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Abstract. Hierarchically Tiled Arrays (HTAs) are data structures that
facilitate locality and parallelism of array intensive computations with
block-recursive nature. The model underlying HTAs provides program-
mers with a global view of distributed data as well as a single-threaded
view of the execution. In this paper we present htalib, a C++ imple-
mentation of HTAs. This library provides several novel constructs: (i)
A map-reduce operator framework that facilitates the implementation of
distributed operations with HTAs. (ii) Overlapped tiling in support of
tiling in stencil codes. (iii) Data layering, facilitating the use of HTAs in
adaptive mesh refinement applications. We describe the interface and de-
sign of htalib and our experience with the new programming constructs.

1 Introduction
1.1 Hierarchically Tiled Arrays

A Hierarchically Tiled Array (HTA) [7, 4] is a recursive array data type where
elements are either HTAs or scalars (at the bottom of the recursion). HTAs
adopt tiling as a first class construct for array-based computations and empower
programmers to control data distribution and the granularity of computation
explicitly through the specification of tiling [2, 8, 9, 16, 18]. An HTA has the con-
ventional array functionality: scalar access, pointwise operators, and assignment.
The functionality of HTAs goes a significant step beyond mere arrays: HTAs
provide a rich set of generic, block-recursive operations that execute with high
efficiency in sequential or parallel manner. When programming with HTAs, a
programmer seeks to harness the built-in operators or develop new operators by
extending the generic framework and HTA-specific functionality.
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HTAs are not only a library construct but also a programming model: HTAs
provide a global shared memory abstraction, and support (encourage) the pro-
grammer to structure algorithms in a block-recursive manner, yet following se-
quential program logic. This programming style can be efficiently mapped onto
todays parallel and distributed computer architectures and memory hierarchies
using standard compiler and communication systems. Unlike approaches that are
entirely controlled by the compiler [2] or integrated into a specific programming
language [9], HTAs offer an attractive programming model and performance
while preserving the convenience of standard tools, and libraries (library-based
approach).

In earlier work, we introduced the concepts of programming with HTAs [4]
and an early prototype based on MATLAB [7]. This paper describes htalib, a
portable C++ library and framework for HTAs, and three application-driven
extensions to the original HTA proposal [4] that facilitate the use of HTAs in
certain application domains and broaden the potential application scope. We
report on our experience with HTAs on an IBM BlueGene/L system.

1.2 Contributions

We present the design and implementation of an operator framework for HTAs
following the principles of map-reduce [12] that we illustrate with examples from
the NAS kernel programs.

Overlapped tiling, a mechanism for implicit allocation and consistency of
shadow regions and ghost cells. It provides flexible indexing scheme for HTA
tiles and facilitates access to neighbor elements of adjacent tiles, a common
access pattern in stencil computations. Overlapped tiling also provides a clean
syntax.

Data layering, an extension of htalib where a hierarchy of scalar arrays (not
just a single array) can be controlled and accessed through one HTA. Data lay-
ering makes HTAs a highly expressive and compact data structure for multigrid
and AMR (Adaptive Mesh Refinement) [6, 17] applications.

2 Design and Use of htalib
2.1 Overview

The core data structures of the htalib API fall into four categories:
Logical index space. Classes used to define index space and tiling of an HTA
are Tuple<N>, an N-dimensional index value; Triplet, a 1-dimensional range
with optional stride ((low:high:step)); and Region<N>, an N-dimensional rect-
angular index space spanned by N triplets. Arithmetic, shift, and iterator func-
tionality are implemented and compatible with the STL library. Instances of
Tuple<N> and Triplet are values, i.e., once defined, their value cannot change.
HTA. Class HTA<T,N> defines an HTA with scalar elements of type T and
N dimensions. The data type implements scalar access (operator[]), tile ac-
cess (operator()) and built-in array operations, e.g., transpose, permute,
dpermute, reduce that are described in earlier publications [7]. An HTA is part
of a hierarchical structure of recursively composed HTAs. The root of the hier-
archy is designated as level 0, with its tiles at level 1, etc..



Tuple<2>::Seq tiling = (Tuple<2>(2,2),
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Triplet::Seq ts = (Triplet(0,1,1),Triplet(2,5,1))
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Fig. 1: HTA allocation, access, distribution and memory mapping.

Machine mapping. The machine mapping of an HTA specifies (i) where the
HTA is allocated in a distributed system and (ii) the memory layout of the scalar
data array underlying the HTA. The former aspect is captured by instances of
class Distribution that specifies the home location of the scalar data for each
of the tiles of an HTA. The latter aspect is represented by instances of class
MemoryMapping that specify the layout (row-major across tiles, row-major per
tile etc.), size and stride of the flat array data underlying the HTA.

The machine mapping is accessed internally by the htalib, for example, to
orchestrate implicit communication. The machine mapping is also available
through the API of the library to facilitate direct access and communication
of array data in case the programmer intends to bypass the access mechanisms
provided by HTAs.

Operator framework. htalib provides a powerful operator framework following
the design of the STL operator classes. This framework consists of routines that
evaluate specific operators on HTAs and base classes that serve as a foundation
for user-defined operators. A detailed discussion of the operator framework is
given in Section 3.

2.2 Example

In Figure 1, the distribution of the HTA occurs at the root of the tiling hierarchy
in a cyclic manner over 2 processors along the second dimension (columns). At
each processor, the scalar array corresponding to the tiles is allocated in row-
major layout (spawning sub-tiles). The memory mapping in Figure 1 illustrates
the logical index of the scalar variables in each processor.

To simplify the presentation in subsequent examples, the C++ code
is slightly modified: Instead of the instances Tuple<DIM>(x,y,...) and
Triplet(low,high,step), we use a comma separated list of integers of the form



HTA<double,1> A, B;
double S = 0.125;
while (!converged) {

// boundary exchange
B(1:n)[0] = B(0:n-1)[d];
B(0:n-1)[d+1] = B(1:n)[1];
// stencil computation
A()[1:d] = S * (B()[2:d+1] + B()[0:d-1]);
...

}

(a)

htalib::async();
B(1:n)[0] = B(0:n-1)[d];
B(0:n-1)[d+1] = B(1:n)[1];
htalib::sync();

(b)

Fig. 2: HTA examples (a) HTA code for 1D Jacobi with one level of tiling. (b) Relaxing
sequential evaluation order to facilitate overlap of communication and computation.

(x,y,...) to represent coordinate points, and the low:high:step triplet nota-
tion. Regions are constructed from sequences of triplets as in Figure 1. Template
arguments are elided when their value is apparent from the context.

Figure 2(a) illustrates a Jacobi computation with HTAs. A and B are HTAs
with one level of tiling; there are n tiles at the root of the tiling hierarchy (level
0), each tile holding d+2 variables (level 1). Variables at index 0 and d+1 in each
tile are ghost cells. The boundary exchange first updates the ghost cells at index
0, then at index d+1. The iteration across tiles is implicit in all assignments. In
the stencil computation, the region is not specified at tile access and thus all tiles
at level 0 are considered in the operation. The example illustrates that scalars
and arrays can be combined as operator arguments; htalib follows Fortran90 [3]
conventions for conformability and automatically promotes scalars to arrays in
expressions.

2.3 Programming Model

The programming model supported by htalib has the following key properties:
Global view. Remote and local data are accessed though the same syntax and
address space. In the Jacobi computation in Figure 2(a), the tiles of the HTA
could be distributed, yet scalars and tiles are seamlessly accessed within one
global logical index space.
Implicit communication. Data is communicated when necessary as part of
the evaluation of one of the following constructs: array assignment, certain array
transformations, and when materializing temporary arrays during the evaluation
of complex array expressions (spilling).
Serial program logic. Statements and expressions that involve arrays are
evaluated according to serial semantics, in particular array assignment follows
Fortran90 conventions [3]. Parallelism is achieved when data-parallel array op-
erators are evaluated in a block-recursive manner following the tile distribution.
Automated memory management. The implementation maintains reference
counts for HTAs and associated structures, facilitating automatic de-allocation.
Tuples, triplets and sequences thereof have a very light-weight implementations
and are, by convention, allocated on the stack or inlined in objects.

2.4 Implementation

This section briefly describes four key implementation aspects of htalib:



struct plus {
double operator() (const double a,

const double b) {
return a+b;

} }

struct ft {
void operator() (Array* x) {

//...
mkl.dftForward(x);
//...

} }

Fig. 3: Primitive Operators

Owner computes. At allocation time, the top-level tiling of an HTA deter-
mines the data distribution, i.e., each tile is assigned a home location where
the master copy of the scalar data is allocated. The computation of an array
expression is distributed among the owners of tiles that receive the result of the
expression. Arguments data is communicated when necessary.

SPMD computation and communication. The execution and communica-
tion mechanisms inside htalib follows the SPMD principle. The communication
of tiles or part of tiles is based on two-sided message passing (MPI).

Dynamic optimizations. htalib implements lazy evaluation to reduce or avoid
the overhead due to temporary arrays. At an array assignment, the evaluation
of the rhs is delayed until the target of the assignment is determined. If lhs and
rhs have no data dependence, the assignment is directly evaluated into the lhs.

Relaxation of serial evaluation semantics. htalib provides a mechanism to
temporarily relax the serial evaluation ordering and overlap of communication
with computation. The example in Figure 2(b) shows the boundary exchange in
the Jacobi example in Figure 2(a). As there is no data dependence among the
assignments, both statements can proceed concurrently. This is achieved through
the runtime calls to asyc and sync. Similarly, the runtime system permits to
selectively disable strict evaluation order for array assignment and resort to
split-phase semantics [11].

3 Operator Framework

3.1 Primitive Operators

htalib defines several primitive operators over the scalar and array domain. To
provide an uniform interface, all these operators are wrapped in STL like functor
objects that define method operator() with appropriate arguments. Primitive
operators are applied to HTAs directly or through high-order operators (Sec-
tion 3.2).

htalib includes primitive operators for standard arithmetic, logical, relational,
vector and matrix operations. For example, in the Figure 3, plus is the addition
operation defined on scalars, while ft is Fourier Transform defined on an array.

3.2 Higher-order Operators

htalib provides the following higher-order operators: map, reduce, scan. Higher-
order operators are parametrized with primitive operators and define the strat-
egy and result format resulting form the application of primitive operators to
the tiles or scalar values in an HTA.
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Fig. 5: HTA reduce operator

Map map applies a function f to each one of the elements of the input HTA
at a given level. The syntax of map is shown in Figure 4, along with examples.
In the figure, h = (n × m ,..., x × y) indicates the region of each level of
the HTA h from leaf to root. map takes as input a primitive operator op, and
a level mlevel. The mlevel specifies the level of the HTA at which op will be
invoked. The default value of mlevel is LEAF LEV EL. Invocation of map on
HTA h, results in the mapping function being applied to the top level of h. If its
elements are tiles themselves, then the function is invoked recursively on each
of their elements until level = LEAF LEV EL or level = mlevel. The op is
invoked over the elements at that level.

The method op is required to be a PURE function. The result of map is an
HTA with identical index space and tiling. Though not shown in the figure, map
can also take one or more HTAs as its argument, along with op. The argument
HTAs should be conformable with the receiver of the method. map forms the
basis for several point-wise HTA operations. For example, scalar addition of two
HTAs, h1 and h2, is implemented using map as follows: r = h1.map(plus(),
h2);

The order of iteration in the map does not affect the result of the computation.
During its application, there is no communication between the sibling elements
(i.e. elements at the same level) of an HTA. Thus, map is a useful abstraction for
do-all parallelism. A map invocation on a distributed HTA is an equivalent of a
do-all parallel loop.

Reduce An operation which is applied to all components of a vector to produce
a scalar is called a reduction. For example, reduce(+, x) is sum and reduce(×, x)
is product of a vector x. The reduction operation can be generalized for n-
dimensions, resulting in an (n-1)-dimensional space.

The reduction operation is extended to HTAs in the form of the reduce
operator. Like map, reduce is also a recursive operation. The dimension of the
elements at each level will be reduced by one. However, it is possible to control
the starting and ending level of the reduction operation. The HTA reductions
are parameterized by the following arguments:

– op: This is any associative operation from the primitive operator set.
– dim: This is the dimension of reduction.



MROperator
-accumulator

-mrReduce(buffer)
-mrMap(idx,val)

Top2

-mrReduce(bufffer)
-mrMap(idx,val)

mrMap(buffer[0].idx, buffer[0].val)
mrMap(buffer[1].idx, buffer[1].val)

if (val > accumulator[0].val) 
    accumulator[0] = (val, idx)
 else if (val > accumulator[1].val)
    accumulator[1] = (val, idx)

Fig. 6: MROperator and Top2

Reduce

(5)(4)(3)(1) (2)

h.mapReduce (Top2())

Map

Fig. 7: mapReduce operation

– rflag: This is a bit vector, whose ith bit, if set to true, will imply replication
of the result along dim, for level i. The resulting HTA will have the same
number of dimensions as the input HTA, at the level i. This is the equivalent
of an all-to-all reduction. Default value is set to 0 for all dimensions.

– slevel: This is the starting level of the reduction. Default value is
LEAF LEVEL.

– elevel: This is the ending level of the reduction. Default value is
ROOT LEVEL. For example, if elevel = LEAF LEVEL and the HTA has
one-level of tiling, then the reduction is applied over each leaf tiles of the
HTA. Also, elevel ≤ slevel.

For example, if the HTA has a single level of tiling and slevel = elevel = 1,
then the scalar elements of the leaf tiles are reduced along dim. If slevel = elevel
= 0, the tiles of the top level HTA are reduced along dim. These two cases occur
in the IS program of NAS benchmark suite, and an example is shown in the
third and fourth row in Figure 5.

Scan scan computes the reductions of all prefixes of a vector. For example, if
the vector v = (1, 2, 3, 4, 5), then scan(+, v) = (1, 3, 6, 10, 14). htalib provides a
similar scan operation for HTAs. The syntax is very similar to that of reduce.
However, unlike map and reduce, scan is an ordered computation; the result is
dependent on the order of iteration over the elements. scan represents do-across
parallelism. Owing to space restrictions, scan is not explained in detail.

MapReduce Certain computations require composition of map and reduce.
mapReduce is a higher-order operator that combines the two steps in an effi-
cient manner. mapReduce takes as input instances of a map-reduce operator.



The implementation of this map-reduce operator is based on class MROperator
with two key abstract methods, mrMap and mrReduce, and a generic variable
accumulator that holds at first intermediate data and finally the results of the
operator evaluation.

To implement an application specific map-reduce operator, programmers
must extend MROperator and provide implementations for mrMap and mrReduce.
Figure 6 shows the MRoperator and a subclass, Top2, which finds the top 2 values
and their indices from a numerical matrix. A programmer only implements the
core sequential logic: the code for accumulating the results in the accumulator
in mrMap, and the code for combining two accumulators in mrReduce. The in-
vocation of mrMap with arguments, and the parallel reduction strategy and data
exchange are the responsibility of htalib.

Figure 7 illustrates the semantics of mapReduce invoked with an instance
of Top2. In the figure, the mapReduce is applied to an HTA with two levels of
tiling. A solid rectangle is used to show the scope of mapReduce at each stage.
mapReduce is evaluated recursively across the tile hierarchy down to a specified
level, i.e. method mapReduce is recursively invoked on each tile (step 1-2). When
the bottom or the recursion is reached, the method mrMap is applied to each
scalar of the tiles at this level (step 3). This is followed by calls to mrReduce as
the operator evaluation ascends in the tile hierarchy (steps 3-5). In the figure,
the top 2 elements chosen at each level are shown with white dots.

mapReduce offers better abstraction and performance benefits over applying
map and reduce separately. Since the reductions involve an associative operation,
potentially large intermediate buffers can be replaced by much smaller accumu-
lators. This saves both memory usage and network bandwidth. Furthermore,
several maps or reduces can be combined in to a single operation, eliminating
several unwanted buffers.

4 Overlapped Tiling

Many scientific codes contain operations on several neighboring points within
an array. A typical example is iterative PDE solvers based on finite difference
techniques, also known as stencil codes. Jacobi is a simple example of an iterative
PDE solver, which is similar to the stencil computation in NAS MG benchmark.
These codes benefit from tiling, and thus from HTAs, both because it improves
their locality [15] and because it can be used to distribute their data in order to
parallelize them. However, the processing of the data located in the borders of
the tiles requires accesses to neighboring data located in other tiles. The usual
approach to deal with this problem in parallel codes is to resort to shadow regions
or ghost cells that the programmer is responsible for keeping updated. Such
situation is shown in Figure 2(a) for a 1D Jacobi code. There are two statements
to update shadow regions of HTA B before the stencil computation. In htalib,
we have opted for a cleaner approach: overlapped tiling. It consists in specifying
at construction time that the contents of each tile of the HTA overlap with a
given number of elements of each neighbor tile. The HTA becomes responsible
for creating shadow regions of storage if they are needed, and updating them as
necessary.



4.1 Syntax

Creation When a tile T is defined, we say that the region it comprises is owned
by T. The size of this owned region for each tile is given by the tiling parameter,
the first parameter in HTA constructor in Figure 8(a). The regions that can
be accessed across tile boundaries are defined as shadow regions. In particular,
outside the region owned by T, are the extended regions that T can access. We
call them shadow-out regions. Inside T, there are regions that other tiles are
allowed to access. We call those shadow-in regions. For example, in Figure 8(b),
we show the shadow-in and shadow-out regions for the first tile of A defined in
Figure 8(a). The sizes of the shadow-in and shadow-out regions are given by a
parameter of type Overlap. First, we show how to construct an object of type
Overlap. The general form is,

Overlap<DIM> ol = Overlap<DIM>( T<DIM> negativeDir, T<DIM> positiveDir, boundaryMode mode);

The negativeDir specifies the amount of the overlap for each tile in the
negative direction (decreasing index value) in each dimension. The positiveDir
specifies the amount of the overlap for each tile in the positive direction (in-
creasing index values). The mode parameter specifies the nature of the boundary
regions in the original array with three options: zero, preset, periodic. The
zero mode means shadow regions filled with all zeros will be allocated to the
boundary of the array by htalib. The preset mode means the shadow regions for
the array elements in the boundary have been allocated and preset by the pro-
grammer. The periodic mode means the shadow regions for the array elements
satisfy the periodic boundary conditions. In the 1D array case, for instance, the
last element of the array treats the first element as its neighbor. The Overlap
object is used as the last parameter in the HTA constructor to create the HTA
with overlapped tiling.

Figure 8(a) shows an example code that creates an 1 × 3 HTA A with 4
elements per tile. Each tile in the HTA overlaps one element in both directions.
Around the boundaries of the array, the shadow regions are allocated by htalib
with zeros. The pictorial view is shown in Figure 8(b). As a result of the zero
mode overlap, the two shadow-out regions for the third tile are the last element
of the second tile and the last zero element added to A’s boundary by htalib.

Indexing The overlapped tiling provides flexible indexing to HTAs so that each
tile can index the neighboring elements in adjacent tiles.

The indexing for the owned region of each tile remains the same as if no
overlapped tiling had been applied. The index range for the owned data starts
from 0 to the maximum size of the tile in each dimension. The indexing for
the shadow regions extends the owner’s range in both positive and negative
directions in each dimension. For example, let us consider a one dimensional tile
T of size 4, with overlapped tiling in both direction with the length 2. Then,
the region owned by T can be indexed as T[0:3]. The left shadow region can
be indexed as T[-2:-1] and the right shadow region can be indexed as T[4:5].
We define the symbolic shape All to index all elements in the region owned by



HTA<double, 1> A, B;

    A()[All] = S* ( B()[All−1]+ B()[All+1]);

while (!converged){

 ... ...
}
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Overlap<1> ol(Tuple<1>(1), Tuple<1>(1), zero);

Tuple<1>::seq tiling=(Tuple<1>(4), Tuple<1>(3));

A=HTA<double,1>::alloc(tiling, array, ROW, ol);

(c)

(a)                                                                                        (b)0 0

Shadow−out Owned Shadow−out
Shadow−in

Fig. 8: Example of overlapped tiling. (a) The constructor for an HTA with tiles overlap
to both directions and shadow regions in the boundary are inserted.(b) The pictorial
view. (c) HTA code for 1D Jacobi with overlapped tiling

T. The expression T[All+1] indexes a region which shifts T to the right by 1. It
can also be thought as adding value 1 to each index in T[All].

Figure 8(c) shows the same code as Figure 2(a), but uses overlapped tiling.
Compared with the original code, it helps simplify the program with only one
statement in computation. Furthermore, the simpler indexing scheme makes the
code more readable.

4.2 Shadow Region Consistency

When there is a write to the shadow region, every tile that has access to this
region should be consistent with this change. The shadow region consistency
problem is handled by htalib. Consistency is trivial for some data layouts such as
row or column major. However, for some special data layouts such as distributed
HTAs, proper updates should be performed by htalib in order to keep all copies
of the overlapped region consistent.

We use the update-on-write policy to keep the shadow region consistent.
Since every element only belongs to one owned region, we only allow that owner
tile to perform the write to its data. Once the owner tile modifies the data, it
updates the set of tiles whose shadow-out regions contain the data.

5 Data Layering

So far the hierarchical nature of HTAs serves to achieve data distribution and
access locality. We now investigate HTAs for applications where the hierarchy
reflects a property of the application domain. The key extension we propose
for HTAs is to associate scalar data with different layers of an HTA (not just
with the lowest layer in the hierarchy) to facilitate applications requiring mesh
refinement.

When HTAs are used for locality or to control data distribution, data is stored
only in the leaf tiles, while tiles above the leaves store only meta data about their
children in the tiling hierarchy (see Figure 9(a)). We extend HTAs to provide
support for refinement, by allowing any level in the hierarchy to store both data
and tiling information about refined levels (see Figure 9(b)). For example, the
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Fig. 9: (a) HTA with no data layering. (b) Multi layered HTA stores data at different
levels of the hierarchy.

NAS benchmark MG [1] defines a set of grids that are successive refinements of
an original grid, as it can be seen in Figure 10(a), where levels 0, 1 and 2 are
shown. Every cell in a grid is expanded by a factor of two along all dimensions,
at the next level. The set of grids defined by MG can be naturally represented
as a hierarchy of tiled arrays.

A,B+1A,B+2

level 1level 0 level 2

X,Y
A,B

A+1,B
X,Y+1

(a) (b)

Fig. 10: Mesh Refinement (a) MG (b) Adaptive Mesh Refinement

5.1 HTA Support for Mesh Refinement in MG

Figure 11(a) shows code for a subset of functions in the NAS MG benchmark,
based on HTAs without layering support. In this code, the user has to explic-
itly allocate space for the HTAs corresponding to different levels of refinement.
Function setup(), in Figure 11(a), allocates the HTAs and stores them in an
array. The position in the array corresponds to different refinement levels. The
users will also have to explicitly store information on how data at a certain level
relates to data in the refined and coarse grids. This information is used to com-
municate data between different levels. In Figure 11(a), function interp(), data
from the coarse grid z is used to initialize data in the refined one u. The (A,B)
and (X,Y) tuples specify how data elements between two levels correspond and
this information has to be provided by the user. The explicit specification of
the coordinate mapping is error prone and a tedious task for a programmer. We
extend the HTA library to handle the refinement, and to automatically provide
these mappings.

For the NAS MG benchmark, allocating the grids for the refined levels is
relatively simple. Every cell is refined uniformly, in all directions by a constant
factor. In a general adaptive mesh refinement problem there are extra complica-
tions that have to be addressed: When the refinement is not uniform, as shown in



#define Grid HTA
void setup(...) {
for i = 0..num_levels {
compute tiling level i
array[i] = allocate HTA level i

}
}

void interp (Grid z, Grid u ) {
//get info about tiles
Weight w;
int iSize = ..
int jSize = ..
int kSize = ..
Triplet X(0, iSize-2);
Triplet Y(0, jSize-2);
Triplet A(0, 2 * (iSize-2), 2);
Triplet B(0, 2 * (jSize-2), 2);

u()((A,B)) += w * z()((X,Y));
u()((A+1,B)) += w * z()((X,Y));
...

}

(a)

#define Grid HTA
void setup(...) {
allocate H, HTA level 0;
for i = 1..num_levels {
H.refine(level_i, refinement_factor)

}
}

void interp(Grid u, level lev) {
Weight w;
Region r_coarse(X,Y), r_fine(A,B);
<r_coarse, r_fine> = u.project(lev);
//project level lev of u down; return mapping
u.get_level(lev+1)(r_fine) += w *

u.level(lev)(r_coarse);
r_fine.X += 1;
u.get_level(lev+1)(r_fine) += w *

u.level(lev)(r_coarse);
...

}

(b)

Fig. 11: MG setup() and interp() functions adapted for 2D Grids: (a) without refine-
ment support and (b) with refinement support

Figure 10(b), the user will have to allocate explicit space for all refined sections
and to store, separated from the grid data structure, more complex information
on how grids at different levels are correlated. Both aspects can be naturally
expressed with our extensions to HTA, such that to simplify the programmer’s
effort in maintaining refinement information.

5.2 The Extensions for Multiple Levels of Data

Layered HTAs extend the interface of HTA with a set of primitives that facilitate
computation requiring refinement as follows:

void refine(level lev, region, refinement factor): at level lev, refine
the specified region (see Section 2.1), using the specified refinement factor.
The refinement factor is a tuple specifying the refinement in each dimension. In
Figure 10(a), e.g., level 1 is a refinement of the original grid, created through
refine(0, All, Tuple(2,2)).

<region coarse, region fine> = project (level): computes how ele-
ments from two adjacent levels correspond to each other. region coarse and
region fine are initialized by this method. Both regions will have the same size
(iteration space) and they encapsulate the mapping information that is used
to perform operations between elements on two adjacent levels. Figure 10(a),
illustrates an HTA with two levels of refinement; the call <region coarse,
region fine> = HTA.project (0), initializes the two regions such that ele-
ment (X,Y) from region coarse will be associated with element (A,B) from
region fine, (X,Y+1) with (A,B+2), and similarly for all elements at the coarse
level. The corresponding regions initialized with project() are used to perform
assignments and different operations between elements of HTAs at adjacent lev-
els. To exemplify the use of the project() method, we show in Figure 11(b),
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Fig. 12: Linecount of key sections of
HTA and MPI programs.

Number of Benchmark
Processors CG A CG B MG A MG B

1 68.63 2631.39 - -
2 35.27 1335.76 - -
4 17.94 671.96 - -
8 12.49 451.84 9.57 38.03

16 6.47 227.78 5.06 20.37
32 6.94 186.08 2.84 11.7
64 4.19 93.02 1.91 8.27

Fig. 13: Execution times of the NAS
HTA codes on BlueGene/L.

function interp() from the NAS MG kernel. The function has the same func-
tionality as the interp() method in Figure 11(a), the mapping corresponding to
the refinement are however not computed explicitly, but provided by the layered
HTA.

HTA get level(level lev): To simplify the design, layered HTAs can’t be
used in expressions with regular HTAs. Layered HTAs provide get level(), a
cast type of method that returns an HTA representing the tiling and data at
a specific level. This mechanism allows to apply regular HTA operations to a
specific layer of a multi layered HTA.

The extensions described in this section, provide an interface that facilitates
the development of applications requiring mesh refinement. The hierarchy of
refinement levels existent in the application is naturally mapped onto the hi-
erarchy of an HTA. We are currently exploring an adaptive mesh refinement
application[17] to analyze the impact of the proposed HTA extensions on pro-
ductivity and performance.

6 Experimental Results

HTA programs benefit from a high level notation, much more expressive than
that of other approaches to implement parallel programs. Thus it is expected
that they will boost programmer’s productivity. Figure 12 measures this property
by comparing the number of lines of code used by the htalib implementation
of the CG and MG NAS benchmarks with that of their corresponding MPI
counterparts. As we can see, the HTA codes have substantially fewer lines of
code in each one the three categories in which we have classified them.

Figure 13 shows the execution times for CG and MG for classes A and B
for different numbers of processors on the BlueGene/L. Some experiments could
not be run due to the limited amount of main memory available in a single
compute node. We observe good scalability and our current efforts are focused on
identifying and optimizing the primitives that will further improve this to match
the speedup numbers achieved by the FORTRAN + MPI versions. In terms



of absolute performance, the FORTRAN + MPI versions of the benchmarks
included in Figure 13 run on average 2.2 times faster than the htalib version.

7 Related Work

The programming for distributed memory systems has traditionally followed a
SPMD, message-passing model. Programmers specify the path of execution for
each processor, and messages are exchanged either using standard libraries like
MPI [14] or higher level constructs provided by languages like Co-Array Fortran
(CAF) [16] and UPC [8]. This paradigm produces very efficient programs at
the cost of high development and maintenance costs, as the programmer has to
distribute and communicate data, synchronize processes and choose execution
paths for each processor manually.

There are three principal approaches to implement global view programming
models for distributed memory systems: (i) extensions of existing languages with
directives such as HPF [2], (ii) novel languages like ZPL [9], and (iii) libraries
like htalib or STAPL [5]. We find the latter strategy most attractive as it facili-
tates the reuse of existing codes. Moreover, the library-based approach allows the
gradual migration of sequential codes to a parallel form without relying on com-
plex compiler technology that is not always effective in optimizing the overheads
associated with the global view model.

What differentiates the HTA from other approaches is (a) its unique treat-
ment of the tile as a first-class object that is explicitly addressed and manipu-
lated and (b) its emphasis in the recursive subdivision of the tiles in order to
adapt the data storage and computation structure of the codes to the underlying
machine. This latter characteristic is shared with Sequoia [13], although its prin-
cipal construct is procedural (the task), while our approach is data centric. Also,
Sequoia tasks are not associated to particular processors; instead they can run
in any node in which their working set fits. HTAs provide on the contrary a clear
model of data and task placement and communications. Finally, Matrix++ [10]
also allows the construction of hierarchical matrices and implements recursive
operations on them, but it lacks the flexible notation of the HTAs to access and
manipulate the tiles. Rather, it is focused on computations involving the whole
resulting matrices.

8 Concluding Remarks

In this paper we describe three extensions to HTAs that facilitate their use in
a wide variety of application contexts. Our extensions factor out functionality
that is commonly encountered in array-based codes. Using the operator frame-
work, programmers can specify powerful, block-recursive array operations in a
sequential logic, while the skeleton of reduction and iteration is provided by
htalib. Overlapped tiling relieves the programmer from explicitly allocating and
maintaining ghost cells in stencil computations. Support for multi-layering helps
users express refinement and computations that involve arrays at adjacent layers
of the hierarchy. Our experience with a portable C++ library shows that the



new HTA features permit to implement the NAS kernels in a structured and con-
cise manner without compromising scalability or performance on a BlueGene/L
system.
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