
11/13/06 HTA 1

Design and Usage of htalib – a C++
Library for Hierarchically Tiled Arrays

Ganesh Bikshandi, Jia Guo, Christoph von Praun*,
Gabriel Tanase**, Basilio. B. Fraguela***, Maria J.

Garzaran, David Padua and Lawrence
Rauchwerger**

University of Illinois, Urbana-Champaign, IL
*IBM T. J. Watson Research Center, Yorktown Heights, NY

**Texas A&M University, College Station, TX
***University da Coruna, Spain

11/13/06 HTA 2

Outline

 Motivation
 HTA & Prior results
 Design of htalib & new features
 Experimental results
 Conclusion & Future work

11/13/06 HTA 3

Motivation

 Combining CPUs in future for speed
 Multicores, parallel & distributed systems

 But, efficient parallel programming is
extremely difficult

11/13/06 HTA 4

Motivation
 MPI is the current state-of-the-art for

distributed memory model
 SPMD + Local view + Multi-threaded model

 Offers performance but productivity is
hampered
 Complex bugs (deadlocks, races)
 Poor mapping between algorithm and the final

code
 Often equated to assembly language.

Hierarchically Tiled Arrays (HTA)
New model for parallel programming

– Sequential, determinate logic for the
programmer

– “Global” shared memory view

Hierarchical tiling is explicit and translates to
...
– Parallelism and data distribution (productivity)
– Locality of access (performance)

Key data structure: HTA
– Organization of data
– Operations

Initially implemented in MATLAB

11/13/06 HTA 6

This talk – a C++ library for HTA
(htalib)
 C++

 Offers several performance benefits over
MATLAB

 Compilers perform aggressive scalar
optimizations

 Introduce new HTA operations
 map, reduce, mapReduce, overlapped tiling &

data layering

more performance + more productivity

11/13/06 HTA 7

Outline

 Motivation
 HTA & Prior results
 Design of htalib & new features
 Experimental results
 Conclusion & Future work

11/13/06 HTA 8

Hierarchically Tiled Arrays

 Treats tiles as first class data types
 HTA

 Is a recursive data type (arrays of arrays of
arrays..)

 Support block recursive operations
 Provides global view and single threaded model
 Suitable for array computations

11/13/06 HTA 9

Hierarchically Tiled Arrays

2 X 2 tiles
size = 64 X 64 elements

4 X 4 tiles
size = 32 X 32 elements

2 X 2 tiles
size = 8 X 8 elements

tiles map to
nodes in a cluster

tiles map to
L1 cache

tiles maps to
registers

Root = 0

Leaf = 2

Tile access

hta (Tuple (0,1))

Triplet::Seq selection =
((Triplet(1,1), Triplet(0,1)));
hta (selection)

Syntax short form:

(I)

(II)

(I) hta (0,1)
(II) hta (1,

0:1)

hta

11/13/06 HTA 11

HTA Conformability

All conformable HTAs
can be operated using
the primitive operations
(add, subtract, etc)

Inspired from F90 and
similar array languages

11/13/06 HTA 12

HTA Assignment
h(:,:) = t(:,:)

h(0,:)[2,:] = t(1,:)[0,:]

h t

Explicit communication

11/13/06 HTA 13

repmat(h, [1, 3])

circshift(h, [0, -1])

transpose(h)

Higher level HTA operations

11/13/06 HTA 14

HTA example: SUMMA Matrix
Multiplication

T2

B

T1A *

void summa (A, B, C) {
for (int k = 0; k < m; i++) {

 T1 = repmat(A(:, k), 1, m);
 T2 = repmat(B(k, :), m, 1);
 C = C + T1 * T2;
 }
}

elements of A, B and C
are sub matrices.

repmat
repmat

tile-by-tile matrix
multiplication

for k=1:n
 C(:,:)=C(:, :)+A(:, k) * B(k, :)

end
Rank 1 update

outer product MMM Parallel MMM (HTA)

11/13/06 HTA 15

Earlier (MATLAB HTA library) results:
Running time

16x

2X 2X

16X
Intel
Linux
Cluster

11/13/06 HTA 16

MATLAB results: LOC

Programming for Parallelism and Locality with Hierarchically Tiled Arrays,
PPoPP06, NYC, USA, March 2006

11/13/06 HTA 17

Outline

 Motivation
 HTA & Prior results
 Design of htalib & new features
 Experimental results
 Conclusion & Future work

11/13/06 HTA 18

C++ implementation

 Designed for scaling
 Uses templates

 Benefits from specialization and instantiation
 Generic design

 Polymorphism
 Automated memory management

 Reference Counting

11/13/06 HTA 19

Optimization (I)

 Lazy evaluation of binary operations
 Avoids temporaries during expression

evaluation & redundant copying during
assigment

a = b + c; //no data dependence between lhs and rhs

a = BinExpr (b, c, +);

HTA operator = (BinExpr & e) {
 for (int i = 0; i < this->shape().card(); i++)

this->data_[i] = arg1_.data_[i] + arg2_.data_[i];
}

a += b + c; a -= c + d; a = b * c; a = b - c;
a = 0.5 * b; a = d / 2; a = b / c; a = c - d;

11/13/06 HTA 20

Optimization (II)
 Asynchronous overlap

(Earlier implementation)
B(1:n)[0] = B(0:n-1)][d];
(barrier)
B(0:n-1)[d+1] = B(1:n)[1];
(barrier)

htalib::async();
B(1:n)[0] = B(0:n-1)][d];
(no barrier)
B(0:n-1)[d+1] = B(1:n)[1];
htalib:sync(); (barrier)

 Condition
 No dependence within enclosing async and sync.

11/13/06 HTA 21

Operator framework
Generalization of our MATLAB library

– Addition of level argument (to control the level of application)

Primitive operators
– with scalar arguments (+, -, max, ...)
– with tiles as arguments (+, -, permute, matmul, ..)

High-level operators
– map (unordered), do-all parallelism
– scan (ordered), pipeline parallelism
– Reduction
– map-reduce, (divide and conquer)

Scope of operation
– a single level (tiles or scalars)
– recursive application to multiple-level

11/13/06 HTA 22

Primitive operators

 STL-like functor objects
struct plus {

double operator () (const double a, const double b {

 return a + b;
 }

};

struct ft {

void operator() (Array* x) {
 //...

FFTforward (...);

}

}

11/13/06 HTA 23

Data Parallel Array Functions (Maps)

sin
sin()
sin()

sin() sin()
sin()

sin()

sin()
sin()

sin()

a b

11/13/06 HTA 24

HTA Map

map (op, [rlevel])
 op = any scalar or array or HTA or Higher

level operation
 rlevel = termination level of recursion
 (default = scalars)

11/13/06 HTA 25

Map

sin

sin sin

sin sin

sin sin

sin

sin

sin sin

sin sin

sin sin

sin ft ft

h.map(sin()) h.map(ft(), 1)

11/13/06 HTA 26

Reduction Operations

reduce (+, [1, 9, 13])

Reduction: An operation applied to all the components of a
vector to produce a scalar

For matrices, row reduction and column reduction

23

In general, an operation applied to all the components of a n-
dimensional array to produce a n-1 dimensional array.

11/13/06 HTA 27

HTA Reduce

reduce(op, dim, [rlevel])
 op – any associative and commutative

operation
 dim – dimension of reduction
 rlevel – termination level of recursion

11/13/06 HTA 28

HTA Reduce

1 0 1 0
0 0 1 1
0 1 1 0
1 0 0 1

2
2
2
2

2 0
1 1
1 1
1 1

h.reduce(plus(),1, 1)

h.reduce(plus(),1, 0)

1 0 1 0
0 0 1 1
0 1 1 0
1 0 0 1

+
+ +

+

11/13/06 HTA 29

HTA Scan

Scan (op, dim, [rlevel])
 op – any primitive operation
 dim – dimension of scan.
 rlevel – termination level of recursion

11/13/06 HTA 30

HTA Scan

1 3 6 10 15 21 28 36 45 55 66 78

1 2 4 6 10 14 20 26 34 42 52 62

h.scan(plus(), 1, 2)

h.scan(plus(),1, 1)

1 2 3 4 5 6 7 8 9 10 11 12

11/13/06 HTA 31

Map-Reduce
 Framework for composing map and reduce

 Example: Determine the maximum elements in HTA ,
together with their leaf-coordinates

 Sequential programming model
 Parallelism, communication, synchronization are

implicit

11/13/06 HTA 32

Map-Reduce

(2.1)(2.2)

map

(1.2)(1.1)

(0,0)

(0,2) (2,3)

(1,2) (0,4)

(3,4) (3,7)

(1,4)

(0,0)

(0,2) (2,3)

(1,2) (0,4)

(3,4) (3,7)

(1,4)(0,0) (3,4)(3,4)

reduce

max-loc

Overlapped tiling

• Shadow regions in HTA can be accessed
across tiles.
Overlap<DIM> ol(1,1)

T[0:3]T[-1] T[4]

B(1:n)[0]=B(0:n-1)[d];

B(0:n-1)[d+1]=B(1:n)[1];

A()[1:d]=S*(B()[2:d+1]

 +B()[0:d-1]);

A=HTA<double,1>alloc(tiling,array,
ROW, ol);

A()[0:3]=S*(B()[1:4]+B()[-1:2]);

11/13/06 HTA 34

Support for Multigrid Applications

 HTAs facilitate
✔ Parallelism and data distribution
✔ Locality of access
 NEW: Implicit Support for Hierarchical Applications (productivity)

 Goal: support multi-grid applications
 Model physical phenomena using finite-difference methods
 Grid data structure used to discretize the continuum domain
 HTA used to represent the hierarchical grid

Refinement level 0

Refinement level 2

Refinement level 1

AMR MG benchmark

11/13/06 HTA 35

HTA Extensions – Data Layering

 HTAs
 Leaf tiles: data
 Other tiles: meta data to control

data distribution and data locality

 HTAs with data layering
 Data and meta-data at all levels
 Levels correspond to different

degrees of refinement in a
multigrid application

HTA
level 0

HTA
level 1

HTA
level 0

HTA
level 1

HTA
level 0

HTA
level 1

HTA
level 0

HTA
level 1

11/13/06 HTA 36

HTA interface extensions for AMR
 void refine(level,region, refinement_factor)
 <region_coarse,region_fine> = project(level)

 Compute how elements on two adjacent levels correspond
to each other

 HTA get_level(level)
 Converts a layer of a multi layered HTA to a regular HTA

Example
HTA h = HTA::alloc(Tuple(2,2));
H.refine(0, ALL, 2);
H.refine(1, ALL, 2);
pair<region_coarse, region_fine> = H.project(level);
h.get_level(1)(region_fine) = h.get_level(0)(region_coarse);

X,Y X,Y+1

Refinement level 0

Refinement level 2

Refinement level 1
A,B A,B+1 A,B+2

11/13/06 HTA 37

Outline

 Motivation
 HTA & Prior results
 Design of htalib & new features
 Experimental results
 Conclusion & Future work

11/13/06 HTA 38

C++ results: NPB - CLASS B –
BlueGene – Running time

11/13/06 HTA 39

C++ library vs MATLAB library

11/13/06 HTA 40

Lines of code measurement

11/13/06 HTA 41

Conclusions

 HTA treats tiles as first class language
constructs

 HTA programs are efficient, readable and
shorter
 C++ run time library for HTA
 new program constructs

11/13/06 HTA 42

Future Work

P
s

P
v P

h
P

ps

vectorize HTAize scalarize

HTA CompilerVectorizer HTAizer

11/13/06 HTA 43

Acknowledgments

 Gheorge Almasi (IBM T. J. Watson Research
Center)

 Calin Cascaval (IBM T. J. Watson Research
Center)

 Nancy Amato (Texas A&M University)

11/13/06 HTA 44

data layering (from gabriel)
 Slide 1:

 motivation, AMR example and MG benchmark example ; point out that
the grids used by MG are a hierarchy of arrays or a “hierarchical array”

 Say that currently users declare arrays of arrays(arrays of HTAs in our
case; when going to AMR managing this array of arrays is geting
complicated;

 Slide 2 : one solution is data layering ; where each level of the HTA
contains data and metadata about tiling at the level below;

 Slide 3: mention that the multilayered HTA will assist the user
 in maintaining the hierarchy of arrays
 Compute the index spaces at coarse/refined grids to perform initialization of

the data at refined level based on data at the coarse level and the other way;
 Providing primitives to take out one level of the multilayered HTA and use it as

a regular HTA to reuse algorithms currently available;

11/13/06 HTA 45

C++ class hierarchy

HTA for stencil computation

• Iterative PDE solvers
– Computations on neighboring points
– Benefit from tiling

• Current HTA code
– Extra statements to update the shadow regions

B(1:n)[0]=B(0:n-1)[d];
B(0:n-1)[d+1]=B(1:n)[1];
A()[1:d]=S*(B()[2:d+1]+B()[0:d-1]);

Boundary
exchanges

• Shadow region consistency
– Handled by htalib
– Owner tile uses update-on-write policy

• Advantages
– No extra boundary exchanges
– Clean indexing syntax

Code example
A=HTA<double,1>alloc(tiling,array, ROW, ol);

A()[All]=S*(B()[All+1]+B()[All-1]);

11/13/06 HTA 48

Motivation

 Parallel Programming is a 2-stage process
 a) write an optimal serial program
 b) write an optimal parallel program

 Transition from a to b is a non-trivial task
 a variety of data distribution
 a variety of work distribution
 a variety of communication & synchronization

a variety of parallelization strategies

11/13/06 HTA 49

Research Efforts (II) : Languages &
Libraries

 Offer global view and/or single threaded
model
 ZPL – both
 CAF, X10, UPC – PGAS + multi threaded

model
 POOMA (library) - both

 Syntactically identifiable communication
None has been widely accepted

11/13/06 HTA 50

Operator Framework

mapReduce

map reduce, scan

primitives permutations &
transpositions

11/13/06 HTA 51

Other classes

11/13/06 HTA 52

Map-Reduce (cont.)
template<typename T, int N>struct MaxN : public Operator::MapReduce<T, XchgData<T, N>> { void reduce (const XchgData<T, N>& d) { for (int i = 0; i < N; i++) map(d.maxKey[i], d.maxVal[i]); } void map (const Tuple& key, const T& val) { //code to accumlate the minimum val and its key }
 const XchgData<T, N>& result () const { return buf_; } XchgData<T, N> buf;};

 MaxN<double, 2> mr = MaxN <double, 2>();
 hta.mapReduce(mr);

11/13/06 HTA 53

HTA Internal Representation

P
1

P
2

P
2

P
1

0 1 2 3

........ 15

0 1 2 3

........... 15

16 17 18 19

......... 31

16 17 18 19

....... 31

MemMapping

CyclicDistribution<2> dist (Tuple<2>(1,2));
Tuple<2>::Seq tiling = (Tuple<2>(2,2), Tuple<2>(2,2), Tuple<2>(2,2));
HTA<double, 2> h = HTA<double,2>(tiling, dist, ROW);

11/13/06 HTA 54

Advantages

 Easy to write a wide range of performance-
conscious programs
 Shared and Distributed memory programs (MIMD)
 Vector programs (SIMD)
 Cache-conscious programs

11/13/06 HTA 55

Advantages

 Minimal compiler involvement
 No complex analysis to unleash hidden

parallelism
 Unit of operation being tiles, message

vectorization comes for free
 Natural to represent multi-level (nested)

parallelism

