 presents our experimental results; Section 7 presents related work, and
finally Section 8 concludes the paper.

2 Background and Baseline Software Checking

The use of software approaches for fault tolerance has received significant attention
in the research domain. Software techniques such as SWIFT [16] replicate the in-
structions of the original program and interleave the original instructions and their



replicas in the same thread. Memory does not need to be replicated because the
memory hierarchy is protected with ECC and scrubbing. Stores, branches, function
calls and returns are considered “synchronization” points and checking instructions
are inserted before these instructions to validate certain values. Before a store, check-
ing instructions verify that the correct data is stored to the correct memory location.
Before a branch, checking instructions verify that the branch takes the appropriate
path. Before a function call checking instructions verify the input operands by com-
paring them against their replica. Before a function return, checking instructions
verify the return value by comparing the return register and its replica.

Stores are executed only once, but loads are replicated because the loaded data
can be corrupted. However, uncachable loads, such as those from external devices,
and loads in a multithreaded program may return different values when executing
two consecutive loads to the same memory address; so rather than replicating the
load, checking instructions are also added before loads to verify that the address
of the load matches its replica. After that verification, the loaded value can be
copied to another register [16–18]. Thus, since loads are not replicated, they are
also considered “synchronization” points. An example with the original and its
corresponding replicated code is shown in Figure 1-(a) and (b), respectively. The
replicated code contains additional instructions and uses additional registers marked
with a ’. The additional instructions are shown in bold and numbered. Instructions
1 and 2 check that the load is loading from the correct address, instruction 3 copies
the value in r3 to r3’, instruction 4 replicates the addition, and instruction 5-8
check that the store writes the correct data to the correct memory address.

(c) Safe registers 

cmp r6, r6’      
jne faultDet
ld r3=[r6]
mov r3’=r3
....

add r4’=r3’,1
add r4= r3,1 

cmp r4, r4’
jne faultDet
cmp r6, r6’
jne faultDet
store [r6]=r4 

(b) Replicated code

(5)      
(6)      
(7)      
(8)      

(1)      
(2)      

(3)      

(4)      

....

ld r3=[r6]

(a) Original code

add r4= r3,1 

store [r6]=r4 

....

ld r3=[r6]

....
add r4= r3,1 

cmp r4, r4’
jne faultDet

store [r6]=r4 

(5)      
(6)      

(4)      add r4’=r3,1
....

Fig. 1. Example of baseline software replication and checking

3 Use of Boolean Logic to Find Outcome Tolerant Branches

In this Section we explain how to use boolean logic to reduce the amount of repli-
cated instructions. We first do an overview (Section 3.1) and then explain the com-
piler algorithm (Section 3.2).



3.1 Overview

Our technique is based on the fact that programs have redundancy. For instance,
Wang et al. [19] performed fault injection experiments and found that about 40%
of all the dynamic conditional branches are outcome tolerant. These are branches
that, despite an error, converge to the correct point of execution. These branches
are outcome-tolerant due to redundancies introduced by the compiler or the pro-
grammer. An example of outcome-tolerant branch appears in a structure such as
if (A || B || C) then X else Y. In this case if A is erroneously computed to be
true, but B or C are actually true, this branch is outcome tolerant, since the code
converges to the correct path. The control flow graph of this structure is shown in
Figure 2-(a).

The state-of-the-art approach to check for errors is to replicate branches as
shown in Figure 2-(b), where the circles correspond to the branch replicas. However,
we can reduce overheads by removing the comparison replica when the branch
correctly branches to X. If the original comparison in A is true we need to execute
the comparison replica to verify that the code correctly branches to X. However, if A
is false, we can skip the execution of the A replica and move to check B. We will only
need to execute the A replica if both B and C are also false. The resulting control
flow graph is shown in Figure 2-(c). In situations where A and B are false, but C is
true, we can save a few comparisons.
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Fig. 2. Eliminating replicated predicate evaluation.

Outcome tolerant branches also appear in code structures such as if (A & B &
C) then X else Y, and in general in all the code structures that contain one or
more shortcut paths in the control flow graph. A basic shortcut path is edge(A->X)
in Figure 3-(a), where both A and its child point to the same block. However, most
shortcut paths are more complex. For instance, in Figure 3-(b), block A points to
the same block pointed by its grandchild (not its direct child). Thus, the optimizer
should move A’ from edge(A->B) to edge(B->Z) and edge(C->Y). The example in
Figure 3-(c) can be optimized in two different ways. If A and B are considered as
a whole unit, edge(B->Y) is the shortcut path, and the graph can be optimized as
shown in Figure 3-(d); otherwise, it can be optimized as shown in Figure 3-(e).

Detecting the existence of a shortcut paths is not sufficient to determine that
there is an outcome tolerant branch. The reason is that one of the blocks involved
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Fig. 3. Shortcut graphs and optimizations

in the shortcut can modify a variable that is later used by instructions outside the
block. That block needs to be replicated or the error could propagate outside the
block. Next we show two examples:

(a) if (*m > 0) && (m < N) then X else Y
(b) if (t=(*m > 0)) && (m < N) then X else Y

In the example in (a), if (*m>0) is mistakenly computed as True, but (m<N) is False,
we can safely ignore the error on (*m>0) and take the Y path. However, if the error
occurs to the example in (b), and t is used in Y, ignoring the error will result in a
wrong value for t being propagated to Y, which may end up corrupting the system.
To avoid this type of errors our compiler algorithm only considers blocks that are
involved in a shortcut path and produce values that are only used by the block
itself.

3.2 Compiler Algorithm

Our algorithm analyzes the control flow graph of the original program and extracts
the shortcut paths and the related blocks. A shortcut graph always has a head node
(block A in all the examples in Figure 3), one or more intermediate nodes (like B
and C), two or more leaves (like X and Y), and one or more shortcut paths. Notice
that in this paper we call a block to a single basic block or a list of basic blocks
connected one by one with edges of unconditional branches.

Our algorithm has two phases: first a search of all potential shortcut graphs,
and second, the optimization and appropriate placement of the replicas.

Shortcut Graphs Search The searching process starts by classifying each block
as an intermediate node or a leaf, and building an intermediate node set and a
leaf set. A block is called “intermediate node” if it ends with a conditional branch
and does not contain side effects (does not contain a function call, a memory write
or generates a value used by another block). In addition, to avoid being trapped
in loops, we require that none of the outgoing edges of an intermediate node is
a backward edge. If the node does not classify as intermediate node, then it is



considered a “leaf”, meaning that this block can be at the most an ending node in
a shortcut graph. At the same time we build the intermediate and leaf sets, we also
build a separate head node set, which contains all intermediate nodes and some
of the leaves. A head node is classified as leaf when the block has function calls
or memory writes before the conditional branch. However, as long as a block ends
with a conditional branch and none of the outgoing edges is backwards, it is also
considered a head node.
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Fig. 4. Constructing potential shortcut graphs.

After building the intermediate node set, the leaf set, and the head node set
the shortcut graphs are built from bottom to up by scanning the head node set re-
peatedly. We start by initializing an empty set “graph-head-set”, which will contain
temporary graph head nodes. For any node(A) in the head node set, we check its
two children (see Figure 4):

1. If the two children are leaves, this node is added to the graph-head-set (Figure 4-
(a)).

2. If one child is a leaf(X) and the other child is an intermediate node(B) and
node(B) is already in the graph-head-set, node(B) is replaced by the current
node(A) in the graph-head-set (Figure 4-(b)). We also check if the leaf(X) is a
child or grandchild of node(B), in which case a shortcut path for node (A) is
marked.

3. If the two children are both intermediate nodes((B) and (C)) and both are in the
graph-head-set, nodes (B) and (C) are replaced by node(A) in the graph-head-set
(Figure 4-(c)). We also check if (A) introduces new shortcut paths.

The scan continues until all the nodes in the head node set have been visited.
Then, a node in the graph-head-set represents a graph led by this node together
with the shortcut paths found. A final pass traverses the graph-head-set and removes
those heads that do not contain any shortcut path.

Optimization After the shortcut paths are found we start applying the opti-
mization, but we first check when it is legal to perform it. In Figure 2-(a), our
optimization will move the replica A’ from edge(A->B) to edge(C->Y). However,
this is only legal if A dominates C. Otherwise A’ may use undefined values in the
new position. Thus to apply our optimization phase we first verify the domination
relationship of all shortcut paths.
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The goal of our optimization pass is to move replicas of the non-shortcut path
down to the edge/s between the last child and the leaf/leaves. Next, we explain
how this algorithm proceeds using the example in Figure 5. For each shortcut graph
in the graph-head-set the algorithm finds all the shortcut paths (edge(A->X) in
Figure 5-(a)), marks the replica ( A’) on the other path as temporary (temp), and
records the destination of the shortcut path (X). Next the optimization pass scans
all the intermediate nodes in the shortcut graph in a top-down fashion, and moves
temporary replicas from the incoming edges to all the outgoing ones, except to those
where the recorded destination of the replica and the destination of the intermediate
node that we are processing are the same (an example is shown in Figure 5-(b)).
Notice that when an intermediate node has multiple incoming edges (as shown in
Figure 5-(c)) we only move the replicas that appear on all the incoming edges. Also
notice that this optimization pass processes nodes top-down, and it does not treat
multiple nodes as a single unit. Thus, for the example in Figure 3-(c), the optimized
version after this pass will be the one shown in Figure 3-(e).

Finally note that A, B and C can contain computations like (s+1) == 5. In this
case, if the computations are only used to determine the outcome of the branch, the
computation replicas are also eliminated when the branch replica does not need to
execute.

4 Removal of Address Checks

Recent experiments have shown that faults produce not only data corruption, but
also events that are atypical of steady state operation and that can be used as a
warning that something is wrong [11]. Thus, we can reduce the overhead of the soft-
ware approaches and trade reliability for performance by reducing the replication,
hoping that the error will manifest with these atypical events.

In this Section we consider the removal of address checks before load and store
instructions. Errors in the registers containing memory addresses may manifest as
segmentation faults. However, any fault-tolerant system must also include support
for roll-back to a safe state and thus, on a segmentation fault we can roll-back
and re-execute, and only communicate the error to the user if it appears again.
However, by doing this the system will be vulnerable to errors, since some of these
faulty addresses will access a legal space and the operating system will not be able



to detect the error. Thus, this technique will decrease error coverage. Next, we
discuss two techniques that the compiler can use to determine which load and store
instructions are most suitable for address check removal.

Address checks can be removed when there are later checks checking the same
variable. For example, in Figure 1-(b), checking instructions (1-2) and (7-8) are
checking the register r6. This makes the first check (1-2) unnecessary, because if
an error occurs to r6 it will manifest as a segmentation fault or will be eventually
detected by the checking instructions (7-8). We have observed many of these checks
in the SPEC benchmarks due to the register indirect addressing mode, since the
same register is used to access two fields of a structure, or because two array accesses
share a common index. Removing these replicated checks can significantly reduce
the software overhead.

(c) 

ld r3=[r2]
check r2

(a) 

ld r2=[r1] ld r2=[r1]

(b)

ld r3=[r2] check r4
add r4=r2,16
ld r2=[r1]

ld r3=[r4]

(d) 

add r4=r2,16
ld r2=[r1]

ld r3=[r4]

Fig. 6. Address check removal for pointer chasing

Address checks can also be removed when the probability of error is small. This
case appears in pointer chasing, where the data loaded from memory is used as the
address for a subsequent load. An example is shown in Figure 6-(a) and (b). In this
case, since the processor will issue the second load as soon as the first one completes,
the probability of error is very small. In some cases, however, the value loaded by
the first load is not exactly the one used by the next load, if not that it may be
first modified by an add instruction. This occurs when accessing an element of a
structure that is different from the first one. In this case, the probability of error is
higher, and the checking instructions will also determine if an error occurred during
the computation of the addition. An example is shown in Figure 6-(c) and (d).

In this paper we evaluate the removal of the address checks for only the loads, or
for both loads and stores. Thus, our results are an upper bound on the performance
benefit that we can obtain and the reliability that we can lose. In the future we
plan to write a data flow analysis to identify the checks that are safe to remove, as
explained above.

5 Register Safe Platforms

In this Section we consider the situation where the register file is hardware protected
with parity or ECC, or other cost-effective mechanisms as the ones proposed by [20–
23]. In fact, the register file of the Intel Itanium [12], Sun UltraSPARC [13] and IBM
Power4-6 [14] are already protected by parity or ECC. However, the ALUs and other
portions of the processor are not protected, so arithmetic and logic operations can
return wrong results. Thus, all the instructions that imply ALU operations need to



be replicated; however, memory operations such as load and stores are safe. As a
result, a register that is defined by a load does not need to be replicated, saving
the instruction to perform the copy and the additional register. An example is
shown in Figure 1. The replicated code in Figure 1-(b) can be simplified as shown
in Figure 1-(c). Register r3’ is not necessary because registers and memory are
safe, and instruction 4 can use directly the contents from register r3. Instructions
1, 2, 7 and 8 can be removed if we assume register r6 has been defined by a load.
Instructions 5 and 6 cannot be removed because register r4 is defined by an addition,
and we need to validate the results of the addition.

6 Evaluation

In this Section we evaluate our proposed techniques. We first discuss our environ-
mental setup (Section 6.1), analyze our techniques statically (Section 6.2), evaluate
performance (Section 6.3), and measure reliability (Section 6.4).

6.1 Environmental Setup

We use LLVM [15] as our compiler infrastructure to generate redundant codes.
Replicated and checking instructions are added at the intermediate level, right af-
ter all the static optimizations have been done. We replicate all the integer and
floating point instructions. Previous implementations have replicated instructions
at the backend, right before register allocation [16, 24] or via dynamic binary trans-
lation [25]. However, the advantages of working at the intermediate level are: i) the
redundant code can be easily ported to other platforms, ii) we do not need to fully
understand the assembly code for that platform, and iii) at the intermediate level we
see a simple memory access model rather than complex one of the x86 ISA. To pre-
vent optimizations done by the backend generator such as common subexpression
elimination and instruction combination, we tag the replicated instructions, and the
backend optimizations are applied separately to the tag and the untag instructions.

For the evaluation we use SPEC CINT2000 and the C codes from SPEC CFP2000,
running with the ref inputs. Experiments are done on a 3.6GHz INTEL Pentium 4
with 2GB of RAM running RedHat9 Linux.

6.2 Static Analysis

In this Section we characterize load addresses depending on whether the register
is checked by a later checking instruction (Covered), or if the register used by the
load was just loaded from memory (Loaded), as in the pointer chasing example of
Section 4. All the remaining load addresses are classified as (Other). The breakdown
is shown in Figure 7. On average more than 40% load addresses have nearby later
checks on the same value. About 20% of the loads use registers whose contents
where just loaded from memory. As we have discussed in Section 4, the probability
of error of any of these addresses is very small, because the processor will likely issue
the second load as soon as the first one completes. Also, if we assume a register safe
platform these checks are unnecessary. For the remaining 40% of the addresses, an
error in the most significant bits will be detected as a form of segmentation faults,
but an error in the least significant ones can cause a silent error.
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6.3 Performance

Figure 8 shows the performance speedup obtained when using boolean logic to
eliminate replication and checks on outcome tolerant branches (Section 3). Three
benchmarks (gzip, vpr, and perlbmk) achieve 7% performance gains, though the
average speedup is 1.6% through all tested benchmarks. Notice that there is also a
negative impact on vortex, where we observe more load/store instructions after the
optimization, meaning that this optimization introduces additional register spills
that hurt the benefit of less dynamic instructions.

Figure 9 evaluates the performance benefit of our second technique (Section 4):
baseline Fully Replicated(FullRep), No checks for Address of Loads(NAL), No checks
for Address of Load and Store(NALS), and No checks when the Register file is safe
(R). The Fully Replicated code(FullRep) is on average 2.38 times slower than the
original code. This large overhead is due to high register pressure and additional
instructions. On average, register safe optimization (R) runs 16.0% faster than the
(FullRep).

After we remove checks for address of loads (NAL), we get an average 20.2%
speedup over the baseline Fully Prelicated (FullRep). If we further remove checks
for address of stores (NALS), we improve 4.6% more. And if the register is protected
in hardware and we combine (NAL) or (NALS) with (R), we can obtain an average
speedup of 35.2% and 40.8% respectively, what will reduce the the software checking
overhead by 44.9% and 50%, respectively. Notice that with (NALS) all address
checks before loads and stores are removed, so the performance benefit of (R+NALS)
versus (NALS) is due to the reduced register pressure (the register of the load does



not need to be replicated) and the removal of a few additional checks before the
data being stored.
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Fig. 10. Fault-detection rates break down

6.4 Reliability

Our first technique is very conservative and should not affect the fault coverage.
But for the second technique, since we remove all the checks for memory addresses,
memory can be corrupted. In order to evaluate the loss of fault coverage, we use
Pin [26] and inject faults to the binary file (excluding system libraries). We assume



a Single Event Upset(SEU) fault model, so only one bit fault is injected during the
execution of the program. In total 300 faults are injected for each program. Although
both integer and floating point registers can be corrupted, in order to magnify the
impact of the errors we only inject fault to the 8 32-bit integer registers and the
status flags EFLAGS. When we consider that the register file is not protected in
hardware we mimic the fault distribution by randomly selecting a dynamic instruc-
tion and flipping a random bit in a random register (we call this scheme “random
fault injection”). When the register file is protected in hardware, we do the same,
but flip the random bit from its “output”. The output can be in a register or in
memory if it has been spilled. In this scheme, memory load instructions are avoided
(we call this scheme “safe register fault injection”).

After injecting an error into the binary, the program is run to completion (unless
it aborts) and its output is compared to a correct output. Depending on the result
the error will be categorized as: (unACE), the bit is unnecessary for Architectural
Correct Execution [27]; (Detected), the error is detected by our checking code; (Self-
Detected), the error is detected by the program assertions; (Seg Fault), the error
manifests as an exception or a segmentation fault; (SDC), Silent Data Corruption,
when the program finishes normally but the produced output is incorrect. (SDC) is
the first type of errors we want to prevent. Then, we also want to minimize (self-
Detected) errors and (Seg Fault), because it is usually hard to determine if the error
is due to a program bug or a soft error. But with proper support, if we can roll-back
and re-execute, these faults can be recovered, so they are less harmful.

Figure 10-(a) and (b) show the experimental results for random fault injection
and safe register fault injection, respectively. The fault detection rates for these
two schemes are very similar. Notice that the original program (O) has on average
75% (unACE) and less than 10% (SDC), which means that the software itself has
a certain fault maskability. With the safe register scheme more faults result in SDC
than with the random scheme (8.5% over 5%) and less Seg Fault (15.6% over 17%).
The reason is that the random scheme is more likely to pick up a dynamic dead
register or a register that holds the index for addresses.

After the program is replicated (FR), most (Seg Fault), (Self-Detected) and
(SDC) go to the (Detected) category. (SDC) errors appear because some faults
are injected before the value is used but after is checked. If we remove checks for
addresses, reliability does not drop much. Under random injection scheme, if we
remove checks for load addresses (NAL), comparing to (FR), (SDC) increases from
0.36% to 1.08%, (Seg Fault) increases from 4.47% to 8.05%. If we also remove checks
for store addresses (NALS), (SDC) rises to 1.44%, and (Seg Fault) rises to 9.02%.
Under safe register injection scheme, removing checks for load addresses increases
(SDC) from 0.27% to 0.38%, increase (Seg Fault) from 2.66% to 4.99%. Removing
checks for store addresses further results in (SDC) of 1.11%, and (Seg Fault) of
4.99%. In other words, when normalized to the original program, under the safe
register scheme removing checks for addresses of load only incurs an extra 1.3%
(SDC), while removing checks for all addresses incurs 9.8%(SDC). Given that we
almost decrease the performance overhead by half, this loss of fault coverage seems
acceptable.



7 Related Work

Previous work on compiler instrumentation for fault tolerance focuses on replication
and checking. There have been previous works on software checking optimization.
For example, SWIFT [16] merges checks before branches into control flow signature
checks, and removes checks for blocks that do not have stores. In this paper, we
propose a new area for optimization: when the code structure itself can mask er-
rors and the compiler can determine those programs sections, replication and later
checking can be avoided.

Some previous works provide ways to trade reliability for performance. For ex-
ample, the work by Oh and McCluskey [28] selectively duplicates procedure calls
instead of replicating instructions inside them. This way error detection latency
is sacrificed for less power consumption. But for each procedure, either all the in-
structions in the procedure or the call needs to be replicated. PROFiT [29] and
Spot [25] divide program into regions and pick up only important regions to do
software replication and checking. Spot provides very flexible selection granularity,
ranging from a few blocks to a whole procedure. However, in Spot making a good
selection requires knowledge of fault mask probability and replication overhead for
each region. Jonathan Chang et. al [20] propose to protect a portion of the register
file based on a profile of register life time and usage. For different platforms or dif-
ferent programs, the protected portion may be different. In this paper, we provide a
fine and simple leverage control: we choose to remove checks for addresses of load or
stores. With static compiler analysis, this technique can be applied independently
of the target platform. Furthermore, we can combine this technique with previous
ones to trade fault coverage with performance.

Previous works on compiler instrumentation for fault-tolerance implement their
techniques at the source level [30], compiler backend [16, 24, 31, 29, 32], or runtime
binary level [25]. However, our techniques are implemented at the intermediate level,
which makes it portable across platforms and friendly to users who are not expert
on the target ISA.

8 Conclusion

This paper makes several contributions. First, we identify a code pattern that cor-
responds to outcome tolerant branches, and develop a compiler algorithm that finds
these patterns, avoiding unnecessary replication and checking. Second, we evaluate
the removal of address checks for loads and stores, and analyze situations where
these checks can be removed with little loss of fault coverage. We also identify the
check and replicated registers that can be removed on a register safe platform.

Optimizing outcome tolerant branches obtains 7% performance speedup for 3
benchmarks, and an average of 1.6% for all, while keeping the same level of reliabil-
ity. We also find that on register safe platforms removing the checks for the addresses
of load reduce the replication overhead by 44.9%, and only increases SDC (Silent
Data Corruption) rate from 0.27% to 0.38%. Also, if 1.11% SDC rate is acceptable,
we can furthermore reduce the replication overhead by 50% by also removing checks
for the store addresses.
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